blob: 8b56aa4d5ccfefe29b89ec3ad73878ec1bd49001 [file] [log] [blame]
/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2016, Even Rouault
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opj_includes.h"
#include "thread.h"
#include <assert.h>
#ifdef MUTEX_win32
/* Some versions of x86_64-w64-mingw32-gc -m32 resolve InterlockedCompareExchange() */
/* as __sync_val_compare_and_swap_4 but fails to link it. As this protects against */
/* a rather unlikely race, skip it */
#if !(defined(__MINGW32__) && defined(__i386__))
#define HAVE_INTERLOCKED_COMPARE_EXCHANGE 1
#endif
#include <windows.h>
#include <process.h>
OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void)
{
return OPJ_TRUE;
}
int OPJ_CALLCONV opj_get_num_cpus(void)
{
SYSTEM_INFO info;
DWORD dwNum;
GetSystemInfo(&info);
dwNum = info.dwNumberOfProcessors;
if (dwNum < 1) {
return 1;
}
return (int)dwNum;
}
struct opj_mutex_t {
CRITICAL_SECTION cs;
};
opj_mutex_t* opj_mutex_create(void)
{
opj_mutex_t* mutex = (opj_mutex_t*) opj_malloc(sizeof(opj_mutex_t));
if (!mutex) {
return NULL;
}
InitializeCriticalSectionAndSpinCount(&(mutex->cs), 4000);
return mutex;
}
void opj_mutex_lock(opj_mutex_t* mutex)
{
EnterCriticalSection(&(mutex->cs));
}
void opj_mutex_unlock(opj_mutex_t* mutex)
{
LeaveCriticalSection(&(mutex->cs));
}
void opj_mutex_destroy(opj_mutex_t* mutex)
{
if (!mutex) {
return;
}
DeleteCriticalSection(&(mutex->cs));
opj_free(mutex);
}
struct opj_cond_waiter_list_t {
HANDLE hEvent;
struct opj_cond_waiter_list_t* next;
};
typedef struct opj_cond_waiter_list_t opj_cond_waiter_list_t;
struct opj_cond_t {
opj_mutex_t *internal_mutex;
opj_cond_waiter_list_t *waiter_list;
};
static DWORD TLSKey = 0;
static volatile LONG inTLSLockedSection = 0;
static volatile int TLSKeyInit = OPJ_FALSE;
opj_cond_t* opj_cond_create(void)
{
opj_cond_t* cond = (opj_cond_t*) opj_malloc(sizeof(opj_cond_t));
if (!cond) {
return NULL;
}
/* Make sure that the TLS key is allocated in a thread-safe way */
/* We cannot use a global mutex/critical section since its creation itself would not be */
/* thread-safe, so use InterlockedCompareExchange trick */
while (OPJ_TRUE) {
#if HAVE_INTERLOCKED_COMPARE_EXCHANGE
if (InterlockedCompareExchange(&inTLSLockedSection, 1, 0) == 0)
#endif
{
if (!TLSKeyInit) {
TLSKey = TlsAlloc();
TLSKeyInit = OPJ_TRUE;
}
#if HAVE_INTERLOCKED_COMPARE_EXCHANGE
InterlockedCompareExchange(&inTLSLockedSection, 0, 1);
#endif
break;
}
}
if (TLSKey == TLS_OUT_OF_INDEXES) {
opj_free(cond);
return NULL;
}
cond->internal_mutex = opj_mutex_create();
if (cond->internal_mutex == NULL) {
opj_free(cond);
return NULL;
}
cond->waiter_list = NULL;
return cond;
}
void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex)
{
opj_cond_waiter_list_t* item;
HANDLE hEvent = (HANDLE) TlsGetValue(TLSKey);
if (hEvent == NULL) {
hEvent = CreateEvent(NULL, /* security attributes */
0, /* manual reset = no */
0, /* initial state = unsignaled */
NULL /* no name */);
assert(hEvent);
TlsSetValue(TLSKey, hEvent);
}
/* Insert the waiter into the waiter list of the condition */
opj_mutex_lock(cond->internal_mutex);
