blob: d9a93dc774e01d53ad0411dc28c86ddbb22b072a [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/fpdf_render/render_int.h"
#include <algorithm>
#include "core/fpdfapi/fpdf_page/cpdf_graphicstates.h"
#include "core/fpdfapi/fpdf_page/cpdf_meshstream.h"
#include "core/fpdfapi/fpdf_page/cpdf_shadingpattern.h"
#include "core/fpdfapi/fpdf_page/cpdf_tilingpattern.h"
#include "core/fpdfapi/fpdf_page/include/cpdf_form.h"
#include "core/fpdfapi/fpdf_page/include/cpdf_pageobject.h"
#include "core/fpdfapi/fpdf_page/include/cpdf_pathobject.h"
#include "core/fpdfapi/fpdf_page/include/cpdf_shadingobject.h"
#include "core/fpdfapi/fpdf_page/pageint.h"
#include "core/fpdfapi/fpdf_parser/include/cpdf_array.h"
#include "core/fpdfapi/fpdf_parser/include/cpdf_dictionary.h"
#include "core/fpdfapi/fpdf_render/include/cpdf_rendercontext.h"
#include "core/fpdfapi/fpdf_render/include/cpdf_renderoptions.h"
#include "core/fxge/include/cfx_pathdata.h"
#include "core/fxge/include/ifx_renderdevicedriver.h"
namespace {
uint32_t CountOutputs(
const std::vector<std::unique_ptr<CPDF_Function>>& funcs) {
uint32_t total = 0;
for (const auto& func : funcs) {
if (func)
total += func->CountOutputs();
}
return total;
}
#define SHADING_STEPS 256
void DrawAxialShading(CFX_DIBitmap* pBitmap,
CFX_Matrix* pObject2Bitmap,
CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
CPDF_ColorSpace* pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Argb);
CPDF_Array* pCoords = pDict->GetArrayBy("Coords");
if (!pCoords) {
return;
}
FX_FLOAT start_x = pCoords->GetNumberAt(0);
FX_FLOAT start_y = pCoords->GetNumberAt(1);
FX_FLOAT end_x = pCoords->GetNumberAt(2);
FX_FLOAT end_y = pCoords->GetNumberAt(3);
FX_FLOAT t_min = 0, t_max = 1.0f;
CPDF_Array* pArray = pDict->GetArrayBy("Domain");
if (pArray) {
t_min = pArray->GetNumberAt(0);
t_max = pArray->GetNumberAt(1);
}
FX_BOOL bStartExtend = FALSE, bEndExtend = FALSE;
pArray = pDict->GetArrayBy("Extend");
if (pArray) {
bStartExtend = pArray->GetIntegerAt(0);
bEndExtend = pArray->GetIntegerAt(1);
}
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
FX_FLOAT x_span = end_x - start_x;
FX_FLOAT y_span = end_y - start_y;
FX_FLOAT axis_len_square = (x_span * x_span) + (y_span * y_span);
CFX_Matrix matrix;
matrix.SetReverse(*pObject2Bitmap);
uint32_t total_results =
std::max(CountOutputs(funcs), pCS->CountComponents());
CFX_FixedBufGrow<FX_FLOAT, 16> result_array(total_results);
FX_FLOAT* pResults = result_array;
FXSYS_memset(pResults, 0, total_results * sizeof(FX_FLOAT));
uint32_t rgb_array[SHADING_STEPS];
for (int i = 0; i < SHADING_STEPS; i++) {
FX_FLOAT input = (t_max - t_min) * i / SHADING_STEPS + t_min;
int offset = 0;
for (const auto& func : funcs) {
if (func) {
int nresults = 0;
if (func->Call(&input, 1, pResults + offset, nresults))
offset += nresults;
}
}
FX_FLOAT R = 0.0f, G = 0.0f, B = 0.0f;
pCS->GetRGB(pResults, R, G, B);
rgb_array[i] =
FXARGB_TODIB(FXARGB_MAKE(alpha, FXSYS_round(R * 255),
FXSYS_round(G * 255), FXSYS_round(B * 255)));
}
int pitch = pBitmap->GetPitch();
for (int row = 0; row < height; row++) {
uint32_t* dib_buf = (uint32_t*)(pBitmap->GetBuffer() + row * pitch);
for (int column = 0; column < width; column++) {
FX_FLOAT x = (FX_FLOAT)column, y = (FX_FLOAT)row;
matrix.Transform(x, y);
FX_FLOAT scale = (((x - start_x) * x_span) + ((y - start_y) * y_span)) /
axis_len_square;
int index = (int32_t)(scale * (SHADING_STEPS - 1));
if (index < 0) {
if (!bStartExtend) {
continue;
}
index = 0;
} else if (index >= SHADING_STEPS) {
if (!bEndExtend) {
continue;
}
index = SHADING_STEPS - 1;
}
dib_buf[column] = rgb_array[index];
}
}
}
void DrawRadialShading(CFX_DIBitmap* pBitmap,
CFX_Matrix* pObject2Bitmap,
CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
CPDF_ColorSpace* pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Argb);
CPDF_Array* pCoords = pDict->GetArrayBy("Coords");
if (!pCoords) {
return;
}
FX_FLOAT start_x = pCoords->GetNumberAt(0);
FX_FLOAT start_y = pCoords->GetNumberAt(1);
FX_FLOAT start_r = pCoords->GetNumberAt(2);
FX_FLOAT end_x = pCoords->GetNumberAt(3);
FX_FLOAT end_y = pCoords->GetNumberAt(4);
FX_FLOAT end_r = pCoords->GetNumberAt(5);
CFX_Matrix matrix;
matrix.SetReverse(*pObject2Bitmap);
FX_FLOAT t_min = 0, t_max = 1.0f;
