#if !defined(_FX_JPEG_TURBO_) | |
/* | |
* jcparam.c | |
* | |
* Copyright (C) 1991-1998, Thomas G. Lane. | |
* This file is part of the Independent JPEG Group's software. | |
* For conditions of distribution and use, see the accompanying README file. | |
* | |
* This file contains optional default-setting code for the JPEG compressor. | |
* Applications do not have to use this file, but those that don't use it | |
* must know a lot more about the innards of the JPEG code. | |
*/ | |
#define JPEG_INTERNALS | |
#include "jinclude.h" | |
#include "jpeglib.h" | |
/* | |
* Quantization table setup routines | |
*/ | |
GLOBAL(void) | |
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, | |
const unsigned int *basic_table, | |
int scale_factor, boolean force_baseline) | |
/* Define a quantization table equal to the basic_table times | |
* a scale factor (given as a percentage). | |
* If force_baseline is TRUE, the computed quantization table entries | |
* are limited to 1..255 for JPEG baseline compatibility. | |
*/ | |
{ | |
JQUANT_TBL ** qtblptr; | |
int i; | |
long temp; | |
/* Safety check to ensure start_compress not called yet. */ | |
if (cinfo->global_state != CSTATE_START) | |
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) | |
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); | |
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; | |
if (*qtblptr == NULL) | |
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); | |
for (i = 0; i < DCTSIZE2; i++) { | |
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; | |
/* limit the values to the valid range */ | |
if (temp <= 0L) temp = 1L; | |
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ | |
if (force_baseline && temp > 255L) | |
temp = 255L; /* limit to baseline range if requested */ | |
(*qtblptr)->quantval[i] = (UINT16) temp; | |
} | |
/* Initialize sent_table FALSE so table will be written to JPEG file. */ | |
(*qtblptr)->sent_table = FALSE; | |
} | |
GLOBAL(void) | |
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, | |
boolean force_baseline) | |
/* Set or change the 'quality' (quantization) setting, using default tables | |
* and a straight percentage-scaling quality scale. In most cases it's better | |
* to use jpeg_set_quality (below); this entry point is provided for | |
* applications that insist on a linear percentage scaling. | |
*/ | |
{ | |
/* These are the sample quantization tables given in JPEG spec section K.1. | |
* The spec says that the values given produce "good" quality, and | |
* when divided by 2, "very good" quality. | |
*/ | |
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { | |
16, 11, 10, 16, 24, 40, 51, 61, | |
12, 12, 14, 19, 26, 58, 60, 55, | |
14, 13, 16, 24, 40, 57, 69, 56, | |
14, 17, 22, 29, 51, 87, 80, 62, | |
18, 22, 37, 56, 68, 109, 103, 77, | |
24, 35, 55, 64, 81, 104, 113, 92, | |
49, 64, 78, 87, 103, 121, 120, 101, | |
72, 92, 95, 98, 112, 100, 103, 99 | |
}; | |
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { | |
17, 18, 24, 47, 99, 99, 99, 99, | |
18, 21, 26, 66, 99, 99, 99, 99, | |
24, 26, 56, 99, 99, 99, 99, 99, | |
47, 66, 99, 99, 99, 99, 99, 99, | |
99, 99, 99, 99, 99, 99, 99, 99, | |
99, 99, 99, 99, 99, 99, 99, 99, | |
99, 99, 99, 99, 99, 99, 99, 99, | |
99, 99, 99, 99, 99, 99, 99, 99 | |
}; | |
/* Set up two quantization tables using the specified scaling */ | |
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, | |
scale_factor, force_baseline); | |
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, | |
scale_factor, force_baseline); | |
} | |
GLOBAL(int) | |
jpeg_quality_scaling (int quality) | |
/* Convert a user-specified quality rating to a percentage scaling factor | |
* for an underlying quantization table, using our recommended scaling curve. | |
* The input 'quality' factor should be 0 (terrible) to 100 (very good). | |
*/ | |
{ | |
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ | |
if (quality <= 0) quality = 1; | |
if (quality > 100) quality = 100; | |
/* The basic table is used as-is (scaling 100) for a quality of 50. | |
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q; | |
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table | |
* to make all the table entries 1 (hence, minimum quantization loss). | |
* Qualities 1..50 are converted to scaling percentage 5000/Q. | |
*/ | |
if (quality < 50) | |
quality = 5000 / quality; | |
else | |
quality = 200 - quality*2; | |
return quality; | |
} | |
GLOBAL(void) | |
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) | |
/* Set or change the 'quality' (quantization) setting, using default tables. | |
* This is the standard quality-adjusting entry point for typical user | |
* interfaces; only those who want detailed control over quantization tables | |
* would use the preceding three routines directly. | |
*/ | |
{ | |
/* Convert user 0-100 rating to percentage scaling */ | |
quality = jpeg_quality_scaling(quality); | |
/* Set up standard quality tables */ | |
jpeg_set_linear_quality(cinfo, quality, force_baseline); | |
} | |
/* | |
* Huffman table setup routines | |
*/ | |
LOCAL(void) | |
add_huff_table (j_compress_ptr cinfo, | |
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) | |
/* Define a Huffman table */ | |
{ | |
int nsymbols, len; | |
if (*htblptr == NULL) | |
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | |
/* Copy the number-of-symbols-of-each-code-length counts */ | |
MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); | |
/* Validate the counts. We do this here mainly so we can copy the right | |
* number of symbols from the val[] array, without risking marching off | |
* the end of memory. jchuff.c will do a more thorough test later. | |
*/ | |
nsymbols = 0; | |
for (len = 1; len <= 16; len++) | |
nsymbols += bits[len]; | |
if (nsymbols < 1 || nsymbols > 256) | |
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8)); | |
/* Initialize sent_table FALSE so table will be written to JPEG file. */ | |
(*htblptr)->sent_table = FALSE; | |
} | |
LOCAL(void) | |
std_huff_tables (j_compress_ptr cinfo) | |
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ | |
/* IMPORTANT: these are only valid for 8-bit data precision! */ | |
{ | |
static const UINT8 bits_dc_luminance[17] = | |
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; | |
static const UINT8 val_dc_luminance[] = | |
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; | |
static const UINT8 bits_dc_chrominance[17] = | |
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; | |
static const UINT8 val_dc_chrominance[] = | |
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; | |
static const UINT8 bits_ac_luminance[17] = | |
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; | |
static const UINT8 val_ac_luminance[] = | |
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, | |
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, | |
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, | |
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, | |
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, | |
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, | |
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, | |
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, | |
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, | |
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, | |
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, | |
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, | |
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, | |
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, | |
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, | |
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, | |
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, | |
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, | |
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, | |
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, | |
0xf9, 0xfa }; | |
static const UINT8 bits_ac_chrominance[17] = | |
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; | |
static const UINT8 val_ac_chrominance[] = | |
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, | |
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, | |
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, | |
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, | |
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, | |
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, | |
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, | |
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, | |
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, | |
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, | |
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, | |
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, | |
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, | |
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, | |
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, | |
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, | |
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, | |
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, | |
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, | |
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, | |
0xf9, 0xfa }; | |
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0], | |
bits_dc_luminance, val_dc_luminance); | |
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0], | |
bits_ac_luminance, val_ac_luminance); | |
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1], | |
bits_dc_chrominance, val_dc_chrominance); | |
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1], | |
bits_ac_chrominance, val_ac_chrominance); | |
} | |
/* | |
* Default parameter setup for compression. | |
* | |
* Applications that don't choose to use this routine must do their | |
* own setup of all these parameters. Alternately, you can call this | |
* to establish defaults and then alter parameters selectively. This | |
* is the recommended approach since, if we add any new parameters, | |
* your code will still work (they'll be set to reasonable defaults). | |
*/ | |
GLOBAL(void) | |
jpeg_set_defaults (j_compress_ptr cinfo) | |
{ | |
int i; | |
/* Safety check to ensure start_compress not called yet. */ | |
if (cinfo->global_state != CSTATE_START) | |
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
/* Allocate comp_info array large enough for maximum component count. | |
* Array is made permanent in case application wants to compress | |
* multiple images at same param settings. | |
*/ | |
if (cinfo->comp_info == NULL) | |
cinfo->comp_info = (jpeg_component_info *) | |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |
MAX_COMPONENTS * SIZEOF(jpeg_component_info)); | |
/* Initialize everything not dependent on the color space */ | |
cinfo->data_precision = BITS_IN_JSAMPLE; | |
