| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_ |
| #define PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_ |
| |
| #include <stdint.h> |
| |
| #include <cmath> |
| #include <cstdlib> |
| #include <limits> |
| #include <type_traits> |
| |
| #include "safe_conversions.h" |
| #include "third_party/base/macros.h" |
| |
| namespace pdfium { |
| namespace base { |
| namespace internal { |
| |
| // Everything from here up to the floating point operations is portable C++, |
| // but it may not be fast. This code could be split based on |
| // platform/architecture and replaced with potentially faster implementations. |
| |
| // Integer promotion templates used by the portable checked integer arithmetic. |
| template <size_t Size, bool IsSigned> |
| struct IntegerForSizeAndSign; |
| template <> |
| struct IntegerForSizeAndSign<1, true> { |
| typedef int8_t type; |
| }; |
| template <> |
| struct IntegerForSizeAndSign<1, false> { |
| typedef uint8_t type; |
| }; |
| template <> |
| struct IntegerForSizeAndSign<2, true> { |
| typedef int16_t type; |
| }; |
| template <> |
| struct IntegerForSizeAndSign<2, false> { |
| typedef uint16_t type; |
| }; |
| template <> |
| struct IntegerForSizeAndSign<4, true> { |
| typedef int32_t type; |
| }; |
| template <> |
| struct IntegerForSizeAndSign<4, false> { |
| typedef uint32_t type; |
| }; |
| template <> |
| struct IntegerForSizeAndSign<8, true> { |
| typedef int64_t type; |
| }; |
| template <> |
| struct IntegerForSizeAndSign<8, false> { |
| typedef uint64_t type; |
| }; |
| |
| // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to |
| // support 128-bit math, then the ArithmeticPromotion template below will need |
| // to be updated (or more likely replaced with a decltype expression). |
| |
| template <typename Integer> |
| struct UnsignedIntegerForSize { |
| typedef typename std::enable_if< |
| std::numeric_limits<Integer>::is_integer, |
| typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; |
| }; |
| |
| template <typename Integer> |
| struct SignedIntegerForSize { |
| typedef typename std::enable_if< |
| std::numeric_limits<Integer>::is_integer, |
| typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; |
| }; |
| |
| template <typename Integer> |
| struct TwiceWiderInteger { |
| typedef typename std::enable_if< |
| std::numeric_limits<Integer>::is_integer, |
| typename IntegerForSizeAndSign< |
| sizeof(Integer) * 2, |
| std::numeric_limits<Integer>::is_signed>::type>::type type; |
| }; |
| |
| template <typename Integer> |
| struct PositionOfSignBit { |
| static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, |
| size_t>::type value = |
| 8 * sizeof(Integer) - 1; |
| }; |
| |
| // Helper templates for integer manipulations. |
| |
| template <typename T> |
| bool HasSignBit(T x) { |
| // Cast to unsigned since right shift on signed is undefined. |
| return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> |
| PositionOfSignBit<T>::value); |
| } |
| |
| // This wrapper undoes the standard integer promotions. |
| template <typename T> |
| T BinaryComplement(T x) { |
| return ~x; |
| } |
| |
| // Here are the actual portable checked integer math implementations. |
| // TODO(jschuh): Break this code out from the enable_if pattern and find a clean |
| // way to coalesce things into the CheckedNumericState specializations below. |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type |
| CheckedAdd(T x, T y, RangeConstraint* validity) { |
| // Since the value of x+y is undefined if we have a signed type, we compute |
| // it using the unsigned type of the same size. |
| typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; |
| UnsignedDst ux = static_cast<UnsignedDst>(x); |
| UnsignedDst uy = static_cast<UnsignedDst>(y); |
| UnsignedDst uresult = ux + uy; |
| // Addition is valid if the sign of (x + y) is equal to either that of x or |
| // that of y. |
| if (std::numeric_limits<T>::is_signed) { |