CPDF_Array* pArray = pDict->GetArrayBy("Domain");
if (pArray) {
t_min = pArray->GetNumberAt(0);
t_max = pArray->GetNumberAt(1);
}
FX_BOOL bStartExtend = FALSE, bEndExtend = FALSE;
pArray = pDict->GetArrayBy("Extend");
if (pArray) {
bStartExtend = pArray->GetIntegerAt(0);
bEndExtend = pArray->GetIntegerAt(1);
}
uint32_t total_results =
std::max(CountOutputs(funcs), pCS->CountComponents());
CFX_FixedBufGrow<FX_FLOAT, 16> result_array(total_results);
FX_FLOAT* pResults = result_array;
FXSYS_memset(pResults, 0, total_results * sizeof(FX_FLOAT));
uint32_t rgb_array[SHADING_STEPS];
for (int i = 0; i < SHADING_STEPS; i++) {
FX_FLOAT input = (t_max - t_min) * i / SHADING_STEPS + t_min;
int offset = 0;
for (const auto& func : funcs) {
if (func) {
int nresults;
if (func->Call(&input, 1, pResults + offset, nresults))
offset += nresults;
}
}
FX_FLOAT R = 0.0f, G = 0.0f, B = 0.0f;
pCS->GetRGB(pResults, R, G, B);
rgb_array[i] =
FXARGB_TODIB(FXARGB_MAKE(alpha, FXSYS_round(R * 255),
FXSYS_round(G * 255), FXSYS_round(B * 255)));
}
FX_FLOAT a = ((start_x - end_x) * (start_x - end_x)) +
((start_y - end_y) * (start_y - end_y)) -
((start_r - end_r) * (start_r - end_r));
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
int pitch = pBitmap->GetPitch();
FX_BOOL bDecreasing = FALSE;
if (start_r > end_r) {
int length = (int)FXSYS_sqrt((((start_x - end_x) * (start_x - end_x)) +
((start_y - end_y) * (start_y - end_y))));
if (length < start_r - end_r) {
bDecreasing = TRUE;
}
}
for (int row = 0; row < height; row++) {
uint32_t* dib_buf = (uint32_t*)(pBitmap->GetBuffer() + row * pitch);
for (int column = 0; column < width; column++) {
FX_FLOAT x = (FX_FLOAT)column, y = (FX_FLOAT)row;
matrix.Transform(x, y);
FX_FLOAT b = -2 * (((x - start_x) * (end_x - start_x)) +
((y - start_y) * (end_y - start_y)) +
(start_r * (end_r - start_r)));
FX_FLOAT c = ((x - start_x) * (x - start_x)) +
((y - start_y) * (y - start_y)) - (start_r * start_r);
FX_FLOAT s;
if (a == 0) {
s = -c / b;
} else {
FX_FLOAT b2_4ac = (b * b) - 4 * (a * c);
if (b2_4ac < 0) {
continue;
}
FX_FLOAT root = FXSYS_sqrt(b2_4ac);
FX_FLOAT s1, s2;
if (a > 0) {
s1 = (-b - root) / (2 * a);
s2 = (-b + root) / (2 * a);
} else {
s2 = (-b - root) / (2 * a);
s1 = (-b + root) / (2 * a);
}
if (bDecreasing) {
if (s1 >= 0 || bStartExtend) {
s = s1;
} else {
s = s2;
}
} else {
if (s2 <= 1.0f || bEndExtend) {
s = s2;
} else {
s = s1;
}
}
if ((start_r + s * (end_r - start_r)) < 0) {
continue;
}
}
int index = (int32_t)(s * (SHADING_STEPS - 1));
if (index < 0) {
if (!bStartExtend) {
continue;
}
index = 0;
}
if (index >= SHADING_STEPS) {
if (!bEndExtend) {
continue;
}
index = SHADING_STEPS - 1;
}
dib_buf[column] = rgb_array[index];
}
}
}
void DrawFuncShading(CFX_DIBitmap* pBitmap,
CFX_Matrix* pObject2Bitmap,
CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
CPDF_ColorSpace* pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Argb);
CPDF_Array* pDomain = pDict->GetArrayBy("Domain");
FX_FLOAT xmin = 0, ymin = 0, xmax = 1.0f, ymax = 1.0f;
if (pDomain) {
xmin = pDomain->GetNumberAt(0);
xmax = pDomain->GetNumberAt(1);
ymin = pDomain->GetNumberAt(2);
ymax = pDomain->GetNumberAt(3);
}
CFX_Matrix mtDomain2Target = pDict->GetMatrixBy("Matrix");
CFX_Matrix matrix, reverse_matrix;
matrix.SetReverse(*pObject2Bitmap);
reverse_matrix.SetReverse(mtDomain2Target);
matrix.Concat(reverse_matrix);
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
int pitch = pBitmap->GetPitch();
uint32_t total_results =
std::max(CountOutputs(funcs), pCS->CountComponents());
CFX_FixedBufGrow<FX_FLOAT, 16> result_array(total_results);
FX_FLOAT* pResults = result_array;
FXSYS_memset(pResults, 0, total_results * sizeof(FX_FLOAT));
for (int row = 0; row < height; row++) {
uint32_t* dib_buf = (uint32_t*)(pBitmap->GetBuffer() + row * pitch);
for (int column = 0; column < width; column++) {
FX_FLOAT x = (FX_FLOAT)column, y = (FX_FLOAT)row;
matrix.Transform(x, y);
if (x < xmin || x > xmax || y < ymin || y > ymax) {
continue;
}
FX_FLOAT input[2];
int offset = 0;
input[0] = x;
input[1] = y;
for (const auto& func : funcs) {
if (func) {
int nresults;
if (func->Call(input, 2, pResults + offset, nresults))
offset += nresults;
}
}
FX_FLOAT R = 0.0f, G = 0.0f, B = 0.0f;
pCS->GetRGB(pResults, R, G, B);
