blob: e8aad9420cef2bb9ccec449dd6f765a1e7f115b7 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/base/allocator/partition_allocator/partition_alloc.h"
#include <string.h>
#include "third_party/base/allocator/partition_allocator/oom.h"
#include "third_party/base/allocator/partition_allocator/spin_lock.h"
#include "third_party/base/compiler_specific.h"
// Two partition pages are used as guard / metadata page so make sure the super
// page size is bigger.
static_assert(pdfium::base::kPartitionPageSize * 4 <=
pdfium::base::kSuperPageSize,
"ok super page size");
static_assert(!(pdfium::base::kSuperPageSize %
pdfium::base::kPartitionPageSize),
"ok super page multiple");
// Four system pages gives us room to hack out a still-guard-paged piece
// of metadata in the middle of a guard partition page.
static_assert(pdfium::base::kSystemPageSize * 4 <=
pdfium::base::kPartitionPageSize,
"ok partition page size");
static_assert(!(pdfium::base::kPartitionPageSize %
pdfium::base::kSystemPageSize),
"ok partition page multiple");
static_assert(sizeof(pdfium::base::PartitionPage) <=
pdfium::base::kPageMetadataSize,
"PartitionPage should not be too big");
static_assert(sizeof(pdfium::base::PartitionBucket) <=
pdfium::base::kPageMetadataSize,
"PartitionBucket should not be too big");
static_assert(sizeof(pdfium::base::PartitionSuperPageExtentEntry) <=
pdfium::base::kPageMetadataSize,
"PartitionSuperPageExtentEntry should not be too big");
static_assert(pdfium::base::kPageMetadataSize *
pdfium::base::kNumPartitionPagesPerSuperPage <=
pdfium::base::kSystemPageSize,
"page metadata fits in hole");
// Check that some of our zanier calculations worked out as expected.
static_assert(pdfium::base::kGenericSmallestBucket == 8,
"generic smallest bucket");
static_assert(pdfium::base::kGenericMaxBucketed == 983040,
"generic max bucketed");
static_assert(pdfium::base::kMaxSystemPagesPerSlotSpan < (1 << 8),
"System pages per slot span must be less than 128.");
namespace pdfium {
namespace base {
subtle::SpinLock PartitionRootBase::gInitializedLock;
bool PartitionRootBase::gInitialized = false;
PartitionPage PartitionRootBase::gSeedPage;
PartitionBucket PartitionRootBase::gPagedBucket;
void (*PartitionRootBase::gOomHandlingFunction)() = nullptr;
PartitionAllocHooks::AllocationHook* PartitionAllocHooks::allocation_hook_ =
nullptr;
PartitionAllocHooks::FreeHook* PartitionAllocHooks::free_hook_ = nullptr;
static uint8_t PartitionBucketNumSystemPages(size_t size) {
// This works out reasonably for the current bucket sizes of the generic
// allocator, and the current values of partition page size and constants.
// Specifically, we have enough room to always pack the slots perfectly into
// some number of system pages. The only waste is the waste associated with
// unfaulted pages (i.e. wasted address space).
// TODO: we end up using a lot of system pages for very small sizes. For
// example, we'll use 12 system pages for slot size 24. The slot size is
// so small that the waste would be tiny with just 4, or 1, system pages.
// Later, we can investigate whether there are anti-fragmentation benefits
// to using fewer system pages.
double best_waste_ratio = 1.0f;
uint16_t best_pages = 0;
if (size > kMaxSystemPagesPerSlotSpan * kSystemPageSize) {
DCHECK(!(size % kSystemPageSize));
best_pages = static_cast<uint16_t>(size / kSystemPageSize);
CHECK(best_pages < (1 << 8));
return static_cast<uint8_t>(best_pages);
}
DCHECK(size <= kMaxSystemPagesPerSlotSpan * kSystemPageSize);
for (uint16_t i = kNumSystemPagesPerPartitionPage - 1;
i <= kMaxSystemPagesPerSlotSpan; ++i) {
size_t page_size = kSystemPageSize * i;
size_t num_slots = page_size / size;
size_t waste = page_size - (num_slots * size);
// Leaving a page unfaulted is not free; the page will occupy an empty page
// table entry. Make a simple attempt to account for that.
