blob: 4f5729950af8977074ce237c1c29bd5f8d8b405d [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fxcodec/tiff/tiff_decoder.h"
#include <limits>
#include <memory>
#include "core/fxcodec/cfx_codec_memory.h"
#include "core/fxcodec/fx_codec.h"
#include "core/fxcodec/fx_codec_def.h"
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxcrt/fx_stream.h"
#include "core/fxcrt/fx_system.h"
#include "core/fxcrt/retain_ptr.h"
#include "core/fxge/dib/cfx_dibitmap.h"
#include "core/fxge/dib/fx_dib.h"
#include "third_party/base/check.h"
#include "third_party/base/notreached.h"
extern "C" {
#include "third_party/libtiff/tiffiop.h"
} // extern C
namespace {
// For use with std::unique_ptr<TIFF>.
struct TiffDeleter {
inline void operator()(TIFF* context) { TIFFClose(context); }
};
} // namespace
class CTiffContext final : public ProgressiveDecoderIface::Context {
public:
CTiffContext() = default;
~CTiffContext() override = default;
bool InitDecoder(const RetainPtr<IFX_SeekableReadStream>& file_ptr);
bool LoadFrameInfo(int32_t frame,
int32_t* width,
int32_t* height,
int32_t* comps,
int32_t* bpc,
CFX_DIBAttribute* pAttribute);
bool Decode(const RetainPtr<CFX_DIBitmap>& pDIBitmap);
RetainPtr<IFX_SeekableReadStream> io_in() const { return m_io_in; }
uint32_t offset() const { return m_offset; }
void set_offset(uint32_t offset) { m_offset = offset; }
private:
bool IsSupport(const RetainPtr<CFX_DIBitmap>& pDIBitmap) const;
void SetPalette(const RetainPtr<CFX_DIBitmap>& pDIBitmap, uint16_t bps);
bool Decode1bppRGB(const RetainPtr<CFX_DIBitmap>& pDIBitmap,
int32_t height,
int32_t width,
uint16_t bps,
uint16_t spp);
bool Decode8bppRGB(const RetainPtr<CFX_DIBitmap>& pDIBitmap,
int32_t height,
int32_t width,
uint16_t bps,
uint16_t spp);
bool Decode24bppRGB(const RetainPtr<CFX_DIBitmap>& pDIBitmap,
int32_t height,
int32_t width,
uint16_t bps,
uint16_t spp);
RetainPtr<IFX_SeekableReadStream> m_io_in;
uint32_t m_offset = 0;
std::unique_ptr<TIFF, TiffDeleter> m_tif_ctx;
};
void* _TIFFcalloc(tmsize_t nmemb, tmsize_t siz) {
return FXMEM_DefaultCalloc(nmemb, siz);
}
void* _TIFFmalloc(tmsize_t size) {
return FXMEM_DefaultAlloc(size);
}
void _TIFFfree(void* ptr) {
if (ptr)
FXMEM_DefaultFree(ptr);
}
void* _TIFFrealloc(void* ptr, tmsize_t size) {
return FXMEM_DefaultRealloc(ptr, size);
}
void _TIFFmemset(void* ptr, int val, tmsize_t size) {
memset(ptr, val, static_cast<size_t>(size));
}
void _TIFFmemcpy(void* des, const void* src, tmsize_t size) {
memcpy(des, src, static_cast<size_t>(size));
}
int _TIFFmemcmp(const void* ptr1, const void* ptr2, tmsize_t size) {
return memcmp(ptr1, ptr2, static_cast<size_t>(size));
}
TIFFErrorHandler _TIFFwarningHandler = nullptr;
TIFFErrorHandler _TIFFerrorHandler = nullptr;
namespace {
tsize_t tiff_read(thandle_t context, tdata_t buf, tsize_t length) {
