blob: c02f0977cf858c94fb25c1c20da837f445739984 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "../../fx_zlib.h"
#include "../../../include/fxcodec/fx_codec.h"
#include "codec_int.h"
extern "C"
{
static void* my_alloc_func (void* opaque, unsigned int items, unsigned int size)
{
return FX_Alloc(FX_BYTE, items * size);
}
static void my_free_func (void* opaque, void* address)
{
FX_Free(address);
}
void* FPDFAPI_FlateInit(void* (*alloc_func)(void*, unsigned int, unsigned int),
void (*free_func)(void*, void*))
{
z_stream* p = (z_stream*)alloc_func(0, 1, sizeof(z_stream));
if (p == NULL) {
return NULL;
}
FXSYS_memset32(p, 0, sizeof(z_stream));
p->zalloc = alloc_func;
p->zfree = free_func;
inflateInit(p);
return p;
}
void FPDFAPI_FlateInput(void* context, const unsigned char* src_buf, unsigned int src_size)
{
((z_stream*)context)->next_in = (unsigned char*)src_buf;
((z_stream*)context)->avail_in = src_size;
}
int FPDFAPI_FlateGetTotalOut(void* context)
{
return ((z_stream*)context)->total_out;
}
int FPDFAPI_FlateOutput(void* context, unsigned char* dest_buf, unsigned int dest_size)
{
((z_stream*)context)->next_out = dest_buf;
((z_stream*)context)->avail_out = dest_size;
unsigned int pre_pos = (unsigned int)FPDFAPI_FlateGetTotalOut(context);
int ret = inflate((z_stream*)context, Z_SYNC_FLUSH);
unsigned int post_pos = (unsigned int)FPDFAPI_FlateGetTotalOut(context);
unsigned int written = post_pos - pre_pos;
if (written < dest_size) {
FXSYS_memset8(dest_buf + written, '\0', dest_size - written);
}
return ret;
}
int FPDFAPI_FlateGetTotalIn(void* context)
{
return ((z_stream*)context)->total_in;
}
int FPDFAPI_FlateGetAvailOut(void* context)
{
return ((z_stream*)context)->avail_out;
}
int FPDFAPI_FlateGetAvailIn(void* context)
{
return ((z_stream*)context)->avail_in;
}
void FPDFAPI_FlateEnd(void* context)
{
inflateEnd((z_stream*)context);
((z_stream*)context)->zfree(0, context);
}
void FPDFAPI_FlateCompress(unsigned char* dest_buf, unsigned long* dest_size, const unsigned char* src_buf, unsigned long src_size)
{
compress(dest_buf, dest_size, src_buf, src_size);
}
}
class CLZWDecoder : public CFX_Object
{
public:
FX_BOOL Decode(FX_LPBYTE output, FX_DWORD& outlen, const FX_BYTE* input, FX_DWORD& size, FX_BOOL bEarlyChange);
private:
FX_DWORD m_InPos;
FX_DWORD m_OutPos;
FX_LPBYTE m_pOutput;
const FX_BYTE* m_pInput;
FX_BOOL m_Early;
void AddCode(FX_DWORD prefix_code, FX_BYTE append_char);
FX_DWORD m_CodeArray[5021];
FX_DWORD m_nCodes;
FX_BYTE m_DecodeStack[4000];
FX_DWORD m_StackLen;
void DecodeString(FX_DWORD code);
int m_CodeLen;
};
void CLZWDecoder::AddCode(FX_DWORD prefix_code, FX_BYTE append_char)
{
if (m_nCodes + m_Early == 4094) {
return;
}
m_CodeArray[m_nCodes ++] = (prefix_code << 16) | append_char;
if (m_nCodes + m_Early == 512 - 258) {
m_CodeLen = 10;
} else if (m_nCodes + m_Early == 1024 - 258) {
m_CodeLen = 11;
} else if (m_nCodes + m_Early == 2048 - 258) {
m_CodeLen = 12;
}
}
void CLZWDecoder::DecodeString(FX_DWORD code)
{
while (1) {
int index = code - 258;
if (index < 0 || index >= (int)m_nCodes) {
break;
}
FX_DWORD data = m_CodeArray[index];