item = (opj_cond_waiter_list_t*)opj_malloc(sizeof(opj_cond_waiter_list_t));
assert(item != NULL);
item->hEvent = hEvent;
item->next = cond->waiter_list;
cond->waiter_list = item;
opj_mutex_unlock(cond->internal_mutex);
/* Release the client mutex before waiting for the event being signaled */
opj_mutex_unlock(mutex);
/* Ideally we would check that we do not get WAIT_FAILED but it is hard */
/* to report a failure. */
WaitForSingleObject(hEvent, INFINITE);
/* Reacquire the client mutex */
opj_mutex_lock(mutex);
}
void opj_cond_signal(opj_cond_t* cond)
{
opj_cond_waiter_list_t* psIter;
/* Signal the first registered event, and remove it from the list */
opj_mutex_lock(cond->internal_mutex);
psIter = cond->waiter_list;
if (psIter != NULL) {
SetEvent(psIter->hEvent);
cond->waiter_list = psIter->next;
opj_free(psIter);
}
opj_mutex_unlock(cond->internal_mutex);
}
void opj_cond_destroy(opj_cond_t* cond)
{
if (!cond) {
return;
}
opj_mutex_destroy(cond->internal_mutex);
assert(cond->waiter_list == NULL);
opj_free(cond);
}
struct opj_thread_t {
opj_thread_fn thread_fn;
void* user_data;
HANDLE hThread;
};
unsigned int __stdcall opj_thread_callback_adapter(void *info)
{
opj_thread_t* thread = (opj_thread_t*) info;
HANDLE hEvent = NULL;
thread->thread_fn(thread->user_data);
/* Free the handle possible allocated by a cond */
while (OPJ_TRUE) {
/* Make sure TLSKey is not being created just at that moment... */
#if HAVE_INTERLOCKED_COMPARE_EXCHANGE
if (InterlockedCompareExchange(&inTLSLockedSection, 1, 0) == 0)
#endif
{
if (TLSKeyInit) {
hEvent = (HANDLE) TlsGetValue(TLSKey);
}
#if HAVE_INTERLOCKED_COMPARE_EXCHANGE
InterlockedCompareExchange(&inTLSLockedSection, 0, 1);
#endif
break;
}
}
if (hEvent) {
CloseHandle(hEvent);
}
return 0;
}
opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data)
{
opj_thread_t* thread;
assert(thread_fn);
thread = (opj_thread_t*) opj_malloc(sizeof(opj_thread_t));
if (!thread) {
return NULL;
}
thread->thread_fn = thread_fn;
thread->user_data = user_data;
thread->hThread = (HANDLE)_beginthreadex(NULL, 0,
opj_thread_callback_adapter, thread, 0, NULL);
if (thread->hThread == NULL) {
opj_free(thread);
return NULL;
}
return thread;
}
void opj_thread_join(opj_thread_t* thread)
{
WaitForSingleObject(thread->hThread, INFINITE);
CloseHandle(thread->hThread);
opj_free(thread);
}
#elif MUTEX_pthread
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void)
{
return OPJ_TRUE;
}
int OPJ_CALLCONV opj_get_num_cpus(void)
{
#ifdef _SC_NPROCESSORS_ONLN
return (int)sysconf(_SC_NPROCESSORS_ONLN);
#else
return 1;
#endif
}
struct opj_mutex_t {
pthread_mutex_t mutex;
};
opj_mutex_t* opj_mutex_create(void)
{
opj_mutex_t* mutex = (opj_mutex_t*) opj_calloc(1U, sizeof(opj_mutex_t));
if (mutex != NULL) {
if (pthread_mutex_init(&mutex->mutex, NULL) != 0) {
opj_free(mutex);
mutex = NULL;
}
}
return mutex;
}
void opj_mutex_lock(opj_mutex_t* mutex)
{
pthread_mutex_lock(&(mutex->mutex));
}
void opj_mutex_unlock(opj_mutex_t* mutex)
{
pthread_mutex_unlock(&(mutex->mutex));
}
void opj_mutex_destroy(opj_mutex_t* mutex)
{
if (!mutex) {
return;
}