CTiffContext* pTiffContext = reinterpret_cast<CTiffContext*>(context);
FX_SAFE_UINT32 increment = pTiffContext->offset();
increment += length;
if (!increment.IsValid())
return 0;
FX_FILESIZE offset = pTiffContext->offset();
if (!pTiffContext->io_in()->ReadBlockAtOffset(buf, offset, length))
return 0;
pTiffContext->set_offset(increment.ValueOrDie());
if (offset + length > pTiffContext->io_in()->GetSize())
return pTiffContext->io_in()->GetSize() - offset;
return length;
}
tsize_t tiff_write(thandle_t context, tdata_t buf, tsize_t length) {
NOTREACHED();
return 0;
}
toff_t tiff_seek(thandle_t context, toff_t offset, int whence) {
CTiffContext* pTiffContext = reinterpret_cast<CTiffContext*>(context);
FX_SAFE_FILESIZE safe_offset = offset;
if (!safe_offset.IsValid())
return static_cast<toff_t>(-1);
FX_FILESIZE file_offset = safe_offset.ValueOrDie();
switch (whence) {
case 0: {
if (file_offset > pTiffContext->io_in()->GetSize())
return static_cast<toff_t>(-1);
pTiffContext->set_offset(file_offset);
return pTiffContext->offset();
}
case 1: {
FX_SAFE_UINT32 new_increment = pTiffContext->offset();
new_increment += file_offset;
if (!new_increment.IsValid())
return static_cast<toff_t>(-1);
pTiffContext->set_offset(new_increment.ValueOrDie());
return pTiffContext->offset();
}
case 2: {
if (pTiffContext->io_in()->GetSize() < file_offset)
return static_cast<toff_t>(-1);
pTiffContext->set_offset(pTiffContext->io_in()->GetSize() - file_offset);
return pTiffContext->offset();
}
default:
return static_cast<toff_t>(-1);
}
}
int tiff_close(thandle_t context) {
return 0;
}
toff_t tiff_get_size(thandle_t context) {
CTiffContext* pTiffContext = reinterpret_cast<CTiffContext*>(context);
return static_cast<toff_t>(pTiffContext->io_in()->GetSize());
}
int tiff_map(thandle_t context, tdata_t*, toff_t*) {
return 0;
}
void tiff_unmap(thandle_t context, tdata_t, toff_t) {}
TIFF* tiff_open(void* context, const char* mode) {
TIFF* tif = TIFFClientOpen("Tiff Image", mode, (thandle_t)context, tiff_read,
tiff_write, tiff_seek, tiff_close, tiff_get_size,
tiff_map, tiff_unmap);
if (tif) {
tif->tif_fd = (int)(intptr_t)context;
}
return tif;
}
template <class T>
bool Tiff_Exif_GetInfo(TIFF* tif_ctx, ttag_t tag, CFX_DIBAttribute* pAttr) {
T val = 0;
TIFFGetField(tif_ctx, tag, &val);
if (!val)
return false;
T* ptr = FX_Alloc(T, 1);
*ptr = val;
pAttr->m_Exif[tag] = ptr;
return true;
}
void Tiff_Exif_GetStringInfo(TIFF* tif_ctx,
ttag_t tag,
CFX_DIBAttribute* pAttr) {
char* buf = nullptr;
TIFFGetField(tif_ctx, tag, &buf);
if (!buf)
return;
size_t size = strlen(buf);
uint8_t* ptr = FX_AllocUninit(uint8_t, size + 1);
memcpy(ptr, buf, size);
ptr[size] = 0;
pAttr->m_Exif[tag] = ptr;
}
void TiffBGRA2RGBA(uint8_t* pBuf, int32_t pixel, int32_t spp) {
for (int32_t n = 0; n < pixel; n++) {
uint8_t tmp = pBuf[0];