if (m_StackLen >= sizeof(m_DecodeStack)) {
return;
}
m_DecodeStack[m_StackLen++] = (FX_BYTE)data;
code = data >> 16;
}
if (m_StackLen >= sizeof(m_DecodeStack)) {
return;
}
m_DecodeStack[m_StackLen++] = (FX_BYTE)code;
}
int CLZWDecoder::Decode(FX_LPBYTE dest_buf, FX_DWORD& dest_size, const FX_BYTE* src_buf, FX_DWORD& src_size, FX_BOOL bEarlyChange)
{
m_CodeLen = 9;
m_InPos = 0;
m_OutPos = 0;
m_pInput = src_buf;
m_pOutput = dest_buf;
m_Early = bEarlyChange ? 1 : 0;
m_nCodes = 0;
FX_DWORD old_code = (FX_DWORD) - 1;
FX_BYTE last_char;
while (1) {
if (m_InPos + m_CodeLen > src_size * 8) {
break;
}
int byte_pos = m_InPos / 8;
int bit_pos = m_InPos % 8, bit_left = m_CodeLen;
FX_DWORD code = 0;
if (bit_pos) {
bit_left -= 8 - bit_pos;
code = (m_pInput[byte_pos++] & ((1 << (8 - bit_pos)) - 1)) << bit_left;
}
if (bit_left < 8) {
code |= m_pInput[byte_pos] >> (8 - bit_left);
} else {
bit_left -= 8;
code |= m_pInput[byte_pos++] << bit_left;
if (bit_left) {
code |= m_pInput[byte_pos] >> (8 - bit_left);
}
}
m_InPos += m_CodeLen;
if (code < 256) {
if (m_OutPos == dest_size) {
return -5;
}
if (m_pOutput) {
m_pOutput[m_OutPos] = (FX_BYTE)code;
}
m_OutPos ++;
last_char = (FX_BYTE)code;
if (old_code != (FX_DWORD) - 1) {
AddCode(old_code, last_char);
}
old_code = code;
} else if (code == 256) {
m_CodeLen = 9;
m_nCodes = 0;
old_code = (FX_DWORD) - 1;
} else if (code == 257) {
break;
} else {
if (old_code == (FX_DWORD) - 1) {
return 2;
}
m_StackLen = 0;
if (code >= m_nCodes + 258) {
if (m_StackLen < sizeof(m_DecodeStack)) {
m_DecodeStack[m_StackLen++] = last_char;
}
DecodeString(old_code);
} else {
DecodeString(code);
}
if (m_OutPos + m_StackLen > dest_size) {
return -5;
}
if (m_pOutput) {
for (FX_DWORD i = 0; i < m_StackLen; i ++) {
m_pOutput[m_OutPos + i] = m_DecodeStack[m_StackLen - i - 1];
}
}
m_OutPos += m_StackLen;
last_char = m_DecodeStack[m_StackLen - 1];
if (old_code < 256) {
AddCode(old_code, last_char);
} else if (old_code - 258 >= m_nCodes) {
dest_size = m_OutPos;
src_size = (m_InPos + 7) / 8;
return 0;
} else {
AddCode(old_code, last_char);
}
old_code = code;
}
}
dest_size = m_OutPos;
src_size = (m_InPos + 7) / 8;
return 0;
}
static FX_BYTE PaethPredictor(int a, int b, int c)
{
int p = a + b - c;
int pa = FXSYS_abs(p - a);
int pb = FXSYS_abs(p - b);
int pc = FXSYS_abs(p - c);
if (pa <= pb && pa <= pc) {
return (FX_BYTE)a;
}
if (pb <= pc) {
return (FX_BYTE)b;
}
return (FX_BYTE)c;
}
static void PNG_PredictorEncode(FX_LPBYTE& data_buf, FX_DWORD& data_size, int predictor, int Colors, int BitsPerComponent, int Columns)
{
int BytesPerPixel = (Colors * BitsPerComponent + 7) / 8;
int row_size = (Colors * BitsPerComponent * Columns + 7) / 8;
int row_count = (data_size + row_size - 1) / row_size;
int last_row_size = data_size % row_size;
FX_LPBYTE dest_buf = FX_Alloc( FX_BYTE, (row_size + 1) * row_count);
if (dest_buf == NULL) {
return;
}
int byte_cnt = 0;
FX_LPBYTE pSrcData = data_buf;
FX_LPBYTE pDestData = dest_buf;
for (int row = 0; row < row_count; row++) {
if (predictor == 10) {
pDestData[0] = 0;
int move_size = row_size;