dib_buf[column] = FXARGB_TODIB(FXARGB_MAKE(
alpha, (int32_t)(R * 255), (int32_t)(G * 255), (int32_t)(B * 255)));
}
}
}
bool GetScanlineIntersect(int y,
FX_FLOAT x1,
FX_FLOAT y1,
FX_FLOAT x2,
FX_FLOAT y2,
FX_FLOAT* x) {
if (y1 == y2)
return FALSE;
if (y1 < y2) {
if (y < y1 || y > y2)
return FALSE;
} else {
if (y < y2 || y > y1)
return FALSE;
}
*x = x1 + ((x2 - x1) * (y - y1) / (y2 - y1));
return TRUE;
}
void DrawGouraud(CFX_DIBitmap* pBitmap,
int alpha,
CPDF_MeshVertex triangle[3]) {
FX_FLOAT min_y = triangle[0].y, max_y = triangle[0].y;
for (int i = 1; i < 3; i++) {
if (min_y > triangle[i].y) {
min_y = triangle[i].y;
}
if (max_y < triangle[i].y) {
max_y = triangle[i].y;
}
}
if (min_y == max_y) {
return;
}
int min_yi = (int)FXSYS_floor(min_y), max_yi = (int)FXSYS_ceil(max_y);
if (min_yi < 0) {
min_yi = 0;
}
if (max_yi >= pBitmap->GetHeight()) {
max_yi = pBitmap->GetHeight() - 1;
}
for (int y = min_yi; y <= max_yi; y++) {
int nIntersects = 0;
FX_FLOAT inter_x[3], r[3], g[3], b[3];
for (int i = 0; i < 3; i++) {
CPDF_MeshVertex& vertex1 = triangle[i];
CPDF_MeshVertex& vertex2 = triangle[(i + 1) % 3];
bool bIntersect = GetScanlineIntersect(y, vertex1.x, vertex1.y, vertex2.x,
vertex2.y, &inter_x[nIntersects]);
if (!bIntersect)
continue;
FX_FLOAT y_dist = (y - vertex1.y) / (vertex2.y - vertex1.y);
r[nIntersects] = vertex1.r + ((vertex2.r - vertex1.r) * y_dist);
g[nIntersects] = vertex1.g + ((vertex2.g - vertex1.g) * y_dist);
b[nIntersects] = vertex1.b + ((vertex2.b - vertex1.b) * y_dist);
nIntersects++;
}
if (nIntersects != 2) {
continue;
}
int min_x, max_x, start_index, end_index;
if (inter_x[0] < inter_x[1]) {
min_x = (int)FXSYS_floor(inter_x[0]);
max_x = (int)FXSYS_ceil(inter_x[1]);
start_index = 0;
end_index = 1;
} else {
min_x = (int)FXSYS_floor(inter_x[1]);
max_x = (int)FXSYS_ceil(inter_x[0]);
start_index = 1;
end_index = 0;
}
int start_x = min_x, end_x = max_x;
if (start_x < 0) {
start_x = 0;
}
if (end_x > pBitmap->GetWidth()) {
end_x = pBitmap->GetWidth();
}
uint8_t* dib_buf =
pBitmap->GetBuffer() + y * pBitmap->GetPitch() + start_x * 4;
FX_FLOAT r_unit = (r[end_index] - r[start_index]) / (max_x - min_x);
FX_FLOAT g_unit = (g[end_index] - g[start_index]) / (max_x - min_x);
FX_FLOAT b_unit = (b[end_index] - b[start_index]) / (max_x - min_x);
FX_FLOAT R = r[start_index] + (start_x - min_x) * r_unit;
FX_FLOAT G = g[start_index] + (start_x - min_x) * g_unit;
FX_FLOAT B = b[start_index] + (start_x - min_x) * b_unit;
for (int x = start_x; x < end_x; x++) {
R += r_unit;
G += g_unit;
B += b_unit;
FXARGB_SETDIB(dib_buf,
FXARGB_MAKE(alpha, (int32_t)(R * 255), (int32_t)(G * 255),
(int32_t)(B * 255)));
dib_buf += 4;
}
}
}
void DrawFreeGouraudShading(
CFX_DIBitmap* pBitmap,
CFX_Matrix* pObject2Bitmap,
CPDF_Stream* pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
CPDF_ColorSpace* pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Argb);
CPDF_MeshStream stream(kFreeFormGouraudTriangleMeshShading, funcs,
pShadingStream, pCS);
if (!stream.Load())
return;
CPDF_MeshVertex triangle[3];
FXSYS_memset(triangle, 0, sizeof(triangle));
while (!stream.BitStream()->IsEOF()) {
CPDF_MeshVertex vertex;
uint32_t flag = stream.GetVertex(vertex, pObject2Bitmap);
if (flag == 0) {
triangle[0] = vertex;
for (int j = 1; j < 3; j++) {
stream.GetVertex(triangle[j], pObject2Bitmap);
}
} else {
if (flag == 1) {
triangle[0] = triangle[1];
}
triangle[1] = triangle[2];
triangle[2] = vertex;
}
DrawGouraud(pBitmap, alpha, triangle);
}
}
void DrawLatticeGouraudShading(
CFX_DIBitmap* pBitmap,
CFX_Matrix* pObject2Bitmap,
CPDF_Stream* pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
CPDF_ColorSpace* pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Argb);
int row_verts = pShadingStream->GetDict()->GetIntegerBy("VerticesPerRow");
if (row_verts < 2)
return;
CPDF_MeshStream stream(kLatticeFormGouraudTriangleMeshShading, funcs,
pShadingStream, pCS);
if (!stream.Load())
return;
std::unique_ptr<CPDF_MeshVertex, FxFreeDeleter> vertex(
FX_Alloc2D(CPDF_MeshVertex, row_verts, 2));
if (!stream.GetVertexRow(vertex.get(), row_verts, pObject2Bitmap))
return;
int last_index = 0;
while (1) {
CPDF_MeshVertex* last_row = vertex.get() + last_index * row_verts;
CPDF_MeshVertex* this_row = vertex.get() + (1 - last_index) * row_verts;