pBuf[0] = pBuf[2];
pBuf[2] = tmp;
pBuf += spp;
}
}
} // namespace
bool CTiffContext::InitDecoder(
const RetainPtr<IFX_SeekableReadStream>& file_ptr) {
m_io_in = file_ptr;
m_tif_ctx.reset(tiff_open(this, "r"));
return !!m_tif_ctx;
}
bool CTiffContext::LoadFrameInfo(int32_t frame,
int32_t* width,
int32_t* height,
int32_t* comps,
int32_t* bpc,
CFX_DIBAttribute* pAttribute) {
if (!TIFFSetDirectory(m_tif_ctx.get(), (uint16)frame))
return false;
uint32_t tif_width = 0;
uint32_t tif_height = 0;
uint16_t tif_comps = 0;
uint16_t tif_bpc = 0;
uint32_t tif_rps = 0;
TIFFGetField(m_tif_ctx.get(), TIFFTAG_IMAGEWIDTH, &tif_width);
TIFFGetField(m_tif_ctx.get(), TIFFTAG_IMAGELENGTH, &tif_height);
TIFFGetField(m_tif_ctx.get(), TIFFTAG_SAMPLESPERPIXEL, &tif_comps);
TIFFGetField(m_tif_ctx.get(), TIFFTAG_BITSPERSAMPLE, &tif_bpc);
TIFFGetField(m_tif_ctx.get(), TIFFTAG_ROWSPERSTRIP, &tif_rps);
pAttribute->m_wDPIUnit = FXCODEC_RESUNIT_INCH;
if (TIFFGetField(m_tif_ctx.get(), TIFFTAG_RESOLUTIONUNIT,
&pAttribute->m_wDPIUnit)) {
pAttribute->m_wDPIUnit--;
}
Tiff_Exif_GetInfo<uint16_t>(m_tif_ctx.get(), TIFFTAG_ORIENTATION, pAttribute);
if (Tiff_Exif_GetInfo<float>(m_tif_ctx.get(), TIFFTAG_XRESOLUTION,
pAttribute)) {
void* val = pAttribute->m_Exif[TIFFTAG_XRESOLUTION];
float fDpi = val ? *reinterpret_cast<float*>(val) : 0;
pAttribute->m_nXDPI = static_cast<int32_t>(fDpi + 0.5f);
}
if (Tiff_Exif_GetInfo<float>(m_tif_ctx.get(), TIFFTAG_YRESOLUTION,
pAttribute)) {
void* val = pAttribute->m_Exif[TIFFTAG_YRESOLUTION];
float fDpi = val ? *reinterpret_cast<float*>(val) : 0;
pAttribute->m_nYDPI = static_cast<int32_t>(fDpi + 0.5f);
}
Tiff_Exif_GetStringInfo(m_tif_ctx.get(), TIFFTAG_IMAGEDESCRIPTION,
pAttribute);
Tiff_Exif_GetStringInfo(m_tif_ctx.get(), TIFFTAG_MAKE, pAttribute);
Tiff_Exif_GetStringInfo(m_tif_ctx.get(), TIFFTAG_MODEL, pAttribute);
FX_SAFE_INT32 checked_width = tif_width;
FX_SAFE_INT32 checked_height = tif_height;
if (!checked_width.IsValid() || !checked_height.IsValid())
return false;
*width = checked_width.ValueOrDie();
*height = checked_height.ValueOrDie();
*comps = tif_comps;
*bpc = tif_bpc;
if (tif_rps > tif_height) {
tif_rps = tif_height;
TIFFSetField(m_tif_ctx.get(), TIFFTAG_ROWSPERSTRIP, tif_rps);
}
return true;
}
bool CTiffContext::IsSupport(const RetainPtr<CFX_DIBitmap>& pDIBitmap) const {
if (TIFFIsTiled(m_tif_ctx.get()))
return false;
uint16_t photometric = 0;
if (!TIFFGetField(m_tif_ctx.get(), TIFFTAG_PHOTOMETRIC, &photometric))
return false;
switch (pDIBitmap->GetBPP()) {
case 1:
case 8:
if (photometric != PHOTOMETRIC_PALETTE) {
return false;
}
break;
case 24:
if (photometric != PHOTOMETRIC_RGB) {
return false;
}
break;
default:
return false;
}
uint16_t planarconfig = 0;
if (!TIFFGetFieldDefaulted(m_tif_ctx.get(), TIFFTAG_PLANARCONFIG,
&planarconfig))
return false;