if (move_size * (row + 1) > (int)data_size) {
move_size = data_size - (move_size * row);
}
FXSYS_memmove32(pDestData + 1, pSrcData, move_size);
pDestData += (move_size + 1);
pSrcData += move_size;
byte_cnt += move_size;
continue;
}
for (int byte = 0; byte < row_size && byte_cnt < (int)data_size; byte++) {
switch (predictor) {
case 11: {
pDestData[0] = 1;
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pSrcData[byte - BytesPerPixel];
}
pDestData[byte + 1] = pSrcData[byte] - left;
}
break;
case 12: {
pDestData[0] = 2;
FX_BYTE up = 0;
if (row) {
up = pSrcData[byte - row_size];
}
pDestData[byte + 1] = pSrcData[byte] - up;
}
break;
case 13: {
pDestData[0] = 3;
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pSrcData[byte - BytesPerPixel];
}
FX_BYTE up = 0;
if (row) {
up = pSrcData[byte - row_size];
}
pDestData[byte + 1] = pSrcData[byte] - (left + up) / 2;
}
break;
case 14: {
pDestData[0] = 4;
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pSrcData[byte - BytesPerPixel];
}
FX_BYTE up = 0;
if (row) {
up = pSrcData[byte - row_size];
}
FX_BYTE upper_left = 0;
if (byte >= BytesPerPixel && row) {
upper_left = pSrcData[byte - row_size - BytesPerPixel];
}
pDestData[byte + 1] = pSrcData[byte] - PaethPredictor(left, up, upper_left);
}
break;
default: {
pDestData[byte + 1] = pSrcData[byte];
}
break;
}
byte_cnt++;
}
pDestData += (row_size + 1);
pSrcData += row_size;
}
FX_Free(data_buf);
data_buf = dest_buf;
data_size = (row_size + 1) * row_count - (last_row_size > 0 ? (row_size - last_row_size) : 0);
}
static void PNG_PredictLine(FX_LPBYTE pDestData, FX_LPCBYTE pSrcData, FX_LPCBYTE pLastLine,
int bpc, int nColors, int nPixels)
{
int row_size = (nPixels * bpc * nColors + 7) / 8;
int BytesPerPixel = (bpc * nColors + 7) / 8;
FX_BYTE tag = pSrcData[0];
if (tag == 0) {
FXSYS_memmove32(pDestData, pSrcData + 1, row_size);
return;
}
for (int byte = 0; byte < row_size; byte ++) {
FX_BYTE raw_byte = pSrcData[byte + 1];
switch (tag) {
case 1: {
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pDestData[byte - BytesPerPixel];
}
pDestData[byte] = raw_byte + left;
break;
}
case 2: {
FX_BYTE up = 0;
if (pLastLine) {
up = pLastLine[byte];
}
pDestData[byte] = raw_byte + up;
break;
}
case 3: {
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pDestData[byte - BytesPerPixel];
}
FX_BYTE up = 0;
if (pLastLine) {
up = pLastLine[byte];
}
pDestData[byte] = raw_byte + (up + left) / 2;
break;
}
case 4: {
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pDestData[byte - BytesPerPixel];
}
FX_BYTE up = 0;
if (pLastLine) {
up = pLastLine[byte];
}
FX_BYTE upper_left = 0;
if (byte >= BytesPerPixel && pLastLine) {
upper_left = pLastLine[byte - BytesPerPixel];
}
pDestData[byte] = raw_byte + PaethPredictor(left, up, upper_left);
break;
}
default:
pDestData[byte] = raw_byte;
break;
}
}
}
static void PNG_Predictor(FX_LPBYTE& data_buf, FX_DWORD& data_size,
int Colors, int BitsPerComponent, int Columns)
{
int BytesPerPixel = (Colors * BitsPerComponent + 7) / 8;
int row_size = (Colors * BitsPerComponent * Columns + 7) / 8;
int row_count = (data_size + row_size) / (row_size + 1);