if (!stream.GetVertexRow(this_row, row_verts, pObject2Bitmap))
return;
CPDF_MeshVertex triangle[3];
for (int i = 1; i < row_verts; i++) {
triangle[0] = last_row[i];
triangle[1] = this_row[i - 1];
triangle[2] = last_row[i - 1];
DrawGouraud(pBitmap, alpha, triangle);
triangle[2] = this_row[i];
DrawGouraud(pBitmap, alpha, triangle);
}
last_index = 1 - last_index;
}
}
struct Coon_BezierCoeff {
float a, b, c, d;
void FromPoints(float p0, float p1, float p2, float p3) {
a = -p0 + 3 * p1 - 3 * p2 + p3;
b = 3 * p0 - 6 * p1 + 3 * p2;
c = -3 * p0 + 3 * p1;
d = p0;
}
Coon_BezierCoeff first_half() {
Coon_BezierCoeff result;
result.a = a / 8;
result.b = b / 4;
result.c = c / 2;
result.d = d;
return result;
}
Coon_BezierCoeff second_half() {
Coon_BezierCoeff result;
result.a = a / 8;
result.b = 3 * a / 8 + b / 4;
result.c = 3 * a / 8 + b / 2 + c / 2;
result.d = a / 8 + b / 4 + c / 2 + d;
return result;
}
void GetPoints(float p[4]) {
p[0] = d;
p[1] = c / 3 + p[0];
p[2] = b / 3 - p[0] + 2 * p[1];
p[3] = a + p[0] - 3 * p[1] + 3 * p[2];
}
void GetPointsReverse(float p[4]) {
p[3] = d;
p[2] = c / 3 + p[3];
p[1] = b / 3 - p[3] + 2 * p[2];
p[0] = a + p[3] - 3 * p[2] + 3 * p[1];
}
void BezierInterpol(Coon_BezierCoeff& C1,
Coon_BezierCoeff& C2,
Coon_BezierCoeff& D1,
Coon_BezierCoeff& D2) {
a = (D1.a + D2.a) / 2;
b = (D1.b + D2.b) / 2;
c = (D1.c + D2.c) / 2 - (C1.a / 8 + C1.b / 4 + C1.c / 2) +
(C2.a / 8 + C2.b / 4) + (-C1.d + D2.d) / 2 - (C2.a + C2.b) / 2;
d = C1.a / 8 + C1.b / 4 + C1.c / 2 + C1.d;
}
float Distance() {
float dis = a + b + c;
return dis < 0 ? -dis : dis;
}
};
struct Coon_Bezier {
Coon_BezierCoeff x, y;
void FromPoints(float x0,
float y0,
float x1,
float y1,
float x2,
float y2,
float x3,
float y3) {
x.FromPoints(x0, x1, x2, x3);
y.FromPoints(y0, y1, y2, y3);
}
Coon_Bezier first_half() {
Coon_Bezier result;
result.x = x.first_half();
result.y = y.first_half();
return result;
}
Coon_Bezier second_half() {
Coon_Bezier result;
result.x = x.second_half();
result.y = y.second_half();
return result;
}
void BezierInterpol(Coon_Bezier& C1,
Coon_Bezier& C2,
Coon_Bezier& D1,
Coon_Bezier& D2) {
x.BezierInterpol(C1.x, C2.x, D1.x, D2.x);
y.BezierInterpol(C1.y, C2.y, D1.y, D2.y);
}
void GetPoints(FX_PATHPOINT* pPoints) {
float p[4];
int i;
x.GetPoints(p);
for (i = 0; i < 4; i++) {
pPoints[i].m_PointX = p[i];
}
y.GetPoints(p);
for (i = 0; i < 4; i++) {
pPoints[i].m_PointY = p[i];
}
}
void GetPointsReverse(FX_PATHPOINT* pPoints) {
float p[4];
int i;
x.GetPointsReverse(p);
for (i = 0; i < 4; i++) {
pPoints[i].m_PointX = p[i];
}
y.GetPointsReverse(p);
for (i = 0; i < 4; i++) {
pPoints[i].m_PointY = p[i];
}
}
float Distance() { return x.Distance() + y.Distance(); }
};
int BiInterpolImpl(int c0,
int c1,
int c2,
int c3,
int x,
int y,
int x_scale,
int y_scale) {
int x1 = c0 + (c3 - c0) * x / x_scale;
int x2 = c1 + (c2 - c1) * x / x_scale;
return x1 + (x2 - x1) * y / y_scale;
}
struct Coon_Color {
Coon_Color() { FXSYS_memset(comp, 0, sizeof(int) * 3); }
int comp[3];
void BiInterpol(Coon_Color colors[4],
int x,
int y,
int x_scale,
int y_scale) {
for (int i = 0; i < 3; i++) {
comp[i] = BiInterpolImpl(colors[0].comp[i], colors[1].comp[i],
colors[2].comp[i], colors[3].comp[i], x, y,
x_scale, y_scale);
}
}
int Distance(Coon_Color& o) {
return std::max({FXSYS_abs(comp[0] - o.comp[0]),
FXSYS_abs(comp[1] - o.comp[1]),
FXSYS_abs(comp[2] - o.comp[2])});
}
};
struct CPDF_PatchDrawer {
Coon_Color patch_colors[4];
int max_delta;
CFX_PathData path;
CFX_RenderDevice* pDevice;
int fill_mode;
int alpha;
void Draw(int x_scale,
int y_scale,
int left,
int bottom,
Coon_Bezier C1,
Coon_Bezier C2,
Coon_Bezier D1,
Coon_Bezier D2) {
FX_BOOL bSmall = C1.Distance() < 2 && C2.Distance() < 2 &&
D1.Distance() < 2 && D2.Distance() < 2;
Coon_Color div_colors[4];
int d_bottom = 0;
int d_left = 0;
int d_top = 0;
int d_right = 0;
div_colors[0].BiInterpol(patch_colors, left, bottom, x_scale, y_scale);
if (!bSmall) {
div_colors[1].BiInterpol(patch_colors, left, bottom + 1, x_scale,
y_scale);
div_colors[2].BiInterpol(patch_colors, left + 1, bottom + 1, x_scale,
y_scale);
div_colors[3].BiInterpol(patch_colors, left + 1, bottom, x_scale,
y_scale);
d_bottom = div_colors[3].Distance(div_colors[0]);
d_left = div_colors[1].Distance(div_colors[0]);
