| //--------------------------------------------------------------------------------- |
| // |
| // Little Color Management System |
| // Copyright (c) 1998-2020 Marti Maria Saguer |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining |
| // a copy of this software and associated documentation files (the "Software"), |
| // to deal in the Software without restriction, including without limitation |
| // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| // and/or sell copies of the Software, and to permit persons to whom the Software |
| // is furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| // |
| //--------------------------------------------------------------------------------- |
| // |
| |
| #include "lcms2_internal.h" |
| |
| |
| #define cmsmin(a, b) (((a) < (b)) ? (a) : (b)) |
| #define cmsmax(a, b) (((a) > (b)) ? (a) : (b)) |
| |
| // This file contains routines for resampling and LUT optimization, black point detection |
| // and black preservation. |
| |
| // Black point detection ------------------------------------------------------------------------- |
| |
| |
| // PCS -> PCS round trip transform, always uses relative intent on the device -> pcs |
| static |
| cmsHTRANSFORM CreateRoundtripXForm(cmsHPROFILE hProfile, cmsUInt32Number nIntent) |
| { |
| cmsContext ContextID = cmsGetProfileContextID(hProfile); |
| cmsHPROFILE hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); |
| cmsHTRANSFORM xform; |
| cmsBool BPC[4] = { FALSE, FALSE, FALSE, FALSE }; |
| cmsFloat64Number States[4] = { 1.0, 1.0, 1.0, 1.0 }; |
| cmsHPROFILE hProfiles[4]; |
| cmsUInt32Number Intents[4]; |
| |
| hProfiles[0] = hLab; hProfiles[1] = hProfile; hProfiles[2] = hProfile; hProfiles[3] = hLab; |
| Intents[0] = INTENT_RELATIVE_COLORIMETRIC; Intents[1] = nIntent; Intents[2] = INTENT_RELATIVE_COLORIMETRIC; Intents[3] = INTENT_RELATIVE_COLORIMETRIC; |
| |
| xform = cmsCreateExtendedTransform(ContextID, 4, hProfiles, BPC, Intents, |
| States, NULL, 0, TYPE_Lab_DBL, TYPE_Lab_DBL, cmsFLAGS_NOCACHE|cmsFLAGS_NOOPTIMIZE); |
| |
| cmsCloseProfile(hLab); |
| return xform; |
| } |
| |
| // Use darker colorants to obtain black point. This works in the relative colorimetric intent and |
| // assumes more ink results in darker colors. No ink limit is assumed. |
| static |
| cmsBool BlackPointAsDarkerColorant(cmsHPROFILE hInput, |
| cmsUInt32Number Intent, |
| cmsCIEXYZ* BlackPoint, |
| cmsUInt32Number dwFlags) |
| { |
| cmsUInt16Number *Black; |
| cmsHTRANSFORM xform; |
| cmsColorSpaceSignature Space; |
| cmsUInt32Number nChannels; |
| cmsUInt32Number dwFormat; |
| cmsHPROFILE hLab; |
| cmsCIELab Lab; |
| cmsCIEXYZ BlackXYZ; |
| cmsContext ContextID = cmsGetProfileContextID(hInput); |
| |
| // If the profile does not support input direction, assume Black point 0 |
| if (!cmsIsIntentSupported(hInput, Intent, LCMS_USED_AS_INPUT)) { |
| |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| // Create a formatter which has n channels and no floating point |
| dwFormat = cmsFormatterForColorspaceOfProfile(hInput, 2, FALSE); |
| |
| // Try to get black by using black colorant |
| Space = cmsGetColorSpace(hInput); |
| |
| // This function returns darker colorant in 16 bits for several spaces |