pthread_mutex_destroy(&(mutex->mutex));
opj_free(mutex);
}
struct opj_cond_t {
pthread_cond_t cond;
};
opj_cond_t* opj_cond_create(void)
{
opj_cond_t* cond = (opj_cond_t*) opj_malloc(sizeof(opj_cond_t));
if (!cond) {
return NULL;
}
if (pthread_cond_init(&(cond->cond), NULL) != 0) {
opj_free(cond);
return NULL;
}
return cond;
}
void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex)
{
pthread_cond_wait(&(cond->cond), &(mutex->mutex));
}
void opj_cond_signal(opj_cond_t* cond)
{
int ret = pthread_cond_signal(&(cond->cond));
(void)ret;
assert(ret == 0);
}
void opj_cond_destroy(opj_cond_t* cond)
{
if (!cond) {
return;
}
pthread_cond_destroy(&(cond->cond));
opj_free(cond);
}
struct opj_thread_t {
opj_thread_fn thread_fn;
void* user_data;
pthread_t thread;
};
static void* opj_thread_callback_adapter(void* info)
{
opj_thread_t* thread = (opj_thread_t*) info;
thread->thread_fn(thread->user_data);
return NULL;
}
opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data)
{
pthread_attr_t attr;
opj_thread_t* thread;
assert(thread_fn);
thread = (opj_thread_t*) opj_malloc(sizeof(opj_thread_t));
if (!thread) {
return NULL;
}
thread->thread_fn = thread_fn;
thread->user_data = user_data;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
if (pthread_create(&(thread->thread), &attr,
opj_thread_callback_adapter, (void *) thread) != 0) {
opj_free(thread);
return NULL;
}
return thread;
}
void opj_thread_join(opj_thread_t* thread)
{
void* status;
pthread_join(thread->thread, &status);
opj_free(thread);
}
#else
/* Stub implementation */
OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void)
{
return OPJ_FALSE;
}
int OPJ_CALLCONV opj_get_num_cpus(void)
{
return 1;
}
opj_mutex_t* opj_mutex_create(void)
{
return NULL;
}
void opj_mutex_lock(opj_mutex_t* mutex)
{
(void) mutex;
}
void opj_mutex_unlock(opj_mutex_t* mutex)
{
(void) mutex;
}
void opj_mutex_destroy(opj_mutex_t* mutex)
{
(void) mutex;
}
opj_cond_t* opj_cond_create(void)
{
return NULL;
}
void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex)
{
(void) cond;
(void) mutex;
}
void opj_cond_signal(opj_cond_t* cond)
{
(void) cond;
}
void opj_cond_destroy(opj_cond_t* cond)
{
(void) cond;
}
opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data)
{
(void) thread_fn;
(void) user_data;
return NULL;
}
void opj_thread_join(opj_thread_t* thread)
{
(void) thread;
}
#endif
typedef struct {
int key;
void* value;
opj_tls_free_func opj_free_func;
} opj_tls_key_val_t;
struct opj_tls_t {
opj_tls_key_val_t* key_val;
int key_val_count;
};
static opj_tls_t* opj_tls_new(void)
{
return (opj_tls_t*) opj_calloc(1, sizeof(opj_tls_t));
}
static void opj_tls_destroy(opj_tls_t* tls)
{
int i;
if (!tls) {
return;
}
for (i = 0; i < tls->key_val_count; i++) {
if (tls->key_val[i].opj_free_func) {
tls->key_val[i].opj_free_func(tls->key_val[i].value);
}
}
opj_free(tls->key_val);
opj_free(tls);
}
void* opj_tls_get(opj_tls_t* tls, int key)
{
int i;
for (i = 0; i < tls->key_val_count; i++) {
if (tls->key_val[i].key == key) {
return tls->key_val[i].value;
}
}
return NULL;
}
OPJ_BOOL opj_tls_set(opj_tls_t* tls, int key, void* value,