d_top = div_colors[1].Distance(div_colors[2]);
d_right = div_colors[2].Distance(div_colors[3]);
}
#define COONCOLOR_THRESHOLD 4
if (bSmall ||
(d_bottom < COONCOLOR_THRESHOLD && d_left < COONCOLOR_THRESHOLD &&
d_top < COONCOLOR_THRESHOLD && d_right < COONCOLOR_THRESHOLD)) {
FX_PATHPOINT* pPoints = path.GetPoints();
C1.GetPoints(pPoints);
D2.GetPoints(pPoints + 3);
C2.GetPointsReverse(pPoints + 6);
D1.GetPointsReverse(pPoints + 9);
int fillFlags = FXFILL_WINDING | FXFILL_FULLCOVER;
if (fill_mode & RENDER_NOPATHSMOOTH) {
fillFlags |= FXFILL_NOPATHSMOOTH;
}
pDevice->DrawPath(
&path, nullptr, nullptr,
FXARGB_MAKE(alpha, div_colors[0].comp[0], div_colors[0].comp[1],
div_colors[0].comp[2]),
0, fillFlags);
} else {
if (d_bottom < COONCOLOR_THRESHOLD && d_top < COONCOLOR_THRESHOLD) {
Coon_Bezier m1;
m1.BezierInterpol(D1, D2, C1, C2);
y_scale *= 2;
bottom *= 2;
Draw(x_scale, y_scale, left, bottom, C1, m1, D1.first_half(),
D2.first_half());
Draw(x_scale, y_scale, left, bottom + 1, m1, C2, D1.second_half(),
D2.second_half());
} else if (d_left < COONCOLOR_THRESHOLD &&
d_right < COONCOLOR_THRESHOLD) {
Coon_Bezier m2;
m2.BezierInterpol(C1, C2, D1, D2);
x_scale *= 2;
left *= 2;
Draw(x_scale, y_scale, left, bottom, C1.first_half(), C2.first_half(),
D1, m2);
Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(),
C2.second_half(), m2, D2);
} else {
Coon_Bezier m1, m2;
m1.BezierInterpol(D1, D2, C1, C2);
m2.BezierInterpol(C1, C2, D1, D2);
Coon_Bezier m1f = m1.first_half();
Coon_Bezier m1s = m1.second_half();
Coon_Bezier m2f = m2.first_half();
Coon_Bezier m2s = m2.second_half();
x_scale *= 2;
y_scale *= 2;
left *= 2;
bottom *= 2;
Draw(x_scale, y_scale, left, bottom, C1.first_half(), m1f,
D1.first_half(), m2f);
Draw(x_scale, y_scale, left, bottom + 1, m1f, C2.first_half(),
D1.second_half(), m2s);
Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(), m1s, m2f,
D2.first_half());
Draw(x_scale, y_scale, left + 1, bottom + 1, m1s, C2.second_half(), m2s,
D2.second_half());
}
}
}
};
void DrawCoonPatchMeshes(
ShadingType type,
CFX_DIBitmap* pBitmap,
CFX_Matrix* pObject2Bitmap,
CPDF_Stream* pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
CPDF_ColorSpace* pCS,
int fill_mode,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Argb);
ASSERT(type == kCoonsPatchMeshShading ||
type == kTensorProductPatchMeshShading);
CFX_FxgeDevice device;
device.Attach(pBitmap, false, nullptr, false);
CPDF_MeshStream stream(type, funcs, pShadingStream, pCS);
if (!stream.Load())
return;
CPDF_PatchDrawer patch;
patch.alpha = alpha;
patch.pDevice = &device;
patch.fill_mode = fill_mode;
patch.path.SetPointCount(13);
FX_PATHPOINT* pPoints = patch.path.GetPoints();
pPoints[0].m_Flag = FXPT_MOVETO;
for (int i = 1; i < 13; i++)
pPoints[i].m_Flag = FXPT_BEZIERTO;
CFX_PointF coords[16];
int point_count = type == kTensorProductPatchMeshShading ? 16 : 12;
while (!stream.BitStream()->IsEOF()) {
uint32_t flag = stream.GetFlag();
int iStartPoint = 0, iStartColor = 0, i = 0;
if (flag) {
iStartPoint = 4;
iStartColor = 2;
CFX_PointF tempCoords[4];
for (i = 0; i < 4; i++) {
tempCoords[i] = coords[(flag * 3 + i) % 12];
}
FXSYS_memcpy(coords, tempCoords, sizeof(tempCoords));
Coon_Color tempColors[2];
tempColors[0] = patch.patch_colors[flag];
tempColors[1] = patch.patch_colors[(flag + 1) % 4];
FXSYS_memcpy(patch.patch_colors, tempColors, sizeof(Coon_Color) * 2);
}
for (i = iStartPoint; i < point_count; i++) {
stream.GetCoords(coords[i].x, coords[i].y);
pObject2Bitmap->Transform(coords[i].x, coords[i].y);
}
for (i = iStartColor; i < 4; i++) {
FX_FLOAT r = 0.0f, g = 0.0f, b = 0.0f;
stream.GetColor(r, g, b);
patch.patch_colors[i].comp[0] = (int32_t)(r * 255);
patch.patch_colors[i].comp[1] = (int32_t)(g * 255);
patch.patch_colors[i].comp[2] = (int32_t)(b * 255);
}
CFX_FloatRect bbox = CFX_FloatRect::GetBBox(coords, point_count);
if (bbox.right <= 0 || bbox.left >= (FX_FLOAT)pBitmap->GetWidth() ||
bbox.top <= 0 || bbox.bottom >= (FX_FLOAT)pBitmap->GetHeight()) {
continue;
}
Coon_Bezier C1, C2, D1, D2;
C1.FromPoints(coords[0].x, coords[0].y, coords[11].x, coords[11].y,
coords[10].x, coords[10].y, coords[9].x, coords[9].y);
C2.FromPoints(coords[3].x, coords[3].y, coords[4].x, coords[4].y,
coords[5].x, coords[5].y, coords[6].x, coords[6].y);