/* Set up two quantization tables using default quality of 75 */ | |
jpeg_set_quality(cinfo, 75, TRUE); | |
/* Set up two Huffman tables */ | |
std_huff_tables(cinfo); | |
/* Initialize default arithmetic coding conditioning */ | |
for (i = 0; i < NUM_ARITH_TBLS; i++) { | |
cinfo->arith_dc_L[i] = 0; | |
cinfo->arith_dc_U[i] = 1; | |
cinfo->arith_ac_K[i] = 5; | |
} | |
/* Default is no multiple-scan output */ | |
cinfo->scan_info = NULL; | |
cinfo->num_scans = 0; | |
/* Expect normal source image, not raw downsampled data */ | |
cinfo->raw_data_in = FALSE; | |
/* Use Huffman coding, not arithmetic coding, by default */ | |
cinfo->arith_code = FALSE; | |
/* By default, don't do extra passes to optimize entropy coding */ | |
cinfo->optimize_coding = FALSE; | |
/* The standard Huffman tables are only valid for 8-bit data precision. | |
* If the precision is higher, force optimization on so that usable | |
* tables will be computed. This test can be removed if default tables | |
* are supplied that are valid for the desired precision. | |
*/ | |
if (cinfo->data_precision > 8) | |
cinfo->optimize_coding = TRUE; | |
/* By default, use the simpler non-cosited sampling alignment */ | |
cinfo->CCIR601_sampling = FALSE; | |
/* No input smoothing */ | |
cinfo->smoothing_factor = 0; | |
/* DCT algorithm preference */ | |
cinfo->dct_method = JDCT_DEFAULT; | |
/* No restart markers */ | |
cinfo->restart_interval = 0; | |
cinfo->restart_in_rows = 0; | |
/* Fill in default JFIF marker parameters. Note that whether the marker | |
* will actually be written is determined by jpeg_set_colorspace. | |
* | |
* By default, the library emits JFIF version code 1.01. | |
* An application that wants to emit JFIF 1.02 extension markers should set | |
* JFIF_minor_version to 2. We could probably get away with just defaulting | |
* to 1.02, but there may still be some decoders in use that will complain | |
* about that; saying 1.01 should minimize compatibility problems. | |
*/ | |
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ | |
cinfo->JFIF_minor_version = 1; | |
cinfo->density_unit = 0; /* Pixel size is unknown by default */ | |
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ | |
cinfo->Y_density = 1; | |
/* Choose JPEG colorspace based on input space, set defaults accordingly */ | |
jpeg_default_colorspace(cinfo); | |
} | |
/* | |
* Select an appropriate JPEG colorspace for in_color_space. | |
*/ | |
GLOBAL(void) | |
jpeg_default_colorspace (j_compress_ptr cinfo) | |
{ | |
switch (cinfo->in_color_space) { | |
case JCS_GRAYSCALE: | |
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); | |
break; | |
case JCS_RGB: | |
jpeg_set_colorspace(cinfo, JCS_YCbCr); | |
break; | |
case JCS_YCbCr: | |
jpeg_set_colorspace(cinfo, JCS_YCbCr); | |
break; | |
case JCS_CMYK: | |
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ | |
break; | |
case JCS_YCCK: | |
jpeg_set_colorspace(cinfo, JCS_YCCK); | |
break; | |
case JCS_UNKNOWN: | |
jpeg_set_colorspace(cinfo, JCS_UNKNOWN); | |
break; | |
default: | |
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |
} | |
} | |
/* | |
* Set the JPEG colorspace, and choose colorspace-dependent default values. | |
*/ | |
GLOBAL(void) | |
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) | |
{ | |
jpeg_component_info * compptr; | |
int ci; | |
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \ | |
(compptr = &cinfo->comp_info[index], \ | |
compptr->component_id = (id), \ | |
compptr->h_samp_factor = (hsamp), \ | |
compptr->v_samp_factor = (vsamp), \ | |
compptr->quant_tbl_no = (quant), \ | |
compptr->dc_tbl_no = (dctbl), \ | |
compptr->ac_tbl_no = (actbl) ) | |
/* Safety check to ensure start_compress not called yet. */ | |
if (cinfo->global_state != CSTATE_START) | |
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
/* For all colorspaces, we use Q and Huff tables 0 for luminance components, | |
* tables 1 for chrominance components. | |
*/ | |
cinfo->jpeg_color_space = colorspace; | |
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ | |
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ | |
switch (colorspace) { | |
case JCS_GRAYSCALE: | |
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ | |
cinfo->num_components = 1; | |
/* JFIF specifies component ID 1 */ | |
SET_COMP(0, 1, 1,1, 0, 0,0); | |
break; | |
case JCS_RGB: | |
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ | |
cinfo->num_components = 3; | |
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); | |
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); | |
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); | |
break; | |
case JCS_YCbCr: | |
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ | |
cinfo->num_components = 3; | |
/* JFIF specifies component IDs 1,2,3 */ | |
/* We default to 2x2 subsamples of chrominance */ | |
SET_COMP(0, 1, 2,2, 0, 0,0); | |
SET_COMP(1, 2, 1,1, 1, 1,1); | |
SET_COMP(2, 3, 1,1, 1, 1,1); | |
break; | |
case JCS_CMYK: | |
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ | |
cinfo->num_components = 4; | |
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); | |
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); | |
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); | |
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); | |
break; | |
case JCS_YCCK: | |
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ | |
cinfo->num_components = 4; | |
SET_COMP(0, 1, 2,2, 0, 0,0); | |