| if (!_cmsEndPointsBySpace(Space, NULL, &Black, &nChannels)) { |
| |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| if (nChannels != T_CHANNELS(dwFormat)) { |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| // Lab will be used as the output space, but lab2 will avoid recursion |
| hLab = cmsCreateLab2ProfileTHR(ContextID, NULL); |
| if (hLab == NULL) { |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| // Create the transform |
| xform = cmsCreateTransformTHR(ContextID, hInput, dwFormat, |
| hLab, TYPE_Lab_DBL, Intent, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE); |
| cmsCloseProfile(hLab); |
| |
| if (xform == NULL) { |
| |
| // Something went wrong. Get rid of open resources and return zero as black |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| // Convert black to Lab |
| cmsDoTransform(xform, Black, &Lab, 1); |
| |
| // Force it to be neutral, clip to max. L* of 50 |
| Lab.a = Lab.b = 0; |
| if (Lab.L > 50) Lab.L = 50; |
| |
| // Free the resources |
| cmsDeleteTransform(xform); |
| |
| // Convert from Lab (which is now clipped) to XYZ. |
| cmsLab2XYZ(NULL, &BlackXYZ, &Lab); |
| |
| if (BlackPoint != NULL) |
| *BlackPoint = BlackXYZ; |
| |
| return TRUE; |
| |
| cmsUNUSED_PARAMETER(dwFlags); |
| } |
| |
| // Get a black point of output CMYK profile, discounting any ink-limiting embedded |
| // in the profile. For doing that, we use perceptual intent in input direction: |
| // Lab (0, 0, 0) -> [Perceptual] Profile -> CMYK -> [Rel. colorimetric] Profile -> Lab |
| static |
| cmsBool BlackPointUsingPerceptualBlack(cmsCIEXYZ* BlackPoint, cmsHPROFILE hProfile) |
| { |
| cmsHTRANSFORM hRoundTrip; |
| cmsCIELab LabIn, LabOut; |
| cmsCIEXYZ BlackXYZ; |
| |
| // Is the intent supported by the profile? |
| if (!cmsIsIntentSupported(hProfile, INTENT_PERCEPTUAL, LCMS_USED_AS_INPUT)) { |
| |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return TRUE; |
| } |
| |
| hRoundTrip = CreateRoundtripXForm(hProfile, INTENT_PERCEPTUAL); |
| if (hRoundTrip == NULL) { |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| LabIn.L = LabIn.a = LabIn.b = 0; |
| cmsDoTransform(hRoundTrip, &LabIn, &LabOut, 1); |
| |
| // Clip Lab to reasonable limits |
| if (LabOut.L > 50) LabOut.L = 50; |
| LabOut.a = LabOut.b = 0; |
| |
| cmsDeleteTransform(hRoundTrip); |
| |
| // Convert it to XYZ |
| cmsLab2XYZ(NULL, &BlackXYZ, &LabOut); |
| |
| if (BlackPoint != NULL) |
| *BlackPoint = BlackXYZ; |
| |
| return TRUE; |
| } |
| |
| // This function shouldn't exist at all -- there is such quantity of broken |
| // profiles on black point tag, that we must somehow fix chromaticity to |
| // avoid huge tint when doing Black point compensation. This function does |
| // just that. There is a special flag for using black point tag, but turned |
| // off by default because it is bogus on most profiles. The detection algorithm |
| // involves to turn BP to neutral and to use only L component. |
| cmsBool CMSEXPORT cmsDetectBlackPoint(cmsCIEXYZ* BlackPoint, cmsHPROFILE hProfile, cmsUInt32Number Intent, cmsUInt32Number dwFlags) |
| { |
| cmsProfileClassSignature devClass; |
| |
| // Make sure the device class is adequate |
| devClass = cmsGetDeviceClass(hProfile); |
| if (devClass == cmsSigLinkClass || |
| devClass == cmsSigAbstractClass || |