opj_tls_free_func opj_free_func)
{
opj_tls_key_val_t* new_key_val;
int i;
if (tls->key_val_count == INT_MAX) {
return OPJ_FALSE;
}
for (i = 0; i < tls->key_val_count; i++) {
if (tls->key_val[i].key == key) {
if (tls->key_val[i].opj_free_func) {
tls->key_val[i].opj_free_func(tls->key_val[i].value);
}
tls->key_val[i].value = value;
tls->key_val[i].opj_free_func = opj_free_func;
return OPJ_TRUE;
}
}
new_key_val = (opj_tls_key_val_t*) opj_realloc(tls->key_val,
((size_t)tls->key_val_count + 1U) * sizeof(opj_tls_key_val_t));
if (!new_key_val) {
return OPJ_FALSE;
}
tls->key_val = new_key_val;
new_key_val[tls->key_val_count].key = key;
new_key_val[tls->key_val_count].value = value;
new_key_val[tls->key_val_count].opj_free_func = opj_free_func;
tls->key_val_count ++;
return OPJ_TRUE;
}
typedef struct {
opj_job_fn job_fn;
void *user_data;
} opj_worker_thread_job_t;
typedef struct {
opj_thread_pool_t *tp;
opj_thread_t *thread;
int marked_as_waiting;
opj_mutex_t *mutex;
opj_cond_t *cond;
} opj_worker_thread_t;
typedef enum {
OPJWTS_OK,
OPJWTS_STOP,
OPJWTS_ERROR
} opj_worker_thread_state;
struct opj_job_list_t {
opj_worker_thread_job_t* job;
struct opj_job_list_t* next;
};
typedef struct opj_job_list_t opj_job_list_t;
struct opj_worker_thread_list_t {
opj_worker_thread_t* worker_thread;
struct opj_worker_thread_list_t* next;
};
typedef struct opj_worker_thread_list_t opj_worker_thread_list_t;
struct opj_thread_pool_t {
opj_worker_thread_t* worker_threads;
int worker_threads_count;
opj_cond_t* cond;
opj_mutex_t* mutex;
volatile opj_worker_thread_state state;
opj_job_list_t* job_queue;
volatile int pending_jobs_count;
opj_worker_thread_list_t* waiting_worker_thread_list;
int waiting_worker_thread_count;
opj_tls_t* tls;
int signaling_threshold;
};
static OPJ_BOOL opj_thread_pool_setup(opj_thread_pool_t* tp, int num_threads);
static opj_worker_thread_job_t* opj_thread_pool_get_next_job(
opj_thread_pool_t* tp,
opj_worker_thread_t* worker_thread,
OPJ_BOOL signal_job_finished);
opj_thread_pool_t* opj_thread_pool_create(int num_threads)
{
opj_thread_pool_t* tp;
tp = (opj_thread_pool_t*) opj_calloc(1, sizeof(opj_thread_pool_t));
if (!tp) {
return NULL;
}
tp->state = OPJWTS_OK;
if (num_threads <= 0) {
tp->tls = opj_tls_new();
if (!tp->tls) {
opj_free(tp);
tp = NULL;
}
return tp;
}
tp->mutex = opj_mutex_create();
if (!tp->mutex) {
opj_free(tp);
return NULL;
}
if (!opj_thread_pool_setup(tp, num_threads)) {
opj_thread_pool_destroy(tp);
return NULL;
}
return tp;
}
static void opj_worker_thread_function(void* user_data)
{
opj_worker_thread_t* worker_thread;
opj_thread_pool_t* tp;
opj_tls_t* tls;
OPJ_BOOL job_finished = OPJ_FALSE;
worker_thread = (opj_worker_thread_t*) user_data;
tp = worker_thread->tp;
tls = opj_tls_new();
while (OPJ_TRUE) {
opj_worker_thread_job_t* job = opj_thread_pool_get_next_job(tp, worker_thread,
job_finished);
if (job == NULL) {
break;
}
if (job->job_fn) {
job->job_fn(job->user_data, tls);
}
opj_free(job);
job_finished = OPJ_TRUE;
}
opj_tls_destroy(tls);
}
static OPJ_BOOL opj_thread_pool_setup(opj_thread_pool_t* tp, int num_threads)
{
int i;