int last_row_size = data_size % (row_size + 1);
FX_LPBYTE dest_buf = FX_Alloc( FX_BYTE, row_size * row_count);
if (dest_buf == NULL) {
return;
}
int byte_cnt = 0;
FX_LPBYTE pSrcData = data_buf;
FX_LPBYTE pDestData = dest_buf;
for (int row = 0; row < row_count; row ++) {
FX_BYTE tag = pSrcData[0];
if (tag == 0) {
int move_size = row_size;
if ((row + 1) * (move_size + 1) > (int)data_size) {
move_size = last_row_size - 1;
}
FXSYS_memmove32(pDestData, pSrcData + 1, move_size);
pSrcData += move_size + 1;
pDestData += move_size;
byte_cnt += move_size + 1;
continue;
}
for (int byte = 0; byte < row_size && byte_cnt < (int)data_size; byte ++) {
FX_BYTE raw_byte = pSrcData[byte + 1];
switch (tag) {
case 1: {
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pDestData[byte - BytesPerPixel];
}
pDestData[byte] = raw_byte + left;
break;
}
case 2: {
FX_BYTE up = 0;
if (row) {
up = pDestData[byte - row_size];
}
pDestData[byte] = raw_byte + up;
break;
}
case 3: {
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pDestData[byte - BytesPerPixel];
}
FX_BYTE up = 0;
if (row) {
up = pDestData[byte - row_size];
}
pDestData[byte] = raw_byte + (up + left) / 2;
break;
}
case 4: {
FX_BYTE left = 0;
if (byte >= BytesPerPixel) {
left = pDestData[byte - BytesPerPixel];
}
FX_BYTE up = 0;
if (row) {
up = pDestData[byte - row_size];
}
FX_BYTE upper_left = 0;
if (byte >= BytesPerPixel && row) {
upper_left = pDestData[byte - row_size - BytesPerPixel];
}
pDestData[byte] = raw_byte + PaethPredictor(left, up, upper_left);
break;
}
default:
pDestData[byte] = raw_byte;
break;
}
byte_cnt++;
}
pSrcData += row_size + 1;
pDestData += row_size;
byte_cnt++;
}
FX_Free(data_buf);
data_buf = dest_buf;
data_size = row_size * row_count - (last_row_size > 0 ? (row_size + 1 - last_row_size) : 0);
}
static void TIFF_PredictorEncodeLine(FX_LPBYTE dest_buf, int row_size, int BitsPerComponent, int Colors, int Columns)
{
int BytesPerPixel = BitsPerComponent * Colors / 8;
if (BitsPerComponent < 8) {
FX_BYTE mask = 0x01;
if (BitsPerComponent == 2) {
mask = 0x03;
} else if (BitsPerComponent == 4) {
mask = 0x0F;
}
int row_bits = Colors * BitsPerComponent * Columns;
for (int i = row_bits - BitsPerComponent; i >= BitsPerComponent; i -= BitsPerComponent) {
int col = i % 8;
int index = i / 8;
int col_pre = (col == 0) ? (8 - BitsPerComponent) : (col - BitsPerComponent);
int index_pre = (col == 0) ? (index - 1) : index;
FX_BYTE cur = (dest_buf[index] >> (8 - col - BitsPerComponent)) & mask;
FX_BYTE left = (dest_buf[index_pre] >> (8 - col_pre - BitsPerComponent)) & mask;
cur -= left;
cur &= mask;
cur <<= (8 - col - BitsPerComponent);
dest_buf[index] &= ~(mask << ((8 - col - BitsPerComponent)));
dest_buf[index] |= cur;
}
} else if (BitsPerComponent == 8) {
for (int i = row_size - 1; i >= BytesPerPixel; i--) {
dest_buf[i] -= dest_buf[i - BytesPerPixel];
}
} else {
for (int i = row_size - BytesPerPixel; i >= BytesPerPixel; i -= BytesPerPixel) {
FX_WORD pixel = (dest_buf[i] << 8) | dest_buf[i + 1];
pixel -= (dest_buf[i - BytesPerPixel] << 8) | dest_buf[i - BytesPerPixel + 1];
dest_buf[i] = pixel >> 8;