| devClass == cmsSigNamedColorClass) { |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| // Make sure intent is adequate |
| if (Intent != INTENT_PERCEPTUAL && |
| Intent != INTENT_RELATIVE_COLORIMETRIC && |
| Intent != INTENT_SATURATION) { |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| // v4 + perceptual & saturation intents does have its own black point, and it is |
| // well specified enough to use it. Black point tag is deprecated in V4. |
| if ((cmsGetEncodedICCversion(hProfile) >= 0x4000000) && |
| (Intent == INTENT_PERCEPTUAL || Intent == INTENT_SATURATION)) { |
| |
| // Matrix shaper share MRC & perceptual intents |
| if (cmsIsMatrixShaper(hProfile)) |
| return BlackPointAsDarkerColorant(hProfile, INTENT_RELATIVE_COLORIMETRIC, BlackPoint, 0); |
| |
| // Get Perceptual black out of v4 profiles. That is fixed for perceptual & saturation intents |
| BlackPoint -> X = cmsPERCEPTUAL_BLACK_X; |
| BlackPoint -> Y = cmsPERCEPTUAL_BLACK_Y; |
| BlackPoint -> Z = cmsPERCEPTUAL_BLACK_Z; |
| |
| return TRUE; |
| } |
| |
| |
| #ifdef CMS_USE_PROFILE_BLACK_POINT_TAG |
| |
| // v2, v4 rel/abs colorimetric |
| if (cmsIsTag(hProfile, cmsSigMediaBlackPointTag) && |
| Intent == INTENT_RELATIVE_COLORIMETRIC) { |
| |
| cmsCIEXYZ *BlackPtr, BlackXYZ, UntrustedBlackPoint, TrustedBlackPoint, MediaWhite; |
| cmsCIELab Lab; |
| |
| // If black point is specified, then use it, |
| |
| BlackPtr = cmsReadTag(hProfile, cmsSigMediaBlackPointTag); |
| if (BlackPtr != NULL) { |
| |
| BlackXYZ = *BlackPtr; |
| _cmsReadMediaWhitePoint(&MediaWhite, hProfile); |
| |
| // Black point is absolute XYZ, so adapt to D50 to get PCS value |
| cmsAdaptToIlluminant(&UntrustedBlackPoint, &MediaWhite, cmsD50_XYZ(), &BlackXYZ); |
| |
| // Force a=b=0 to get rid of any chroma |
| cmsXYZ2Lab(NULL, &Lab, &UntrustedBlackPoint); |
| Lab.a = Lab.b = 0; |
| if (Lab.L > 50) Lab.L = 50; // Clip to L* <= 50 |
| cmsLab2XYZ(NULL, &TrustedBlackPoint, &Lab); |
| |
| if (BlackPoint != NULL) |
| *BlackPoint = TrustedBlackPoint; |
| |
| return TRUE; |
| } |
| } |
| #endif |
| |
| // That is about v2 profiles. |
| |
| // If output profile, discount ink-limiting and that's all |
| if (Intent == INTENT_RELATIVE_COLORIMETRIC && |
| (cmsGetDeviceClass(hProfile) == cmsSigOutputClass) && |
| (cmsGetColorSpace(hProfile) == cmsSigCmykData)) |
| return BlackPointUsingPerceptualBlack(BlackPoint, hProfile); |
| |
| // Nope, compute BP using current intent. |
| return BlackPointAsDarkerColorant(hProfile, Intent, BlackPoint, dwFlags); |
| } |
| |
| |
| |
| // --------------------------------------------------------------------------------------------------------- |
| |
| // Least Squares Fit of a Quadratic Curve to Data |
| // http://www.personal.psu.edu/jhm/f90/lectures/lsq2.html |
| |
| static |
| cmsFloat64Number RootOfLeastSquaresFitQuadraticCurve(int n, cmsFloat64Number x[], cmsFloat64Number y[]) |
| { |
| double sum_x = 0, sum_x2 = 0, sum_x3 = 0, sum_x4 = 0; |
| double sum_y = 0, sum_yx = 0, sum_yx2 = 0; |
| double d, a, b, c; |
| int i; |
| cmsMAT3 m; |
| cmsVEC3 v, res; |
| |
| if (n < 4) return 0; |
| |
| for (i=0; i < n; i++) { |
| |
| double xn = x[i]; |
| double yn = y[i]; |
| |
| sum_x += xn; |
| sum_x2 += xn*xn; |
| sum_x3 += xn*xn*xn; |
| sum_x4 += xn*xn*xn*xn; |