D1.FromPoints(coords[0].x, coords[0].y, coords[1].x, coords[1].y,
coords[2].x, coords[2].y, coords[3].x, coords[3].y);
D2.FromPoints(coords[9].x, coords[9].y, coords[8].x, coords[8].y,
coords[7].x, coords[7].y, coords[6].x, coords[6].y);
patch.Draw(1, 1, 0, 0, C1, C2, D1, D2);
}
}
std::unique_ptr<CFX_DIBitmap> DrawPatternBitmap(
CPDF_Document* pDoc,
CPDF_PageRenderCache* pCache,
CPDF_TilingPattern* pPattern,
const CFX_Matrix* pObject2Device,
int width,
int height,
int flags) {
std::unique_ptr<CFX_DIBitmap> pBitmap(new CFX_DIBitmap);
if (!pBitmap->Create(width, height,
pPattern->colored() ? FXDIB_Argb : FXDIB_8bppMask)) {
return std::unique_ptr<CFX_DIBitmap>();
}
CFX_FxgeDevice bitmap_device;
bitmap_device.Attach(pBitmap.get(), false, nullptr, false);
pBitmap->Clear(0);
CFX_FloatRect cell_bbox = pPattern->bbox();
pPattern->pattern_to_form()->TransformRect(cell_bbox);
pObject2Device->TransformRect(cell_bbox);
CFX_FloatRect bitmap_rect(0.0f, 0.0f, (FX_FLOAT)width, (FX_FLOAT)height);
CFX_Matrix mtAdjust;
mtAdjust.MatchRect(bitmap_rect, cell_bbox);
CFX_Matrix mtPattern2Bitmap = *pObject2Device;
mtPattern2Bitmap.Concat(mtAdjust);
CPDF_RenderOptions options;
if (!pPattern->colored())
options.m_ColorMode = RENDER_COLOR_ALPHA;
flags |= RENDER_FORCE_HALFTONE;
options.m_Flags = flags;
CPDF_RenderContext context(pDoc, pCache);
context.AppendLayer(pPattern->form(), &mtPattern2Bitmap);
context.Render(&bitmap_device, &options, nullptr);
return pBitmap;
}
} // namespace
void CPDF_RenderStatus::DrawShading(CPDF_ShadingPattern* pPattern,
CFX_Matrix* pMatrix,
FX_RECT& clip_rect,
int alpha,
FX_BOOL bAlphaMode) {
const auto& funcs = pPattern->GetFuncs();
CPDF_Dictionary* pDict = pPattern->GetShadingObject()->GetDict();
CPDF_ColorSpace* pColorSpace = pPattern->GetCS();
if (!pColorSpace)
return;
FX_ARGB background = 0;
if (!pPattern->IsShadingObject() && pDict->KeyExist("Background")) {
CPDF_Array* pBackColor = pDict->GetArrayBy("Background");
if (pBackColor &&
pBackColor->GetCount() >= pColorSpace->CountComponents()) {
CFX_FixedBufGrow<FX_FLOAT, 16> comps(pColorSpace->CountComponents());
for (uint32_t i = 0; i < pColorSpace->CountComponents(); i++)
comps[i] = pBackColor->GetNumberAt(i);
FX_FLOAT R = 0.0f, G = 0.0f, B = 0.0f;
pColorSpace->GetRGB(comps, R, G, B);
background = ArgbEncode(255, (int32_t)(R * 255), (int32_t)(G * 255),
(int32_t)(B * 255));
}
}
if (pDict->KeyExist("BBox")) {
CFX_FloatRect rect = pDict->GetRectBy("BBox");
rect.Transform(pMatrix);
clip_rect.Intersect(rect.GetOutterRect());
}
if (m_pDevice->GetDeviceCaps(FXDC_RENDER_CAPS) & FXRC_SHADING &&
m_pDevice->GetDeviceDriver()->DrawShading(pPattern, pMatrix, clip_rect,
alpha, bAlphaMode)) {
return;
}
CPDF_DeviceBuffer buffer;
buffer.Initialize(m_pContext, m_pDevice, &clip_rect, m_pCurObj, 150);
CFX_Matrix FinalMatrix = *pMatrix;
FinalMatrix.Concat(*buffer.GetMatrix());
CFX_DIBitmap* pBitmap = buffer.GetBitmap();
if (!pBitmap->GetBuffer())
return;
pBitmap->Clear(background);
int fill_mode = m_Options.m_Flags;
switch (pPattern->GetShadingType()) {
case kInvalidShading:
case kMaxShading:
return;
case kFunctionBasedShading:
DrawFuncShading(pBitmap, &FinalMatrix, pDict, funcs, pColorSpace, alpha);
break;
case kAxialShading:
DrawAxialShading(pBitmap, &FinalMatrix, pDict, funcs, pColorSpace, alpha);
break;
case kRadialShading:
DrawRadialShading(pBitmap, &FinalMatrix, pDict, funcs, pColorSpace,
alpha);
break;
case kFreeFormGouraudTriangleMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
if (CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject())) {
DrawFreeGouraudShading(pBitmap, &FinalMatrix, pStream, funcs,
pColorSpace, alpha);
}
} break;
case kLatticeFormGouraudTriangleMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
if (CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject())) {
DrawLatticeGouraudShading(pBitmap, &FinalMatrix, pStream, funcs,
pColorSpace, alpha);
}
} break;
case kCoonsPatchMeshShading:
case kTensorProductPatchMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
if (CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject())) {
DrawCoonPatchMeshes(pPattern->GetShadingType(), pBitmap, &FinalMatrix,
pStream, funcs, pColorSpace, fill_mode, alpha);
}
} break;
}
if (bAlphaMode)