dest_buf[i + 1] = (FX_BYTE)pixel;
}
}
}
static void TIFF_PredictorEncode(FX_LPBYTE& data_buf, FX_DWORD& data_size,
int Colors, int BitsPerComponent, int Columns)
{
int row_size = (Colors * BitsPerComponent * Columns + 7) / 8;
int row_count = (data_size + row_size - 1) / row_size;
int last_row_size = data_size % row_size;
for (int row = 0; row < row_count; row++) {
FX_LPBYTE scan_line = data_buf + row * row_size;
if ((row + 1) * row_size > (int)data_size) {
row_size = last_row_size;
}
TIFF_PredictorEncodeLine(scan_line, row_size, BitsPerComponent, Colors, Columns);
}
}
static void TIFF_PredictLine(FX_LPBYTE dest_buf, int row_size, int BitsPerComponent, int Colors, int Columns)
{
if (BitsPerComponent == 1) {
int row_bits = BitsPerComponent * Colors * Columns;
for(int i = 1; i < row_bits; i ++) {
int col = i % 8;
int index = i / 8;
int index_pre = (col == 0) ? (index - 1) : index;
int col_pre = (col == 0) ? 8 : col;
if( ((dest_buf[index] >> (7 - col)) & 1) ^ ((dest_buf[index_pre] >> (8 - col_pre)) & 1) ) {
dest_buf[index] |= 1 << (7 - col);
} else {
dest_buf[index] &= ~(1 << (7 - col));
}
}
return;
}
int BytesPerPixel = BitsPerComponent * Colors / 8;
if (BitsPerComponent == 16) {
for (int i = BytesPerPixel; i < row_size; i += 2) {
FX_WORD pixel = (dest_buf[i - BytesPerPixel] << 8) | dest_buf[i - BytesPerPixel + 1];
pixel += (dest_buf[i] << 8) | dest_buf[i + 1];
dest_buf[i] = pixel >> 8;
dest_buf[i + 1] = (FX_BYTE)pixel;
}
} else {
for (int i = BytesPerPixel; i < row_size; i ++) {
dest_buf[i] += dest_buf[i - BytesPerPixel];
}
}
}
static void TIFF_Predictor(FX_LPBYTE& data_buf, FX_DWORD& data_size,
int Colors, int BitsPerComponent, int Columns)
{
int row_size = (Colors * BitsPerComponent * Columns + 7) / 8;
int row_count = (data_size + row_size - 1) / row_size;
int last_row_size = data_size % row_size;
for (int row = 0; row < row_count; row ++) {
FX_LPBYTE scan_line = data_buf + row * row_size;
if ((row + 1) * row_size > (int)data_size) {
row_size = last_row_size;
}
TIFF_PredictLine(scan_line, row_size, BitsPerComponent, Colors, Columns);
}
}
class CCodec_FlateScanlineDecoder : public CCodec_ScanlineDecoder
{
public:
CCodec_FlateScanlineDecoder();
~CCodec_FlateScanlineDecoder();
FX_BOOL Create(FX_LPCBYTE src_buf, FX_DWORD src_size, int width, int height, int nComps, int bpc,
int predictor, int Colors, int BitsPerComponent, int Columns);
virtual void Destroy()
{
delete this;
}
virtual void v_DownScale(int dest_width, int dest_height) {}
virtual FX_BOOL v_Rewind();
virtual FX_LPBYTE v_GetNextLine();
virtual FX_DWORD GetSrcOffset();
void* m_pFlate;
FX_LPCBYTE m_SrcBuf;
FX_DWORD m_SrcSize;
FX_LPBYTE m_pScanline;
FX_LPBYTE m_pLastLine;
FX_LPBYTE m_pPredictBuffer;
FX_LPBYTE m_pPredictRaw;
int m_Predictor;
int m_Colors, m_BitsPerComponent, m_Columns, m_PredictPitch, m_LeftOver;
};
CCodec_FlateScanlineDecoder::CCodec_FlateScanlineDecoder()
{
m_pFlate = NULL;
m_pScanline = NULL;
m_pLastLine = NULL;
m_pPredictBuffer = NULL;
m_pPredictRaw = NULL;
m_LeftOver = 0;
}
CCodec_FlateScanlineDecoder::~CCodec_FlateScanlineDecoder()
{
if (m_pScanline) {
FX_Free(m_pScanline);