| |
| sum_y += yn; |
| sum_yx += yn*xn; |
| sum_yx2 += yn*xn*xn; |
| } |
| |
| _cmsVEC3init(&m.v[0], n, sum_x, sum_x2); |
| _cmsVEC3init(&m.v[1], sum_x, sum_x2, sum_x3); |
| _cmsVEC3init(&m.v[2], sum_x2, sum_x3, sum_x4); |
| |
| _cmsVEC3init(&v, sum_y, sum_yx, sum_yx2); |
| |
| if (!_cmsMAT3solve(&res, &m, &v)) return 0; |
| |
| |
| a = res.n[2]; |
| b = res.n[1]; |
| c = res.n[0]; |
| |
| if (fabs(a) < 1.0E-10) { |
| |
| return cmsmin(0, cmsmax(50, -c/b )); |
| } |
| else { |
| |
| d = b*b - 4.0 * a * c; |
| if (d <= 0) { |
| return 0; |
| } |
| else { |
| |
| double rt = (-b + sqrt(d)) / (2.0 * a); |
| |
| return cmsmax(0, cmsmin(50, rt)); |
| } |
| } |
| |
| } |
| |
| |
| |
| // Calculates the black point of a destination profile. |
| // This algorithm comes from the Adobe paper disclosing its black point compensation method. |
| cmsBool CMSEXPORT cmsDetectDestinationBlackPoint(cmsCIEXYZ* BlackPoint, cmsHPROFILE hProfile, cmsUInt32Number Intent, cmsUInt32Number dwFlags) |
| { |
| cmsColorSpaceSignature ColorSpace; |
| cmsHTRANSFORM hRoundTrip = NULL; |
| cmsCIELab InitialLab, destLab, Lab; |
| cmsFloat64Number inRamp[256], outRamp[256]; |
| cmsFloat64Number MinL, MaxL; |
| cmsBool NearlyStraightMidrange = TRUE; |
| cmsFloat64Number yRamp[256]; |
| cmsFloat64Number x[256], y[256]; |
| cmsFloat64Number lo, hi; |
| int n, l; |
| cmsProfileClassSignature devClass; |
| |
| // Make sure the device class is adequate |
| devClass = cmsGetDeviceClass(hProfile); |
| if (devClass == cmsSigLinkClass || |
| devClass == cmsSigAbstractClass || |
| devClass == cmsSigNamedColorClass) { |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| // Make sure intent is adequate |
| if (Intent != INTENT_PERCEPTUAL && |
| Intent != INTENT_RELATIVE_COLORIMETRIC && |
| Intent != INTENT_SATURATION) { |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| |
| // v4 + perceptual & saturation intents does have its own black point, and it is |
| // well specified enough to use it. Black point tag is deprecated in V4. |
| if ((cmsGetEncodedICCversion(hProfile) >= 0x4000000) && |
| (Intent == INTENT_PERCEPTUAL || Intent == INTENT_SATURATION)) { |
| |
| // Matrix shaper share MRC & perceptual intents |
| if (cmsIsMatrixShaper(hProfile)) |
| return BlackPointAsDarkerColorant(hProfile, INTENT_RELATIVE_COLORIMETRIC, BlackPoint, 0); |
| |
| // Get Perceptual black out of v4 profiles. That is fixed for perceptual & saturation intents |
| BlackPoint -> X = cmsPERCEPTUAL_BLACK_X; |
| BlackPoint -> Y = cmsPERCEPTUAL_BLACK_Y; |
| BlackPoint -> Z = cmsPERCEPTUAL_BLACK_Z; |
| return TRUE; |
| } |
| |
| |
| // Check if the profile is lut based and gray, rgb or cmyk (7.2 in Adobe's document) |
| ColorSpace = cmsGetColorSpace(hProfile); |
| if (!cmsIsCLUT(hProfile, Intent, LCMS_USED_AS_OUTPUT ) || |
| (ColorSpace != cmsSigGrayData && |
| ColorSpace != cmsSigRgbData && |
| ColorSpace != cmsSigCmykData)) { |
| |
| // In this case, handle as input case |
| return cmsDetectBlackPoint(BlackPoint, hProfile, Intent, dwFlags); |
| } |
| |
| // It is one of the valid cases!, use Adobe algorithm |
| |
| |
| // Set a first guess, that should work on good profiles. |
| if (Intent == INTENT_RELATIVE_COLORIMETRIC) { |
| |
| cmsCIEXYZ IniXYZ; |
| |