size_t num_remainder_pages = i & (kNumSystemPagesPerPartitionPage - 1);
size_t num_unfaulted_pages =
num_remainder_pages
? (kNumSystemPagesPerPartitionPage - num_remainder_pages)
: 0;
waste += sizeof(void*) * num_unfaulted_pages;
double waste_ratio = (double)waste / (double)page_size;
if (waste_ratio < best_waste_ratio) {
best_waste_ratio = waste_ratio;
best_pages = i;
}
}
DCHECK(best_pages > 0);
CHECK(best_pages <= kMaxSystemPagesPerSlotSpan);
return static_cast<uint8_t>(best_pages);
}
static void PartitionAllocBaseInit(PartitionRootBase* root) {
DCHECK(!root->initialized);
{
subtle::SpinLock::Guard guard(PartitionRootBase::gInitializedLock);
if (!PartitionRootBase::gInitialized) {
PartitionRootBase::gInitialized = true;
// We mark the seed page as free to make sure it is skipped by our
// logic to find a new active page.
PartitionRootBase::gPagedBucket.active_pages_head =
&PartitionRootGeneric::gSeedPage;
}
}
root->initialized = true;
root->total_size_of_committed_pages = 0;
root->total_size_of_super_pages = 0;
root->total_size_of_direct_mapped_pages = 0;
root->next_super_page = 0;
root->next_partition_page = 0;
root->next_partition_page_end = 0;
root->first_extent = 0;
root->current_extent = 0;
root->direct_map_list = 0;
memset(&root->global_empty_page_ring, '\0',
sizeof(root->global_empty_page_ring));
root->global_empty_page_ring_index = 0;
// This is a "magic" value so we can test if a root pointer is valid.
root->inverted_self = ~reinterpret_cast<uintptr_t>(root);
}
static void PartitionBucketInitBase(PartitionBucket* bucket,
PartitionRootBase* root) {
bucket->active_pages_head = &PartitionRootGeneric::gSeedPage;
bucket->empty_pages_head = 0;
bucket->decommitted_pages_head = 0;
bucket->num_full_pages = 0;
bucket->num_system_pages_per_slot_span =
PartitionBucketNumSystemPages(bucket->slot_size);
}
void PartitionAllocGlobalInit(void (*oom_handling_function)()) {
DCHECK(oom_handling_function);
PartitionRootBase::gOomHandlingFunction = oom_handling_function;
}
void PartitionAllocInit(PartitionRoot* root,
size_t num_buckets,
size_t max_allocation) {
PartitionAllocBaseInit(root);
root->num_buckets = num_buckets;
root->max_allocation = max_allocation;
size_t i;
for (i = 0; i < root->num_buckets; ++i) {
PartitionBucket* bucket = &root->buckets()[i];
if (!i)
bucket->slot_size = kAllocationGranularity;
else
bucket->slot_size = i << kBucketShift;
PartitionBucketInitBase(bucket, root);
}
}
void PartitionAllocGenericInit(PartitionRootGeneric* root) {
subtle::SpinLock::Guard guard(root->lock);
PartitionAllocBaseInit(root);
// Precalculate some shift and mask constants used in the hot path.
// Example: malloc(41) == 101001 binary.
// Order is 6 (1 << 6-1) == 32 is highest bit set.
// order_index is the next three MSB == 010 == 2.
// sub_order_index_mask is a mask for the remaining bits == 11 (masking to 01
// for
// the sub_order_index).
size_t order;
for (order = 0; order <= kBitsPerSizeT; ++order) {
size_t order_index_shift;
if (order < kGenericNumBucketsPerOrderBits + 1)
order_index_shift = 0;
else
order_index_shift = order - (kGenericNumBucketsPerOrderBits + 1);
root->order_index_shifts[order] = order_index_shift;
size_t sub_order_index_mask;
if (order == kBitsPerSizeT) {
// This avoids invoking undefined behavior for an excessive shift.
sub_order_index_mask =
static_cast<size_t>(-1) >> (kGenericNumBucketsPerOrderBits + 1);
} else {
sub_order_index_mask = ((static_cast<size_t>(1) << order) - 1) >>
(kGenericNumBucketsPerOrderBits + 1);
}
root->order_sub_index_masks[order] = sub_order_index_mask;
}
// Set up the actual usable buckets first.
// Note that typical values (i.e. min allocation size of 8) will result in
// pseudo buckets (size==9 etc. or more generally, size is not a multiple
// of the smallest allocation granularity).