}
if (m_pLastLine) {
FX_Free(m_pLastLine);
}
if (m_pPredictBuffer) {
FX_Free(m_pPredictBuffer);
}
if (m_pPredictRaw) {
FX_Free(m_pPredictRaw);
}
if (m_pFlate) {
FPDFAPI_FlateEnd(m_pFlate);
}
}
FX_BOOL CCodec_FlateScanlineDecoder::Create(FX_LPCBYTE src_buf, FX_DWORD src_size, int width, int height,
int nComps, int bpc, int predictor, int Colors, int BitsPerComponent, int Columns)
{
m_SrcBuf = src_buf;
m_SrcSize = src_size;
m_OutputWidth = m_OrigWidth = width;
m_OutputHeight = m_OrigHeight = height;
m_nComps = nComps;
m_bpc = bpc;
m_bColorTransformed = FALSE;
m_Pitch = (width * nComps * bpc + 7) / 8;
m_pScanline = FX_Alloc(FX_BYTE, m_Pitch);
if (m_pScanline == NULL) {
return FALSE;
}
m_Predictor = 0;
if (predictor) {
if (predictor >= 10) {
m_Predictor = 2;
} else if (predictor == 2) {
m_Predictor = 1;
}
if (m_Predictor) {
if (BitsPerComponent * Colors * Columns == 0) {
BitsPerComponent = m_bpc;
Colors = m_nComps;
Columns = m_OrigWidth;
}
m_Colors = Colors;
m_BitsPerComponent = BitsPerComponent;
m_Columns = Columns;
m_PredictPitch = (m_BitsPerComponent * m_Colors * m_Columns + 7) / 8;
m_pLastLine = FX_Alloc(FX_BYTE, m_PredictPitch);
if (m_pLastLine == NULL) {
return FALSE;
}
m_pPredictRaw = FX_Alloc(FX_BYTE, m_PredictPitch + 1);
if (m_pPredictRaw == NULL) {
return FALSE;
}
m_pPredictBuffer = FX_Alloc(FX_BYTE, m_PredictPitch);
if (m_pPredictBuffer == NULL) {
return FALSE;
}
}
}
return TRUE;
}
FX_BOOL CCodec_FlateScanlineDecoder::v_Rewind()
{
if (m_pFlate) {
FPDFAPI_FlateEnd(m_pFlate);
}
m_pFlate = FPDFAPI_FlateInit(my_alloc_func, my_free_func);
if (m_pFlate == NULL) {
return FALSE;
}
FPDFAPI_FlateInput(m_pFlate, m_SrcBuf, m_SrcSize);
m_LeftOver = 0;
return TRUE;
}
FX_LPBYTE CCodec_FlateScanlineDecoder::v_GetNextLine()
{
if (m_Predictor) {
if (m_Pitch == m_PredictPitch) {
if (m_Predictor == 2) {
FPDFAPI_FlateOutput(m_pFlate, m_pPredictRaw, m_PredictPitch + 1);
PNG_PredictLine(m_pScanline, m_pPredictRaw, m_pLastLine, m_BitsPerComponent, m_Colors, m_Columns);
FXSYS_memcpy32(m_pLastLine, m_pScanline, m_PredictPitch);
} else {
FPDFAPI_FlateOutput(m_pFlate, m_pScanline, m_Pitch);
TIFF_PredictLine(m_pScanline, m_PredictPitch, m_bpc, m_nComps, m_OutputWidth);
}
} else {
int bytes_to_go = m_Pitch;
int read_leftover = m_LeftOver > bytes_to_go ? bytes_to_go : m_LeftOver;
if (read_leftover) {
FXSYS_memcpy32(m_pScanline, m_pPredictBuffer + m_PredictPitch - m_LeftOver, read_leftover);
m_LeftOver -= read_leftover;
bytes_to_go -= read_leftover;
}
while (bytes_to_go) {
if (m_Predictor == 2) {
FPDFAPI_FlateOutput(m_pFlate, m_pPredictRaw, m_PredictPitch + 1);
PNG_PredictLine(m_pPredictBuffer, m_pPredictRaw, m_pLastLine, m_BitsPerComponent, m_Colors, m_Columns);
FXSYS_memcpy32(m_pLastLine, m_pPredictBuffer, m_PredictPitch);
} else {
FPDFAPI_FlateOutput(m_pFlate, m_pPredictBuffer, m_PredictPitch);
TIFF_PredictLine(m_pPredictBuffer, m_PredictPitch, m_BitsPerComponent, m_Colors, m_Columns);
}
int read_bytes = m_PredictPitch > bytes_to_go ? bytes_to_go : m_PredictPitch;
FXSYS_memcpy32(m_pScanline + m_Pitch - bytes_to_go, m_pPredictBuffer, read_bytes);