return planarconfig != PLANARCONFIG_SEPARATE;
}
void CTiffContext::SetPalette(const RetainPtr<CFX_DIBitmap>& pDIBitmap,
uint16_t bps) {
uint16_t* red_orig = nullptr;
uint16_t* green_orig = nullptr;
uint16_t* blue_orig = nullptr;
TIFFGetField(m_tif_ctx.get(), TIFFTAG_COLORMAP, &red_orig, &green_orig,
&blue_orig);
for (int32_t i = (1L << bps) - 1; i >= 0; i--) {
#define CVT(x) ((uint16_t)((x) >> 8))
red_orig[i] = CVT(red_orig[i]);
green_orig[i] = CVT(green_orig[i]);
blue_orig[i] = CVT(blue_orig[i]);
#undef CVT
}
int32_t len = 1 << bps;
for (int32_t index = 0; index < len; index++) {
uint32_t r = red_orig[index] & 0xFF;
uint32_t g = green_orig[index] & 0xFF;
uint32_t b = blue_orig[index] & 0xFF;
uint32_t color = (uint32_t)b | ((uint32_t)g << 8) | ((uint32_t)r << 16) |
(((uint32)0xffL) << 24);
pDIBitmap->SetPaletteArgb(index, color);
}
}
bool CTiffContext::Decode1bppRGB(const RetainPtr<CFX_DIBitmap>& pDIBitmap,
int32_t height,
int32_t width,
uint16_t bps,
uint16_t spp) {
if (pDIBitmap->GetBPP() != 1 || spp != 1 || bps != 1 ||
!IsSupport(pDIBitmap)) {
return false;
}
SetPalette(pDIBitmap, bps);
int32_t size = static_cast<int32_t>(TIFFScanlineSize(m_tif_ctx.get()));
uint8_t* buf = (uint8_t*)_TIFFmalloc(size);
if (!buf) {
TIFFError(TIFFFileName(m_tif_ctx.get()), "No space for scanline buffer");
return false;
}
uint8_t* bitMapbuffer = (uint8_t*)pDIBitmap->GetBuffer();
uint32_t pitch = pDIBitmap->GetPitch();
for (int32_t row = 0; row < height; row++) {
TIFFReadScanline(m_tif_ctx.get(), buf, row, 0);
for (int32_t j = 0; j < size; j++) {
bitMapbuffer[row * pitch + j] = buf[j];
}
}
_TIFFfree(buf);
return true;
}
bool CTiffContext::Decode8bppRGB(const RetainPtr<CFX_DIBitmap>& pDIBitmap,
int32_t height,
int32_t width,
uint16_t bps,
uint16_t spp) {
if (pDIBitmap->GetBPP() != 8 || spp != 1 || (bps != 4 && bps != 8) ||
!IsSupport(pDIBitmap)) {
return false;
}
SetPalette(pDIBitmap, bps);
int32_t size = static_cast<int32_t>(TIFFScanlineSize(m_tif_ctx.get()));
uint8_t* buf = (uint8_t*)_TIFFmalloc(size);
if (!buf) {
TIFFError(TIFFFileName(m_tif_ctx.get()), "No space for scanline buffer");
return false;
}
uint8_t* bitMapbuffer = (uint8_t*)pDIBitmap->GetBuffer();
uint32_t pitch = pDIBitmap->GetPitch();
for (int32_t row = 0; row < height; row++) {
TIFFReadScanline(m_tif_ctx.get(), buf, row, 0);
for (int32_t j = 0; j < size; j++) {
switch (bps) {
case 4:
bitMapbuffer[row * pitch + 2 * j + 0] = (buf[j] & 0xF0) >> 4;
bitMapbuffer[row * pitch + 2 * j + 1] = (buf[j] & 0x0F) >> 0;
break;
case 8:
bitMapbuffer[row * pitch + j] = buf[j];
break;
}
}
}
_TIFFfree(buf);
return true;
}
bool CTiffContext::Decode24bppRGB(const RetainPtr<CFX_DIBitmap>& pDIBitmap,
int32_t height,
int32_t width,
uint16_t bps,
uint16_t spp) {
if (pDIBitmap->GetBPP() != 24 || !IsSupport(pDIBitmap))
return false;