// We avoid them in the bucket lookup map, but we tolerate them to keep the
// code simpler and the structures more generic.
size_t i, j;
size_t current_size = kGenericSmallestBucket;
size_t currentIncrement =
kGenericSmallestBucket >> kGenericNumBucketsPerOrderBits;
PartitionBucket* bucket = &root->buckets[0];
for (i = 0; i < kGenericNumBucketedOrders; ++i) {
for (j = 0; j < kGenericNumBucketsPerOrder; ++j) {
bucket->slot_size = current_size;
PartitionBucketInitBase(bucket, root);
// Disable psuedo buckets so that touching them faults.
if (current_size % kGenericSmallestBucket)
bucket->active_pages_head = 0;
current_size += currentIncrement;
++bucket;
}
currentIncrement <<= 1;
}
DCHECK(current_size == 1 << kGenericMaxBucketedOrder);
DCHECK(bucket == &root->buckets[0] + kGenericNumBuckets);
// Then set up the fast size -> bucket lookup table.
bucket = &root->buckets[0];
PartitionBucket** bucketPtr = &root->bucket_lookups[0];
for (order = 0; order <= kBitsPerSizeT; ++order) {
for (j = 0; j < kGenericNumBucketsPerOrder; ++j) {
if (order < kGenericMinBucketedOrder) {
// Use the bucket of the finest granularity for malloc(0) etc.
*bucketPtr++ = &root->buckets[0];
} else if (order > kGenericMaxBucketedOrder) {
*bucketPtr++ = &PartitionRootGeneric::gPagedBucket;
} else {
PartitionBucket* validBucket = bucket;
// Skip over invalid buckets.
while (validBucket->slot_size % kGenericSmallestBucket)
validBucket++;
*bucketPtr++ = validBucket;
bucket++;
}
}
}
DCHECK(bucket == &root->buckets[0] + kGenericNumBuckets);
DCHECK(bucketPtr ==
&root->bucket_lookups[0] +
((kBitsPerSizeT + 1) * kGenericNumBucketsPerOrder));
// And there's one last bucket lookup that will be hit for e.g. malloc(-1),
// which tries to overflow to a non-existant order.
*bucketPtr = &PartitionRootGeneric::gPagedBucket;
}
#if !defined(ARCH_CPU_64_BITS)
static NOINLINE void PartitionOutOfMemoryWithLotsOfUncommitedPages() {
OOM_CRASH();
}
#endif
static NOINLINE void PartitionOutOfMemory(const PartitionRootBase* root) {
#if !defined(ARCH_CPU_64_BITS)
// Check whether this OOM is due to a lot of super pages that are allocated
// but not committed, probably due to http://crbug.com/421387.
if (root->total_size_of_super_pages +
root->total_size_of_direct_mapped_pages -
root->total_size_of_committed_pages >
kReasonableSizeOfUnusedPages) {
PartitionOutOfMemoryWithLotsOfUncommitedPages();
}
#endif
if (PartitionRootBase::gOomHandlingFunction)
(*PartitionRootBase::gOomHandlingFunction)();
OOM_CRASH();
}
static NOINLINE void PartitionExcessiveAllocationSize() {
OOM_CRASH();
}
static NOINLINE void PartitionBucketFull() {
OOM_CRASH();
}
// partitionPageStateIs*
// Note that it's only valid to call these functions on pages found on one of
// the page lists. Specifically, you can't call these functions on full pages
// that were detached from the active list.
static bool ALWAYS_INLINE
PartitionPageStateIsActive(const PartitionPage* page) {
DCHECK(page != &PartitionRootGeneric::gSeedPage);
DCHECK(!page->page_offset);
return (page->num_allocated_slots > 0 &&
(page->freelist_head || page->num_unprovisioned_slots));
}
static bool ALWAYS_INLINE PartitionPageStateIsFull(const PartitionPage* page) {
DCHECK(page != &PartitionRootGeneric::gSeedPage);
DCHECK(!page->page_offset);
bool ret = (page->num_allocated_slots == PartitionBucketSlots(page->bucket));
if (ret) {
DCHECK(!page->freelist_head);
DCHECK(!page->num_unprovisioned_slots);
}
return ret;
}
static bool ALWAYS_INLINE PartitionPageStateIsEmpty(const PartitionPage* page) {
DCHECK(page != &PartitionRootGeneric::gSeedPage);
DCHECK(!page->page_offset);
return (!page->num_allocated_slots && page->freelist_head);
}
static bool ALWAYS_INLINE
PartitionPageStateIsDecommitted(const PartitionPage* page) {
DCHECK(page != &PartitionRootGeneric::gSeedPage);
DCHECK(!page->page_offset);
bool ret = (!page->num_allocated_slots && !page->freelist_head);
if (ret) {
DCHECK(!page->num_unprovisioned_slots);
DCHECK(page->empty_cache_index == -1);
}
return ret;
}
static void PartitionIncreaseCommittedPages(PartitionRootBase* root,
size_t len) {
root->total_size_of_committed_pages += len;
DCHECK(root->total_size_of_committed_pages <=
root->total_size_of_super_pages +
root->total_size_of_direct_mapped_pages);
}
static void PartitionDecreaseCommittedPages(PartitionRootBase* root,
size_t len) {
root->total_size_of_committed_pages -= len;