| // calculate initial Lab as source black point |
| if (!cmsDetectBlackPoint(&IniXYZ, hProfile, Intent, dwFlags)) { |
| return FALSE; |
| } |
| |
| // convert the XYZ to lab |
| cmsXYZ2Lab(NULL, &InitialLab, &IniXYZ); |
| |
| } else { |
| |
| // set the initial Lab to zero, that should be the black point for perceptual and saturation |
| InitialLab.L = 0; |
| InitialLab.a = 0; |
| InitialLab.b = 0; |
| } |
| |
| |
| // Step 2 |
| // ====== |
| |
| // Create a roundtrip. Define a Transform BT for all x in L*a*b* |
| hRoundTrip = CreateRoundtripXForm(hProfile, Intent); |
| if (hRoundTrip == NULL) return FALSE; |
| |
| // Compute ramps |
| |
| for (l=0; l < 256; l++) { |
| |
| Lab.L = (cmsFloat64Number) (l * 100.0) / 255.0; |
| Lab.a = cmsmin(50, cmsmax(-50, InitialLab.a)); |
| Lab.b = cmsmin(50, cmsmax(-50, InitialLab.b)); |
| |
| cmsDoTransform(hRoundTrip, &Lab, &destLab, 1); |
| |
| inRamp[l] = Lab.L; |
| outRamp[l] = destLab.L; |
| } |
| |
| // Make monotonic |
| for (l = 254; l > 0; --l) { |
| outRamp[l] = cmsmin(outRamp[l], outRamp[l+1]); |
| } |
| |
| // Check |
| if (! (outRamp[0] < outRamp[255])) { |
| |
| cmsDeleteTransform(hRoundTrip); |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| |
| // Test for mid range straight (only on relative colorimetric) |
| NearlyStraightMidrange = TRUE; |
| MinL = outRamp[0]; MaxL = outRamp[255]; |
| if (Intent == INTENT_RELATIVE_COLORIMETRIC) { |
| |
| for (l=0; l < 256; l++) { |
| |
| if (! ((inRamp[l] <= MinL + 0.2 * (MaxL - MinL) ) || |
| (fabs(inRamp[l] - outRamp[l]) < 4.0 ))) |
| NearlyStraightMidrange = FALSE; |
| } |
| |
| // If the mid range is straight (as determined above) then the |
| // DestinationBlackPoint shall be the same as initialLab. |
| // Otherwise, the DestinationBlackPoint shall be determined |
| // using curve fitting. |
| if (NearlyStraightMidrange) { |
| |
| cmsLab2XYZ(NULL, BlackPoint, &InitialLab); |
| cmsDeleteTransform(hRoundTrip); |
| return TRUE; |
| } |
| } |
| |
| |
| // curve fitting: The round-trip curve normally looks like a nearly constant section at the black point, |
| // with a corner and a nearly straight line to the white point. |
| for (l=0; l < 256; l++) { |
| |
| yRamp[l] = (outRamp[l] - MinL) / (MaxL - MinL); |
| } |
| |
| // find the black point using the least squares error quadratic curve fitting |
| if (Intent == INTENT_RELATIVE_COLORIMETRIC) { |
| lo = 0.1; |
| hi = 0.5; |
| } |
| else { |
| |
| // Perceptual and saturation |
| lo = 0.03; |
| hi = 0.25; |
| } |
| |
| // Capture shadow points for the fitting. |
| n = 0; |
| for (l=0; l < 256; l++) { |
| |
| cmsFloat64Number ff = yRamp[l]; |
| |
| if (ff >= lo && ff < hi) { |
| x[n] = inRamp[l]; |
| y[n] = yRamp[l]; |
| n++; |
| } |
| } |
| |
| |
| // No suitable points |
| if (n < 3 ) { |
| cmsDeleteTransform(hRoundTrip); |
| BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0; |
| return FALSE; |
| } |
| |
| |
| // fit and get the vertex of quadratic curve |
| Lab.L = RootOfLeastSquaresFitQuadraticCurve(n, x, y); |
| |
| if (Lab.L < 0.0) { // clip to zero L* if the vertex is negative |
| Lab.L = 0; |
| } |
| |
| Lab.a = InitialLab.a; |
| Lab.b = InitialLab.b; |
| |
| cmsLab2XYZ(NULL, BlackPoint, &Lab); |
| |
| cmsDeleteTransform(hRoundTrip); |
| return TRUE; |
| } |