m_LeftOver += m_PredictPitch - read_bytes;
bytes_to_go -= read_bytes;
}
}
} else {
FPDFAPI_FlateOutput(m_pFlate, m_pScanline, m_Pitch);
}
return m_pScanline;
}
FX_DWORD CCodec_FlateScanlineDecoder::GetSrcOffset()
{
return FPDFAPI_FlateGetTotalIn(m_pFlate);
}
static void FlateUncompress(FX_LPCBYTE src_buf, FX_DWORD src_size, FX_DWORD orig_size,
FX_LPBYTE& dest_buf, FX_DWORD& dest_size, FX_DWORD& offset)
{
FX_DWORD guess_size = orig_size ? orig_size : src_size * 2;
FX_DWORD alloc_step = orig_size ? 10240 : (src_size < 10240 ? 10240 : src_size);
static const FX_DWORD kMaxInitialAllocSize = 10000000;
if (guess_size > kMaxInitialAllocSize) {
guess_size = kMaxInitialAllocSize;
alloc_step = kMaxInitialAllocSize;
}
FX_LPBYTE guess_buf = FX_Alloc(FX_BYTE, guess_size + 1);
if (!guess_buf) {
dest_buf = NULL;
dest_size = 0;
return;
}
guess_buf[guess_size] = '\0';
FX_BOOL useOldImpl = src_size < 10240;
void* context = FPDFAPI_FlateInit(my_alloc_func, my_free_func);
if (context == NULL) {
dest_buf = NULL;
dest_size = 0;
return ;
}
FPDFAPI_FlateInput(context, src_buf, src_size);
CFX_ArrayTemplate<FX_LPBYTE> result_tmp_bufs;
FX_LPBYTE buf = guess_buf;
FX_DWORD buf_size = guess_size;
FX_DWORD last_buf_size = buf_size;
while (1) {
FX_INT32 ret = FPDFAPI_FlateOutput(context, buf, buf_size);
FX_INT32 avail_buf_size = FPDFAPI_FlateGetAvailOut(context);
if (!useOldImpl) {
if (ret != Z_OK) {
last_buf_size = buf_size - avail_buf_size;
result_tmp_bufs.Add(buf);
break;
}
if (avail_buf_size == 0) {
result_tmp_bufs.Add(buf);
buf = NULL;
buf = FX_Alloc(FX_BYTE, buf_size + 1);
if (!buf) {
dest_buf = NULL;
dest_size = 0;
return;
}
buf[buf_size] = '\0';
} else {
last_buf_size = buf_size - avail_buf_size;
result_tmp_bufs.Add(buf);
buf = NULL;
break;
}
} else {
if (ret != Z_OK) {
break;
}
if (avail_buf_size == 0) {
FX_DWORD old_size = guess_size;
guess_size += alloc_step;
if (guess_size < old_size || guess_size + 1 < guess_size) {
dest_buf = NULL;
dest_size = 0;
return;
}
guess_buf = FX_Realloc(FX_BYTE, guess_buf, guess_size + 1);
if (!guess_buf) {
dest_buf = NULL;
dest_size = 0;
return;
}
guess_buf[guess_size] = '\0';
buf = guess_buf + old_size;
buf_size = guess_size - old_size;
} else {
break;
}
}
}
dest_size = FPDFAPI_FlateGetTotalOut(context);
offset = FPDFAPI_FlateGetTotalIn(context);
if (!useOldImpl) {
if (result_tmp_bufs.GetSize() == 1) {
dest_buf = result_tmp_bufs[0];
} else {
FX_LPBYTE result_buf = FX_Alloc(FX_BYTE, dest_size);
if (!result_buf) {
dest_buf = NULL;
dest_size = 0;
return;
}
FX_DWORD result_pos = 0;
for (FX_INT32 i = 0; i < result_tmp_bufs.GetSize(); i++) {
FX_LPBYTE tmp_buf = result_tmp_bufs[i];
FX_DWORD tmp_buf_size = buf_size;
if (i == result_tmp_bufs.GetSize() - 1) {
tmp_buf_size = last_buf_size;
}
FXSYS_memcpy32(result_buf + result_pos, tmp_buf, tmp_buf_size);
result_pos += tmp_buf_size;
FX_Free(tmp_buf);
tmp_buf = NULL;
result_tmp_bufs[i] = NULL;
}
dest_buf = result_buf;
}
} else {
if (guess_size / 2 > dest_size) {
guess_buf = FX_Realloc(FX_BYTE, guess_buf, dest_size + 1);
if (!guess_buf) {
dest_buf = NULL;
dest_size = 0;
return;
}
guess_size = dest_size;