| if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy)))) |
| *validity = RANGE_VALID; |
| else // Direction of wrap is inverse of result sign. |
| *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; |
| |
| } else { // Unsigned is either valid or overflow. |
| *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; |
| } |
| return static_cast<T>(uresult); |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type |
| CheckedSub(T x, T y, RangeConstraint* validity) { |
| // Since the value of x+y is undefined if we have a signed type, we compute |
| // it using the unsigned type of the same size. |
| typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; |
| UnsignedDst ux = static_cast<UnsignedDst>(x); |
| UnsignedDst uy = static_cast<UnsignedDst>(y); |
| UnsignedDst uresult = ux - uy; |
| // Subtraction is valid if either x and y have same sign, or (x-y) and x have |
| // the same sign. |
| if (std::numeric_limits<T>::is_signed) { |
| if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy)))) |
| *validity = RANGE_VALID; |
| else // Direction of wrap is inverse of result sign. |
| *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; |
| |
| } else { // Unsigned is either valid or underflow. |
| *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; |
| } |
| return static_cast<T>(uresult); |
| } |
| |
| // Integer multiplication is a bit complicated. In the fast case we just |
| // we just promote to a twice wider type, and range check the result. In the |
| // slow case we need to manually check that the result won't be truncated by |
| // checking with division against the appropriate bound. |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| sizeof(T) * 2 <= sizeof(uintmax_t), |
| T>::type |
| CheckedMul(T x, T y, RangeConstraint* validity) { |
| typedef typename TwiceWiderInteger<T>::type IntermediateType; |
| IntermediateType tmp = |
| static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); |
| *validity = DstRangeRelationToSrcRange<T>(tmp); |
| return static_cast<T>(tmp); |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| std::numeric_limits<T>::is_signed && |
| (sizeof(T) * 2 > sizeof(uintmax_t)), |
| T>::type |
| CheckedMul(T x, T y, RangeConstraint* validity) { |
| // If either side is zero then the result will be zero. |
| if (!x || !y) { |
| return RANGE_VALID; |
| |
| } else if (x > 0) { |
| if (y > 0) |
| *validity = |
| x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; |
| else |
| *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID |
| : RANGE_UNDERFLOW; |
| |
| } else { |
| if (y > 0) |
| *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID |
| : RANGE_UNDERFLOW; |
| else |
| *validity = |
| y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; |
| } |
| |
| return x * y; |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| !std::numeric_limits<T>::is_signed && |
| (sizeof(T) * 2 > sizeof(uintmax_t)), |
| T>::type |
| CheckedMul(T x, T y, RangeConstraint* validity) { |
| *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) |
| ? RANGE_VALID |
| : RANGE_OVERFLOW; |
| return x * y; |
| } |
| |
| // Division just requires a check for an invalid negation on signed min/-1. |
| template <typename T> |
| T CheckedDiv(T x, |
| T y, |
| RangeConstraint* validity, |
| typename std::enable_if<std::numeric_limits<T>::is_integer, |
| int>::type = 0) { |
| if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && |
| y == static_cast<T>(-1)) { |
| *validity = RANGE_OVERFLOW; |
| return std::numeric_limits<T>::min(); |
| } |
| |
| *validity = RANGE_VALID; |
| return x / y; |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| std::numeric_limits<T>::is_signed, |
| T>::type |
| CheckedMod(T x, T y, RangeConstraint* validity) { |
| *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; |
| return x % y; |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| !std::numeric_limits<T>::is_signed, |
| T>::type |
| CheckedMod(T x, T y, RangeConstraint* validity) { |