OPJ_BOOL bRet = OPJ_TRUE;
assert(num_threads > 0);
tp->cond = opj_cond_create();
if (tp->cond == NULL) {
return OPJ_FALSE;
}
tp->worker_threads = (opj_worker_thread_t*) opj_calloc((size_t)num_threads,
sizeof(opj_worker_thread_t));
if (tp->worker_threads == NULL) {
return OPJ_FALSE;
}
tp->worker_threads_count = num_threads;
for (i = 0; i < num_threads; i++) {
tp->worker_threads[i].tp = tp;
tp->worker_threads[i].mutex = opj_mutex_create();
if (tp->worker_threads[i].mutex == NULL) {
tp->worker_threads_count = i;
bRet = OPJ_FALSE;
break;
}
tp->worker_threads[i].cond = opj_cond_create();
if (tp->worker_threads[i].cond == NULL) {
opj_mutex_destroy(tp->worker_threads[i].mutex);
tp->worker_threads_count = i;
bRet = OPJ_FALSE;
break;
}
tp->worker_threads[i].marked_as_waiting = OPJ_FALSE;
tp->worker_threads[i].thread = opj_thread_create(opj_worker_thread_function,
&(tp->worker_threads[i]));
if (tp->worker_threads[i].thread == NULL) {
tp->worker_threads_count = i;
bRet = OPJ_FALSE;
break;
}
}
/* Wait all threads to be started */
/* printf("waiting for all threads to be started\n"); */
opj_mutex_lock(tp->mutex);
while (tp->waiting_worker_thread_count < num_threads) {
opj_cond_wait(tp->cond, tp->mutex);
}
opj_mutex_unlock(tp->mutex);
/* printf("all threads started\n"); */
if (tp->state == OPJWTS_ERROR) {
bRet = OPJ_FALSE;
}
return bRet;
}
/*
void opj_waiting()
{
printf("waiting!\n");
}
*/
static opj_worker_thread_job_t* opj_thread_pool_get_next_job(
opj_thread_pool_t* tp,
opj_worker_thread_t* worker_thread,
OPJ_BOOL signal_job_finished)
{
while (OPJ_TRUE) {
opj_job_list_t* top_job_iter;
opj_mutex_lock(tp->mutex);
if (signal_job_finished) {
signal_job_finished = OPJ_FALSE;
tp->pending_jobs_count --;
/*printf("tp=%p, remaining jobs: %d\n", tp, tp->pending_jobs_count);*/
if (tp->pending_jobs_count <= tp->signaling_threshold) {
opj_cond_signal(tp->cond);
}
}
if (tp->state == OPJWTS_STOP) {
opj_mutex_unlock(tp->mutex);
return NULL;
}
top_job_iter = tp->job_queue;
if (top_job_iter) {
opj_worker_thread_job_t* job;
tp->job_queue = top_job_iter->next;
job = top_job_iter->job;
opj_mutex_unlock(tp->mutex);
opj_free(top_job_iter);
return job;
}
/* opj_waiting(); */
if (!worker_thread->marked_as_waiting) {
opj_worker_thread_list_t* item;
worker_thread->marked_as_waiting = OPJ_TRUE;
tp->waiting_worker_thread_count ++;
assert(tp->waiting_worker_thread_count <= tp->worker_threads_count);
item = (opj_worker_thread_list_t*) opj_malloc(sizeof(opj_worker_thread_list_t));
if (item == NULL) {
tp->state = OPJWTS_ERROR;
opj_cond_signal(tp->cond);
opj_mutex_unlock(tp->mutex);
return NULL;
}
item->worker_thread = worker_thread;
item->next = tp->waiting_worker_thread_list;
tp->waiting_worker_thread_list = item;
}
/* printf("signaling that worker thread is ready\n"); */
opj_cond_signal(tp->cond);
opj_mutex_lock(worker_thread->mutex);
opj_mutex_unlock(tp->mutex);
/* printf("waiting for job\n"); */
opj_cond_wait(worker_thread->cond, worker_thread->mutex);
opj_mutex_unlock(worker_thread->mutex);
/* printf("got job\n"); */
}
}
OPJ_BOOL opj_thread_pool_submit_job(opj_thread_pool_t* tp,