pBitmap->LoadChannel(FXDIB_Red, pBitmap, FXDIB_Alpha);
if (m_Options.m_ColorMode == RENDER_COLOR_GRAY)
pBitmap->ConvertColorScale(m_Options.m_ForeColor, m_Options.m_BackColor);
buffer.OutputToDevice();
}
void CPDF_RenderStatus::DrawShadingPattern(CPDF_ShadingPattern* pattern,
const CPDF_PageObject* pPageObj,
const CFX_Matrix* pObj2Device,
FX_BOOL bStroke) {
if (!pattern->Load())
return;
m_pDevice->SaveState();
if (pPageObj->IsPath()) {
if (!SelectClipPath(pPageObj->AsPath(), pObj2Device, bStroke)) {
m_pDevice->RestoreState(false);
return;
}
} else if (pPageObj->IsImage()) {
m_pDevice->SetClip_Rect(pPageObj->GetBBox(pObj2Device));
} else {
return;
}
FX_RECT rect;
if (GetObjectClippedRect(pPageObj, pObj2Device, FALSE, rect)) {
m_pDevice->RestoreState(false);
return;
}
CFX_Matrix matrix = *pattern->pattern_to_form();
matrix.Concat(*pObj2Device);
GetScaledMatrix(matrix);
int alpha = pPageObj->m_GeneralState.GetAlpha(bStroke);
DrawShading(pattern, &matrix, rect, alpha,
m_Options.m_ColorMode == RENDER_COLOR_ALPHA);
m_pDevice->RestoreState(false);
}
void CPDF_RenderStatus::ProcessShading(const CPDF_ShadingObject* pShadingObj,
const CFX_Matrix* pObj2Device) {
FX_RECT rect = pShadingObj->GetBBox(pObj2Device);
FX_RECT clip_box = m_pDevice->GetClipBox();
rect.Intersect(clip_box);
if (rect.IsEmpty())
return;
CFX_Matrix matrix = pShadingObj->m_Matrix;
matrix.Concat(*pObj2Device);
DrawShading(pShadingObj->m_pShading, &matrix, rect,
pShadingObj->m_GeneralState.GetAlpha(FALSE),
m_Options.m_ColorMode == RENDER_COLOR_ALPHA);
}
void CPDF_RenderStatus::DrawTilingPattern(CPDF_TilingPattern* pPattern,
const CPDF_PageObject* pPageObj,
const CFX_Matrix* pObj2Device,
FX_BOOL bStroke) {
if (!pPattern->Load()) {
return;
}
m_pDevice->SaveState();
if (pPageObj->IsPath()) {
if (!SelectClipPath(pPageObj->AsPath(), pObj2Device, bStroke)) {
m_pDevice->RestoreState(false);
return;
}
} else if (pPageObj->IsImage()) {
m_pDevice->SetClip_Rect(pPageObj->GetBBox(pObj2Device));
} else {
return;
}
FX_RECT clip_box = m_pDevice->GetClipBox();
if (clip_box.IsEmpty()) {
m_pDevice->RestoreState(false);
return;
}
CFX_Matrix dCTM = m_pDevice->GetCTM();
FX_FLOAT sa = FXSYS_fabs(dCTM.a);
FX_FLOAT sd = FXSYS_fabs(dCTM.d);
clip_box.right = clip_box.left + (int32_t)FXSYS_ceil(clip_box.Width() * sa);
clip_box.bottom = clip_box.top + (int32_t)FXSYS_ceil(clip_box.Height() * sd);
CFX_Matrix mtPattern2Device = *pPattern->pattern_to_form();
mtPattern2Device.Concat(*pObj2Device);
GetScaledMatrix(mtPattern2Device);
FX_BOOL bAligned = FALSE;
if (pPattern->bbox().left == 0 && pPattern->bbox().bottom == 0 &&
pPattern->bbox().right == pPattern->x_step() &&
pPattern->bbox().top == pPattern->y_step() &&
(mtPattern2Device.IsScaled() || mtPattern2Device.Is90Rotated())) {
bAligned = TRUE;
}
CFX_FloatRect cell_bbox = pPattern->bbox();
mtPattern2Device.TransformRect(cell_bbox);
int width = (int)FXSYS_ceil(cell_bbox.Width());
int height = (int)FXSYS_ceil(cell_bbox.Height());
if (width == 0) {
width = 1;
}
if (height == 0) {
height = 1;
}
int min_col, max_col, min_row, max_row;
CFX_Matrix mtDevice2Pattern;
mtDevice2Pattern.SetReverse(mtPattern2Device);
CFX_FloatRect clip_box_p(clip_box);
clip_box_p.Transform(&mtDevice2Pattern);
min_col = (int)FXSYS_ceil((clip_box_p.left - pPattern->bbox().right) /
pPattern->x_step());
max_col = (int)FXSYS_floor((clip_box_p.right - pPattern->bbox().left) /
pPattern->x_step());
min_row = (int)FXSYS_ceil((clip_box_p.bottom - pPattern->bbox().top) /
pPattern->y_step());
max_row = (int)FXSYS_floor((clip_box_p.top - pPattern->bbox().bottom) /
pPattern->y_step());
if (width > clip_box.Width() || height > clip_box.Height() ||
width * height > clip_box.Width() * clip_box.Height()) {
CPDF_GraphicStates* pStates = nullptr;
if (!pPattern->colored())
pStates = CloneObjStates(pPageObj, bStroke);
CPDF_Dictionary* pFormResource = nullptr;
if (pPattern->form()->m_pFormDict)
pFormResource = pPattern->form()->m_pFormDict->GetDictBy("Resources");
for (int col = min_col; col <= max_col; col++)
for (int row = min_row; row <= max_row; row++) {
FX_FLOAT orig_x, orig_y;
orig_x = col * pPattern->x_step();
orig_y = row * pPattern->y_step();
mtPattern2Device.Transform(orig_x, orig_y);
CFX_Matrix matrix = *pObj2Device;
matrix.Translate(orig_x - mtPattern2Device.e,