guess_buf[guess_size] = '\0';
}
dest_buf = guess_buf;
}
FPDFAPI_FlateEnd(context);
context = NULL;
}
ICodec_ScanlineDecoder* CCodec_FlateModule::CreateDecoder(FX_LPCBYTE src_buf, FX_DWORD src_size, int width, int height,
int nComps, int bpc, int predictor, int Colors, int BitsPerComponent, int Columns)
{
CCodec_FlateScanlineDecoder* pDecoder = FX_NEW CCodec_FlateScanlineDecoder;
if (pDecoder == NULL) {
return NULL;
}
pDecoder->Create(src_buf, src_size, width, height, nComps, bpc, predictor, Colors, BitsPerComponent, Columns);
return pDecoder;
}
FX_DWORD CCodec_FlateModule::FlateOrLZWDecode(FX_BOOL bLZW, const FX_BYTE* src_buf, FX_DWORD src_size, FX_BOOL bEarlyChange,
int predictor, int Colors, int BitsPerComponent, int Columns,
FX_DWORD estimated_size, FX_LPBYTE& dest_buf, FX_DWORD& dest_size)
{
CLZWDecoder* pDecoder = NULL;
dest_buf = NULL;
FX_DWORD offset = 0;
int predictor_type = 0;
if (predictor) {
if (predictor >= 10) {
predictor_type = 2;
} else if (predictor == 2) {
predictor_type = 1;
}
}
if (bLZW) {
pDecoder = FX_NEW CLZWDecoder;
if (pDecoder == NULL) {
return -1;
}
dest_size = (FX_DWORD) - 1;
offset = src_size;
int err = pDecoder->Decode(NULL, dest_size, src_buf, offset, bEarlyChange);
delete pDecoder;
if (err || dest_size == 0 || dest_size + 1 < dest_size) {
return (FX_DWORD) - 1;
}
pDecoder = FX_NEW CLZWDecoder;
if (pDecoder == NULL) {
return -1;
}
dest_buf = FX_Alloc( FX_BYTE, dest_size + 1);
if (dest_buf == NULL) {
return -1;
}
dest_buf[dest_size] = '\0';
pDecoder->Decode(dest_buf, dest_size, src_buf, offset, bEarlyChange);
delete pDecoder;
} else {
FlateUncompress(src_buf, src_size, estimated_size, dest_buf, dest_size, offset);
}
if (predictor_type == 0) {
return offset;
}
if (predictor_type == 2) {
PNG_Predictor(dest_buf, dest_size, Colors, BitsPerComponent, Columns);
} else if (predictor_type == 1) {
TIFF_Predictor(dest_buf, dest_size, Colors, BitsPerComponent, Columns);
}
return offset;
}
FX_BOOL CCodec_FlateModule::Encode(const FX_BYTE* src_buf, FX_DWORD src_size,
int predictor, int Colors, int BitsPerComponent, int Columns,
FX_LPBYTE& dest_buf, FX_DWORD& dest_size)
{
if (predictor != 2 && predictor < 10) {
return Encode(src_buf, src_size, dest_buf, dest_size);
}
FX_BOOL ret = FALSE;
FX_LPBYTE pSrcBuf = NULL;
pSrcBuf = FX_Alloc(FX_BYTE, src_size);
if (pSrcBuf == NULL) {
return FALSE;
}
FXSYS_memcpy32(pSrcBuf, src_buf, src_size);
if (predictor == 2) {
TIFF_PredictorEncode(pSrcBuf, src_size, Colors, BitsPerComponent, Columns);
} else if (predictor >= 10) {
PNG_PredictorEncode(pSrcBuf, src_size, predictor, Colors, BitsPerComponent, Columns);
}
ret = Encode(pSrcBuf, src_size, dest_buf, dest_size);
FX_Free(pSrcBuf);
return ret;
}
FX_BOOL CCodec_FlateModule::Encode(FX_LPCBYTE src_buf, FX_DWORD src_size, FX_LPBYTE& dest_buf, FX_DWORD& dest_size)
{
dest_size = src_size + src_size / 1000 + 12;
dest_buf = FX_Alloc( FX_BYTE, dest_size);
if (dest_buf == NULL) {
return FALSE;
}
unsigned long temp_size = dest_size;
FPDFAPI_FlateCompress(dest_buf, &temp_size, src_buf, src_size);
dest_size = (FX_DWORD)temp_size;
return TRUE;
}