DCHECK(root->total_size_of_committed_pages <=
root->total_size_of_super_pages +
root->total_size_of_direct_mapped_pages);
}
static ALWAYS_INLINE void PartitionDecommitSystemPages(PartitionRootBase* root,
void* address,
size_t length) {
DecommitSystemPages(address, length);
PartitionDecreaseCommittedPages(root, length);
}
static ALWAYS_INLINE void PartitionRecommitSystemPages(PartitionRootBase* root,
void* address,
size_t length) {
RecommitSystemPages(address, length);
PartitionIncreaseCommittedPages(root, length);
}
static ALWAYS_INLINE void* PartitionAllocPartitionPages(
PartitionRootBase* root,
int flags,
uint16_t num_partition_pages) {
DCHECK(!(reinterpret_cast<uintptr_t>(root->next_partition_page) %
kPartitionPageSize));
DCHECK(!(reinterpret_cast<uintptr_t>(root->next_partition_page_end) %
kPartitionPageSize));
DCHECK(num_partition_pages <= kNumPartitionPagesPerSuperPage);
size_t total_size = kPartitionPageSize * num_partition_pages;
size_t num_partition_pages_left =
(root->next_partition_page_end - root->next_partition_page) >>
kPartitionPageShift;
if (LIKELY(num_partition_pages_left >= num_partition_pages)) {
// In this case, we can still hand out pages from the current super page
// allocation.
char* ret = root->next_partition_page;
root->next_partition_page += total_size;
PartitionIncreaseCommittedPages(root, total_size);
return ret;
}
// Need a new super page. We want to allocate super pages in a continguous
// address region as much as possible. This is important for not causing
// page table bloat and not fragmenting address spaces in 32 bit
// architectures.
char* requestedAddress = root->next_super_page;
char* super_page = reinterpret_cast<char*>(AllocPages(
requestedAddress, kSuperPageSize, kSuperPageSize, PageAccessible));
if (UNLIKELY(!super_page))
return 0;
root->total_size_of_super_pages += kSuperPageSize;
PartitionIncreaseCommittedPages(root, total_size);
root->next_super_page = super_page + kSuperPageSize;
char* ret = super_page + kPartitionPageSize;
root->next_partition_page = ret + total_size;
root->next_partition_page_end = root->next_super_page - kPartitionPageSize;
// Make the first partition page in the super page a guard page, but leave a
// hole in the middle.
// This is where we put page metadata and also a tiny amount of extent
// metadata.
SetSystemPagesInaccessible(super_page, kSystemPageSize);
SetSystemPagesInaccessible(super_page + (kSystemPageSize * 2),
kPartitionPageSize - (kSystemPageSize * 2));
// Also make the last partition page a guard page.
SetSystemPagesInaccessible(super_page + (kSuperPageSize - kPartitionPageSize),
kPartitionPageSize);
// If we were after a specific address, but didn't get it, assume that
// the system chose a lousy address. Here most OS'es have a default
// algorithm that isn't randomized. For example, most Linux
// distributions will allocate the mapping directly before the last
// successful mapping, which is far from random. So we just get fresh
// randomness for the next mapping attempt.
if (requestedAddress && requestedAddress != super_page)
root->next_super_page = 0;
// We allocated a new super page so update super page metadata.
// First check if this is a new extent or not.
PartitionSuperPageExtentEntry* latest_extent =
reinterpret_cast<PartitionSuperPageExtentEntry*>(
PartitionSuperPageToMetadataArea(super_page));
// By storing the root in every extent metadata object, we have a fast way
// to go from a pointer within the partition to the root object.
latest_extent->root = root;
// Most new extents will be part of a larger extent, and these three fields
// are unused, but we initialize them to 0 so that we get a clear signal
// in case they are accidentally used.
latest_extent->super_page_base = 0;
latest_extent->super_pages_end = 0;
latest_extent->next = 0;
PartitionSuperPageExtentEntry* current_extent = root->current_extent;
bool isNewExtent = (super_page != requestedAddress);
if (UNLIKELY(isNewExtent)) {
if (UNLIKELY(!current_extent)) {
DCHECK(!root->first_extent);
root->first_extent = latest_extent;
} else {
DCHECK(current_extent->super_page_base);
current_extent->next = latest_extent;
}
root->current_extent = latest_extent;
latest_extent->super_page_base = super_page;
latest_extent->super_pages_end = super_page + kSuperPageSize;
} else {
// We allocated next to an existing extent so just nudge the size up a
// little.