SET_COMP(1, 2, 1,1, 1, 1,1); | |
SET_COMP(2, 3, 1,1, 1, 1,1); | |
SET_COMP(3, 4, 2,2, 0, 0,0); | |
break; | |
case JCS_UNKNOWN: | |
cinfo->num_components = cinfo->input_components; | |
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) | |
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | |
MAX_COMPONENTS); | |
for (ci = 0; ci < cinfo->num_components; ci++) { | |
SET_COMP(ci, ci, 1,1, 0, 0,0); | |
} | |
break; | |
default: | |
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |
} | |
} | |
#ifdef C_PROGRESSIVE_SUPPORTED | |
LOCAL(jpeg_scan_info *) | |
fill_a_scan (jpeg_scan_info * scanptr, int ci, | |
int Ss, int Se, int Ah, int Al) | |
/* Support routine: generate one scan for specified component */ | |
{ | |
scanptr->comps_in_scan = 1; | |
scanptr->component_index[0] = ci; | |
scanptr->Ss = Ss; | |
scanptr->Se = Se; | |
scanptr->Ah = Ah; | |
scanptr->Al = Al; | |
scanptr++; | |
return scanptr; | |
} | |
LOCAL(jpeg_scan_info *) | |
fill_scans (jpeg_scan_info * scanptr, int ncomps, | |
int Ss, int Se, int Ah, int Al) | |
/* Support routine: generate one scan for each component */ | |
{ | |
int ci; | |
for (ci = 0; ci < ncomps; ci++) { | |
scanptr->comps_in_scan = 1; | |
scanptr->component_index[0] = ci; | |
scanptr->Ss = Ss; | |
scanptr->Se = Se; | |
scanptr->Ah = Ah; | |
scanptr->Al = Al; | |
scanptr++; | |
} | |
return scanptr; | |
} | |
LOCAL(jpeg_scan_info *) | |
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) | |
/* Support routine: generate interleaved DC scan if possible, else N scans */ | |
{ | |
int ci; | |
if (ncomps <= MAX_COMPS_IN_SCAN) { | |
/* Single interleaved DC scan */ | |
scanptr->comps_in_scan = ncomps; | |
for (ci = 0; ci < ncomps; ci++) | |
scanptr->component_index[ci] = ci; | |
scanptr->Ss = scanptr->Se = 0; | |
scanptr->Ah = Ah; | |
scanptr->Al = Al; | |
scanptr++; | |
} else { | |
/* Noninterleaved DC scan for each component */ | |
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); | |
} | |
return scanptr; | |
} | |
/* | |
* Create a recommended progressive-JPEG script. | |
* cinfo->num_components and cinfo->jpeg_color_space must be correct. | |
*/ | |
GLOBAL(void) | |
jpeg_simple_progression (j_compress_ptr cinfo) | |
{ | |
int ncomps = cinfo->num_components; | |
int nscans; | |
jpeg_scan_info * scanptr; | |
/* Safety check to ensure start_compress not called yet. */ | |
if (cinfo->global_state != CSTATE_START) | |
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
/* Figure space needed for script. Calculation must match code below! */ | |
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { | |
/* Custom script for YCbCr color images. */ | |
nscans = 10; | |
} else { | |
/* All-purpose script for other color spaces. */ | |
if (ncomps > MAX_COMPS_IN_SCAN) | |
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ | |
else | |
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ | |
} | |
/* Allocate space for script. | |
* We need to put it in the permanent pool in case the application performs | |
* multiple compressions without changing the settings. To avoid a memory | |
* leak if jpeg_simple_progression is called repeatedly for the same JPEG | |
* object, we try to re-use previously allocated space, and we allocate | |
* enough space to handle YCbCr even if initially asked for grayscale. | |
*/ | |
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { | |
cinfo->script_space_size = MAX(nscans, 10); | |
cinfo->script_space = (jpeg_scan_info *) | |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |
cinfo->script_space_size * SIZEOF(jpeg_scan_info)); | |
} | |
scanptr = cinfo->script_space; | |
cinfo->scan_info = scanptr; | |
cinfo->num_scans = nscans; | |
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { | |
/* Custom script for YCbCr color images. */ | |
/* Initial DC scan */ | |
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); | |
/* Initial AC scan: get some luma data out in a hurry */ | |
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); | |
/* Chroma data is too small to be worth expending many scans on */ | |
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); | |
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); | |
/* Complete spectral selection for luma AC */ | |
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); | |
/* Refine next bit of luma AC */ | |
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); | |
/* Finish DC successive approximation */ | |
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); | |
/* Finish AC successive approximation */ | |
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); | |
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); | |
/* Luma bottom bit comes last since it's usually largest scan */ | |
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); | |
} else { | |
/* All-purpose script for other color spaces. */ | |
/* Successive approximation first pass */ | |
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); | |
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); | |
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); | |
/* Successive approximation second pass */ | |
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); | |
/* Successive approximation final pass */ | |
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); | |
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); | |
} | |
} | |
#endif /* C_PROGRESSIVE_SUPPORTED */ | |
#endif //_FX_JPEG_TURBO_ |