orig_y - mtPattern2Device.f);
m_pDevice->SaveState();
CPDF_RenderStatus status;
status.Initialize(m_pContext, m_pDevice, nullptr, nullptr, this,
pStates, &m_Options, pPattern->form()->m_Transparency,
m_bDropObjects, pFormResource);
status.RenderObjectList(pPattern->form(), &matrix);
m_pDevice->RestoreState(false);
}
m_pDevice->RestoreState(false);
delete pStates;
return;
}
if (bAligned) {
int orig_x = FXSYS_round(mtPattern2Device.e);
int orig_y = FXSYS_round(mtPattern2Device.f);
min_col = (clip_box.left - orig_x) / width;
if (clip_box.left < orig_x) {
min_col--;
}
max_col = (clip_box.right - orig_x) / width;
if (clip_box.right <= orig_x) {
max_col--;
}
min_row = (clip_box.top - orig_y) / height;
if (clip_box.top < orig_y) {
min_row--;
}
max_row = (clip_box.bottom - orig_y) / height;
if (clip_box.bottom <= orig_y) {
max_row--;
}
}
FX_FLOAT left_offset = cell_bbox.left - mtPattern2Device.e;
FX_FLOAT top_offset = cell_bbox.bottom - mtPattern2Device.f;
std::unique_ptr<CFX_DIBitmap> pPatternBitmap;
if (width * height < 16) {
std::unique_ptr<CFX_DIBitmap> pEnlargedBitmap =
DrawPatternBitmap(m_pContext->GetDocument(), m_pContext->GetPageCache(),
pPattern, pObj2Device, 8, 8, m_Options.m_Flags);
pPatternBitmap.reset(pEnlargedBitmap->StretchTo(width, height));
} else {
pPatternBitmap = DrawPatternBitmap(
m_pContext->GetDocument(), m_pContext->GetPageCache(), pPattern,
pObj2Device, width, height, m_Options.m_Flags);
}
if (!pPatternBitmap) {
m_pDevice->RestoreState(false);
return;
}
if (m_Options.m_ColorMode == RENDER_COLOR_GRAY) {
pPatternBitmap->ConvertColorScale(m_Options.m_ForeColor,
m_Options.m_BackColor);
}
FX_ARGB fill_argb = GetFillArgb(pPageObj);
int clip_width = clip_box.right - clip_box.left;
int clip_height = clip_box.bottom - clip_box.top;
CFX_DIBitmap screen;
if (!screen.Create(clip_width, clip_height, FXDIB_Argb)) {
return;
}
screen.Clear(0);
uint32_t* src_buf = (uint32_t*)pPatternBitmap->GetBuffer();
for (int col = min_col; col <= max_col; col++) {
for (int row = min_row; row <= max_row; row++) {
int start_x, start_y;
if (bAligned) {
start_x = FXSYS_round(mtPattern2Device.e) + col * width - clip_box.left;
start_y = FXSYS_round(mtPattern2Device.f) + row * height - clip_box.top;
} else {
FX_FLOAT orig_x = col * pPattern->x_step();
FX_FLOAT orig_y = row * pPattern->y_step();
mtPattern2Device.Transform(orig_x, orig_y);
start_x = FXSYS_round(orig_x + left_offset) - clip_box.left;
start_y = FXSYS_round(orig_y + top_offset) - clip_box.top;
}
if (width == 1 && height == 1) {
if (start_x < 0 || start_x >= clip_box.Width() || start_y < 0 ||
start_y >= clip_box.Height()) {
continue;
}
uint32_t* dest_buf =
(uint32_t*)(screen.GetBuffer() + screen.GetPitch() * start_y +
start_x * 4);
if (pPattern->colored())
*dest_buf = *src_buf;
else
*dest_buf = (*(uint8_t*)src_buf << 24) | (fill_argb & 0xffffff);
} else {
if (pPattern->colored()) {
screen.CompositeBitmap(start_x, start_y, width, height,
pPatternBitmap.get(), 0, 0);
} else {
screen.CompositeMask(start_x, start_y, width, height,
pPatternBitmap.get(), fill_argb, 0, 0);
}
}
}
}
CompositeDIBitmap(&screen, clip_box.left, clip_box.top, 0, 255,
FXDIB_BLEND_NORMAL, FALSE);
m_pDevice->RestoreState(false);
}
void CPDF_RenderStatus::DrawPathWithPattern(const CPDF_PathObject* pPathObj,
const CFX_Matrix* pObj2Device,
CPDF_Color* pColor,
FX_BOOL bStroke) {
CPDF_Pattern* pattern = pColor->GetPattern();
if (!pattern)
return;
if (CPDF_TilingPattern* pTilingPattern = pattern->AsTilingPattern())
DrawTilingPattern(pTilingPattern, pPathObj, pObj2Device, bStroke);
else if (CPDF_ShadingPattern* pShadingPattern = pattern->AsShadingPattern())
DrawShadingPattern(pShadingPattern, pPathObj, pObj2Device, bStroke);
}
void CPDF_RenderStatus::ProcessPathPattern(const CPDF_PathObject* pPathObj,
const CFX_Matrix* pObj2Device,
int& filltype,
FX_BOOL& bStroke) {
if (filltype) {
CPDF_Color& FillColor = *pPathObj->m_ColorState.GetFillColor();
if (FillColor.IsPattern()) {
DrawPathWithPattern(pPathObj, pObj2Device, &FillColor, FALSE);
filltype = 0;
}
}
if (bStroke) {
CPDF_Color& StrokeColor = *pPathObj->m_ColorState.GetStrokeColor();
if (StrokeColor.IsPattern()) {
DrawPathWithPattern(pPathObj, pObj2Device, &StrokeColor, TRUE);
bStroke = FALSE;
}
}
}