 Sign in

pdfium / pdfium / 72b82a8e863da1b369e9f37a9db48103024faf1b
	commit	72b82a8e863da1b369e9f37a9db48103024faf1b	[log] [tgz]
	author	Mike Reed <reed@google.com>	Mon Oct 16 13:56:53 2017 -0400
	committer	Chromium commit bot <commit-bot@chromium.org>	Mon Oct 16 18:08:34 2017 +0000
	tree	36cdb12b351d4cbae41d1581c09cc085dad4cc1c
	parent	077f6439954cdbb5061a78b59be95ebf2277ac26 [diff]

add codec to header search path

unblocks skia roller, as now some core .cpp files need access to SkCodec.h

Bug:
Change-Id: I0e1375bd167fffbf48b2b27632b213c2e009a868
Reviewed-on: https://pdfium-review.googlesource.com/16090
Commit-Queue: Mike Reed <reed@google.com>
Commit-Queue: dsinclair <dsinclair@chromium.org>
Reviewed-by: dsinclair <dsinclair@chromium.org>

	skia/BUILD.gn[diff]

1 file changed
tree: 36cdb12b351d4cbae41d1581c09cc085dad4cc1c
	build_overrides/
	core/
	docs/
	fpdfsdk/
	fxbarcode/
	fxjs/
	infra/
	public/
	samples/
	skia/
	testing/
	third_party/
	tools/
	xfa/
	.clang-format
	.gitignore
	.gn
	AUTHORS
	BUILD.gn
	codereview.settings
	DEPS
	LICENSE
	navbar.md
	OWNERS
	pdfium.gni
	PRESUBMIT.py
	README.md

README.md
PDFium
Prerequisites
Get the chromium depot tools via the instructions at http://www.chromium.org/developers/how-tos/install-depot-tools (this provides the gclient utility needed below).
Also install Python, Subversion, and Git and make sure they're in your path.
Windows development
PDFium uses a similar Windows toolchain as Chromium:
Open source contributors
Visual Studio 2015 Update 2 or later is highly recommended. Visual Studio 2015 is current default version, run set GYP_MSVS_VERSION=2017 when you use Visual Studio 2017.
Run set DEPOT_TOOLS_WIN_TOOLCHAIN=0, or set that variable in your global environment.
Compilation is done through ninja, not Visual Studio.
CPU Architectures supported
The default architecture for Windows, Linux, and Mac is “x64”. On Windows, “x86” is also supported. GN parameter “target_cpu = "x86"” can be used to override the default value. If you specify Android build, the default CPU architecture will be “arm”.
It is expected that there are still some places lurking in the code which will not function properly on big-endian architectures. Bugs and/or patches are welcome, however providing this support is not a priority at this time.
Google employees
Run: download_from_google_storage --config and follow the authentication instructions. Note that you must authenticate with your @google.com credentials. Enter “0” if asked for a project-id.
Once you've done this, the toolchain will be installed automatically for you in the Generate the build files step below.
The toolchain will be in depot_tools\win_toolchain\vs_files\<hash>, and windbg can be found in depot_tools\win_toolchain\vs_files\<hash>\win_sdk\Debuggers.
If you want the IDE for debugging and editing, you will need to install it separately, but this is optional and not needed for building PDFium.
Get the code
The name of the top-level directory does not matter. In our examples, we use “repo”. This directory must not have been used before by gclient config as each directory can only house a single gclient configuration.
mkdir repo
cd repo
gclient config --unmanaged https://pdfium.googlesource.com/pdfium.git
gclient sync
cd pdfium

Additional build dependencies need to be installed by running:
./build/install-build-deps.sh

Generate the build files
We use GN to generate the build files and Ninja to execute the build files. Both of these are included with the depot_tools checkout.
Selecting build configuration
PDFium may be built either with or without JavaScript support, and with or without XFA forms support. Both of these features are enabled by default. Also note that the XFA feature requires JavaScript.
Configuration is done by executing gn args <directory> to configure the build. This will launch an editor in which you can set the following arguments. A typical <directory> name is out/Debug.
use_goma = true # Googlers only. Make sure goma is installed and running first.
is_debug = true # Enable debugging features.

pdf_use_skia = false # Set true to enable experimental skia backend.
pdf_use_skia_paths = false # Set true to enable experimental skia backend (paths only).

pdf_enable_xfa = true # Set false to remove XFA support (implies JS support).
pdf_enable_v8 = true # Set false to remove Javascript support.
pdf_is_standalone = true # Set for a non-embedded build.
is_component_build = false # Disable component build (must be false)

clang_use_chrome_plugins = false # Currently must be false.

Note, you must set pdf_is_standalone = true if you want the sample applications like pdfium_test to build.
When complete the arguments will be stored in <directory>/args.gn, and GN will automatically use the new arguments to generate build files. Should your files fail to generate, please double-check that you have set use_sysroot as indicated above.
Building the code
You can build the sample program by running: ninja -C <directory> pdfium_test You can build the entire product (which includes a few unit tests) by running: ninja -C <directory> pdfium_all.
Running the sample program
The pdfium_test program supports reading, parsing, and rasterizing the pages of a .pdf file to .ppm or .png output image files (windows supports two other formats). For example: <directory>/pdfium_test --ppm path/to/myfile.pdf. Note that this will write output images to path/to/myfile.pdf.<n>.ppm.
Testing
There are currently several test suites that can be run:
	pdfium_unittests
	pdfium_embeddertests
	testing/tools/run_corpus_tests.py
	testing/tools/run_javascript_tests.py
	testing/tools/run_pixel_tests.py

It is possible the tests in the testing directory can fail due to font differences on the various platforms. These tests are reliable on the bots. If you see failures, it can be a good idea to run the tests on the tip-of-tree checkout to see if the same failures appear.
Code Coverage
Code coverage reports for PDFium can be generated in Linux development environments. Details can be found here.
Waterfall
The current health of the source tree can be found at http://build.chromium.org/p/client.pdfium/console
Community
There are several mailing lists that are setup:
	PDFium
	PDFium Reviews
	PDFium Bugs

Note, the Reviews and Bugs lists are typically read-only.
Bugs
We use this bug tracker, but for security bugs, please use [Chromium's security bug template] (https://code.google.com/p/chromium/issues/entry?template=Security%20Bug) and add the “Cr-Internals-Plugins-PDF” label.
Contributing code
For contributing code, we will follow Chromium's process as much as possible. The main exceptions are:
	Code has to conform to the existing style and not Chromium/Google style.
	PDFium uses a different tool for code reviews, and credentials for the tool need to be generated before uploading a CL.
	PDFium is currently holding at C++11 compatibility, rejecting features that are only present in C++14 (onto which Chromium is now slowly moving).

 Powered by Gitiles| Privacy| Termstxt json