| *validity = RANGE_VALID; |
| return x % y; |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| std::numeric_limits<T>::is_signed, |
| T>::type |
| CheckedNeg(T value, RangeConstraint* validity) { |
| *validity = |
| value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; |
| // The negation of signed min is min, so catch that one. |
| return -value; |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| !std::numeric_limits<T>::is_signed, |
| T>::type |
| CheckedNeg(T value, RangeConstraint* validity) { |
| // The only legal unsigned negation is zero. |
| *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; |
| return static_cast<T>( |
| -static_cast<typename SignedIntegerForSize<T>::type>(value)); |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| std::numeric_limits<T>::is_signed, |
| T>::type |
| CheckedAbs(T value, RangeConstraint* validity) { |
| *validity = |
| value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; |
| return std::abs(value); |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_integer && |
| !std::numeric_limits<T>::is_signed, |
| T>::type |
| CheckedAbs(T value, RangeConstraint* validity) { |
| // Absolute value of a positive is just its identiy. |
| *validity = RANGE_VALID; |
| return value; |
| } |
| |
| // These are the floating point stubs that the compiler needs to see. Only the |
| // negation operation is ever called. |
| #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ |
| template <typename T> \ |
| typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type \ |
| Checked##NAME(T, T, RangeConstraint*) { \ |
| NOTREACHED(); \ |
| return 0; \ |
| } |
| |
| BASE_FLOAT_ARITHMETIC_STUBS(Add) |
| BASE_FLOAT_ARITHMETIC_STUBS(Sub) |
| BASE_FLOAT_ARITHMETIC_STUBS(Mul) |
| BASE_FLOAT_ARITHMETIC_STUBS(Div) |
| BASE_FLOAT_ARITHMETIC_STUBS(Mod) |
| |
| #undef BASE_FLOAT_ARITHMETIC_STUBS |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( |
| T value, |
| RangeConstraint*) { |
| return -value; |
| } |
| |
| template <typename T> |
| typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( |
| T value, |
| RangeConstraint*) { |
| return std::abs(value); |
| } |
| |
| // Floats carry around their validity state with them, but integers do not. So, |
| // we wrap the underlying value in a specialization in order to hide that detail |
| // and expose an interface via accessors. |
| enum NumericRepresentation { |
| NUMERIC_INTEGER, |
| NUMERIC_FLOATING, |
| NUMERIC_UNKNOWN |
| }; |
| |
| template <typename NumericType> |
| struct GetNumericRepresentation { |
| static const NumericRepresentation value = |
| std::numeric_limits<NumericType>::is_integer |
| ? NUMERIC_INTEGER |
| : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING |
| : NUMERIC_UNKNOWN); |
| }; |
| |
| template <typename T, NumericRepresentation type = |
| GetNumericRepresentation<T>::value> |
| class CheckedNumericState {}; |
| |
| // Integrals require quite a bit of additional housekeeping to manage state. |
| template <typename T> |
| class CheckedNumericState<T, NUMERIC_INTEGER> { |
| private: |
| T value_; |
| RangeConstraint validity_; |
| |
| public: |
| template <typename Src, NumericRepresentation type> |
| friend class CheckedNumericState; |
| |
| CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} |
| |
| template <typename Src> |
| CheckedNumericState(Src value, RangeConstraint validity) |
| : value_(value), |
| validity_(GetRangeConstraint(validity | |
| DstRangeRelationToSrcRange<T>(value))) { |
| COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized, |
| argument_must_be_numeric); |
| } |
| |
| // Copy constructor. |
| template <typename Src> |
| CheckedNumericState(const CheckedNumericState<Src>& rhs) |
| : value_(static_cast<T>(rhs.value())), |
| validity_(GetRangeConstraint( |
| rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} |
| |
| template <typename Src> |
| explicit CheckedNumericState( |
| Src value, |