int32_t size = static_cast<int32_t>(TIFFScanlineSize(m_tif_ctx.get()));
uint8_t* buf = (uint8_t*)_TIFFmalloc(size);
if (!buf) {
TIFFError(TIFFFileName(m_tif_ctx.get()), "No space for scanline buffer");
return false;
}
uint8_t* bitMapbuffer = (uint8_t*)pDIBitmap->GetBuffer();
uint32_t pitch = pDIBitmap->GetPitch();
for (int32_t row = 0; row < height; row++) {
TIFFReadScanline(m_tif_ctx.get(), buf, row, 0);
for (int32_t j = 0; j < size - 2; j += 3) {
bitMapbuffer[row * pitch + j + 0] = buf[j + 2];
bitMapbuffer[row * pitch + j + 1] = buf[j + 1];
bitMapbuffer[row * pitch + j + 2] = buf[j + 0];
}
}
_TIFFfree(buf);
return true;
}
bool CTiffContext::Decode(const RetainPtr<CFX_DIBitmap>& pDIBitmap) {
uint32_t img_width = pDIBitmap->GetWidth();
uint32_t img_height = pDIBitmap->GetHeight();
uint32_t width = 0;
uint32_t height = 0;
TIFFGetField(m_tif_ctx.get(), TIFFTAG_IMAGEWIDTH, &width);
TIFFGetField(m_tif_ctx.get(), TIFFTAG_IMAGELENGTH, &height);
if (img_width != width || img_height != height)
return false;
if (pDIBitmap->GetBPP() == 32) {
uint16_t rotation = ORIENTATION_TOPLEFT;
TIFFGetField(m_tif_ctx.get(), TIFFTAG_ORIENTATION, &rotation);
if (TIFFReadRGBAImageOriented(m_tif_ctx.get(), img_width, img_height,
(uint32*)pDIBitmap->GetBuffer(), rotation,
1)) {
for (uint32_t row = 0; row < img_height; row++) {
uint8_t* row_buf = pDIBitmap->GetWritableScanline(row);
TiffBGRA2RGBA(row_buf, img_width, 4);
}
return true;
}
}
uint16_t spp = 0;
uint16_t bps = 0;
TIFFGetField(m_tif_ctx.get(), TIFFTAG_SAMPLESPERPIXEL, &spp);
TIFFGetField(m_tif_ctx.get(), TIFFTAG_BITSPERSAMPLE, &bps);
FX_SAFE_UINT32 safe_bpp = bps;
safe_bpp *= spp;
if (!safe_bpp.IsValid())
return false;
uint32_t bpp = safe_bpp.ValueOrDie();
if (bpp == 1)
return Decode1bppRGB(pDIBitmap, height, width, bps, spp);
if (bpp <= 8)
return Decode8bppRGB(pDIBitmap, height, width, bps, spp);
if (bpp <= 24)
return Decode24bppRGB(pDIBitmap, height, width, bps, spp);
return false;
}
namespace fxcodec {
// static
std::unique_ptr<ProgressiveDecoderIface::Context> TiffDecoder::CreateDecoder(
const RetainPtr<IFX_SeekableReadStream>& file_ptr) {
auto pDecoder = std::make_unique<CTiffContext>();
if (!pDecoder->InitDecoder(file_ptr))
return nullptr;
return pDecoder;
}
// static
bool TiffDecoder::LoadFrameInfo(ProgressiveDecoderIface::Context* pContext,
int32_t frame,
int32_t* width,
int32_t* height,
int32_t* comps,
int32_t* bpc,
CFX_DIBAttribute* pAttribute) {
DCHECK(pAttribute);
auto* ctx = static_cast<CTiffContext*>(pContext);
return ctx->LoadFrameInfo(frame, width, height, comps, bpc, pAttribute);
}
// static
bool TiffDecoder::Decode(ProgressiveDecoderIface::Context* pContext,
const RetainPtr<CFX_DIBitmap>& pDIBitmap) {
auto* ctx = static_cast<CTiffContext*>(pContext);
return ctx->Decode(pDIBitmap);
}
} // namespace fxcodec