opj_job_fn job_fn,
void* user_data)
{
opj_worker_thread_job_t* job;
opj_job_list_t* item;
if (tp->mutex == NULL) {
job_fn(user_data, tp->tls);
return OPJ_TRUE;
}
job = (opj_worker_thread_job_t*)opj_malloc(sizeof(opj_worker_thread_job_t));
if (job == NULL) {
return OPJ_FALSE;
}
job->job_fn = job_fn;
job->user_data = user_data;
item = (opj_job_list_t*) opj_malloc(sizeof(opj_job_list_t));
if (item == NULL) {
opj_free(job);
return OPJ_FALSE;
}
item->job = job;
opj_mutex_lock(tp->mutex);
tp->signaling_threshold = 100 * tp->worker_threads_count;
while (tp->pending_jobs_count > tp->signaling_threshold) {
/* printf("%d jobs enqueued. Waiting\n", tp->pending_jobs_count); */
opj_cond_wait(tp->cond, tp->mutex);
/* printf("...%d jobs enqueued.\n", tp->pending_jobs_count); */
}
item->next = tp->job_queue;
tp->job_queue = item;
tp->pending_jobs_count ++;
if (tp->waiting_worker_thread_list) {
opj_worker_thread_t* worker_thread;
opj_worker_thread_list_t* next;
opj_worker_thread_list_t* to_opj_free;
worker_thread = tp->waiting_worker_thread_list->worker_thread;
assert(worker_thread->marked_as_waiting);
worker_thread->marked_as_waiting = OPJ_FALSE;
next = tp->waiting_worker_thread_list->next;
to_opj_free = tp->waiting_worker_thread_list;
tp->waiting_worker_thread_list = next;
tp->waiting_worker_thread_count --;
opj_mutex_lock(worker_thread->mutex);
opj_mutex_unlock(tp->mutex);
opj_cond_signal(worker_thread->cond);
opj_mutex_unlock(worker_thread->mutex);
opj_free(to_opj_free);
} else {
opj_mutex_unlock(tp->mutex);
}
return OPJ_TRUE;
}
void opj_thread_pool_wait_completion(opj_thread_pool_t* tp,
int max_remaining_jobs)
{
if (tp->mutex == NULL) {
return;
}
if (max_remaining_jobs < 0) {
max_remaining_jobs = 0;
}
opj_mutex_lock(tp->mutex);
tp->signaling_threshold = max_remaining_jobs;
while (tp->pending_jobs_count > max_remaining_jobs) {
/*printf("tp=%p, jobs before wait = %d, max_remaining_jobs = %d\n", tp, tp->pending_jobs_count, max_remaining_jobs);*/
opj_cond_wait(tp->cond, tp->mutex);
/*printf("tp=%p, jobs after wait = %d\n", tp, tp->pending_jobs_count);*/
}
opj_mutex_unlock(tp->mutex);
}
int opj_thread_pool_get_thread_count(opj_thread_pool_t* tp)
{
return tp->worker_threads_count;
}
void opj_thread_pool_destroy(opj_thread_pool_t* tp)
{
if (!tp) {
return;
}
if (tp->cond) {
int i;
opj_thread_pool_wait_completion(tp, 0);
opj_mutex_lock(tp->mutex);
tp->state = OPJWTS_STOP;
opj_mutex_unlock(tp->mutex);
for (i = 0; i < tp->worker_threads_count; i++) {
opj_mutex_lock(tp->worker_threads[i].mutex);
opj_cond_signal(tp->worker_threads[i].cond);
opj_mutex_unlock(tp->worker_threads[i].mutex);
opj_thread_join(tp->worker_threads[i].thread);
opj_cond_destroy(tp->worker_threads[i].cond);
opj_mutex_destroy(tp->worker_threads[i].mutex);
}
opj_free(tp->worker_threads);
while (tp->waiting_worker_thread_list != NULL) {
opj_worker_thread_list_t* next = tp->waiting_worker_thread_list->next;
opj_free(tp->waiting_worker_thread_list);
tp->waiting_worker_thread_list = next;
}
opj_cond_destroy(tp->cond);
}
opj_mutex_destroy(tp->mutex);
opj_tls_destroy(tp->tls);
opj_free(tp);
}