| typename std::enable_if<std::numeric_limits<Src>::is_specialized, |
| int>::type = 0) |
| : value_(static_cast<T>(value)), |
| validity_(DstRangeRelationToSrcRange<T>(value)) {} |
| |
| RangeConstraint validity() const { return validity_; } |
| T value() const { return value_; } |
| }; |
| |
| // Floating points maintain their own validity, but need translation wrappers. |
| template <typename T> |
| class CheckedNumericState<T, NUMERIC_FLOATING> { |
| private: |
| T value_; |
| |
| public: |
| template <typename Src, NumericRepresentation type> |
| friend class CheckedNumericState; |
| |
| CheckedNumericState() : value_(0.0) {} |
| |
| template <typename Src> |
| CheckedNumericState( |
| Src value, |
| RangeConstraint validity, |
| typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = |
| 0) { |
| switch (DstRangeRelationToSrcRange<T>(value)) { |
| case RANGE_VALID: |
| value_ = static_cast<T>(value); |
| break; |
| |
| case RANGE_UNDERFLOW: |
| value_ = -std::numeric_limits<T>::infinity(); |
| break; |
| |
| case RANGE_OVERFLOW: |
| value_ = std::numeric_limits<T>::infinity(); |
| break; |
| |
| case RANGE_INVALID: |
| value_ = std::numeric_limits<T>::quiet_NaN(); |
| break; |
| |
| default: |
| NOTREACHED(); |
| } |
| } |
| |
| template <typename Src> |
| explicit CheckedNumericState( |
| Src value, |
| typename std::enable_if<std::numeric_limits<Src>::is_specialized, |
| int>::type = 0) |
| : value_(static_cast<T>(value)) {} |
| |
| // Copy constructor. |
| template <typename Src> |
| CheckedNumericState(const CheckedNumericState<Src>& rhs) |
| : value_(static_cast<T>(rhs.value())) {} |
| |
| RangeConstraint validity() const { |
| return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), |
| value_ >= -std::numeric_limits<T>::max()); |
| } |
| T value() const { return value_; } |
| }; |
| |
| // For integers less than 128-bit and floats 32-bit or larger, we can distil |
| // C/C++ arithmetic promotions down to two simple rules: |
| // 1. The type with the larger maximum exponent always takes precedence. |
| // 2. The resulting type must be promoted to at least an int. |
| // The following template specializations implement that promotion logic. |
| enum ArithmeticPromotionCategory { |
| LEFT_PROMOTION, |
| RIGHT_PROMOTION, |
| DEFAULT_PROMOTION |
| }; |
| |
| template <typename Lhs, |
| typename Rhs = Lhs, |
| ArithmeticPromotionCategory Promotion = |
| (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) |
| ? (MaxExponent<Lhs>::value > MaxExponent<int>::value |
| ? LEFT_PROMOTION |
| : DEFAULT_PROMOTION) |
| : (MaxExponent<Rhs>::value > MaxExponent<int>::value |
| ? RIGHT_PROMOTION |
| : DEFAULT_PROMOTION) > |
| struct ArithmeticPromotion; |
| |
| template <typename Lhs, typename Rhs> |
| struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { |
| typedef Lhs type; |
| }; |
| |
| template <typename Lhs, typename Rhs> |
| struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { |
| typedef Rhs type; |
| }; |
| |
| template <typename Lhs, typename Rhs> |
| struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> { |
| typedef int type; |
| }; |
| |
| // We can statically check if operations on the provided types can wrap, so we |
| // can skip the checked operations if they're not needed. So, for an integer we |
| // care if the destination type preserves the sign and is twice the width of |
| // the source. |
| template <typename T, typename Lhs, typename Rhs> |
| struct IsIntegerArithmeticSafe { |
| static const bool value = !std::numeric_limits<T>::is_iec559 && |
| StaticDstRangeRelationToSrcRange<T, Lhs>::value == |
| NUMERIC_RANGE_CONTAINED && |
| sizeof(T) >= (2 * sizeof(Lhs)) && |
| StaticDstRangeRelationToSrcRange<T, Rhs>::value != |
| NUMERIC_RANGE_CONTAINED && |
| sizeof(T) >= (2 * sizeof(Rhs)); |
| }; |
| |
| } // namespace internal |
| } // namespace base |
| } // namespace pdfium |
| |
| #endif // PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_ |