DCHECK(current_extent->super_pages_end);
current_extent->super_pages_end += kSuperPageSize;
DCHECK(ret >= current_extent->super_page_base &&
ret < current_extent->super_pages_end);
}
return ret;
}
static ALWAYS_INLINE uint16_t
PartitionBucketPartitionPages(const PartitionBucket* bucket) {
return (bucket->num_system_pages_per_slot_span +
(kNumSystemPagesPerPartitionPage - 1)) /
kNumSystemPagesPerPartitionPage;
}
static ALWAYS_INLINE void PartitionPageReset(PartitionPage* page) {
DCHECK(PartitionPageStateIsDecommitted(page));
page->num_unprovisioned_slots = PartitionBucketSlots(page->bucket);
DCHECK(page->num_unprovisioned_slots);
page->next_page = nullptr;
}
static ALWAYS_INLINE void PartitionPageSetup(PartitionPage* page,
PartitionBucket* bucket) {
// The bucket never changes. We set it up once.
page->bucket = bucket;
page->empty_cache_index = -1;
PartitionPageReset(page);
// If this page has just a single slot, do not set up page offsets for any
// page metadata other than the first one. This ensures that attempts to
// touch invalid page metadata fail.
if (page->num_unprovisioned_slots == 1)
return;
uint16_t num_partition_pages = PartitionBucketPartitionPages(bucket);
char* page_char_ptr = reinterpret_cast<char*>(page);
for (uint16_t i = 1; i < num_partition_pages; ++i) {
page_char_ptr += kPageMetadataSize;
PartitionPage* secondary_page =
reinterpret_cast<PartitionPage*>(page_char_ptr);
secondary_page->page_offset = i;
}
}
static ALWAYS_INLINE char* PartitionPageAllocAndFillFreelist(
PartitionPage* page) {
DCHECK(page != &PartitionRootGeneric::gSeedPage);
uint16_t num_slots = page->num_unprovisioned_slots;
DCHECK(num_slots);
PartitionBucket* bucket = page->bucket;
// We should only get here when _every_ slot is either used or unprovisioned.
// (The third state is "on the freelist". If we have a non-empty freelist, we
// should not get here.)
DCHECK(num_slots + page->num_allocated_slots == PartitionBucketSlots(bucket));
// Similarly, make explicitly sure that the freelist is empty.
DCHECK(!page->freelist_head);
DCHECK(page->num_allocated_slots >= 0);
size_t size = bucket->slot_size;
char* base = reinterpret_cast<char*>(PartitionPageToPointer(page));
char* return_object = base + (size * page->num_allocated_slots);
char* firstFreelistPointer = return_object + size;
char* firstFreelistPointerExtent =
firstFreelistPointer + sizeof(PartitionFreelistEntry*);
// Our goal is to fault as few system pages as possible. We calculate the
// page containing the "end" of the returned slot, and then allow freelist
// pointers to be written up to the end of that page.
char* sub_page_limit = reinterpret_cast<char*>(
RoundUpToSystemPage(reinterpret_cast<size_t>(firstFreelistPointer)));
char* slots_limit = return_object + (size * num_slots);
char* freelist_limit = sub_page_limit;
if (UNLIKELY(slots_limit < freelist_limit))
freelist_limit = slots_limit;
uint16_t num_new_freelist_entries = 0;
if (LIKELY(firstFreelistPointerExtent <= freelist_limit)) {
// Only consider used space in the slot span. If we consider wasted
// space, we may get an off-by-one when a freelist pointer fits in the
// wasted space, but a slot does not.
// We know we can fit at least one freelist pointer.
num_new_freelist_entries = 1;
// Any further entries require space for the whole slot span.
num_new_freelist_entries += static_cast<uint16_t>(
(freelist_limit - firstFreelistPointerExtent) / size);
}
// We always return an object slot -- that's the +1 below.
// We do not neccessarily create any new freelist entries, because we cross
// sub page boundaries frequently for large bucket sizes.
DCHECK(num_new_freelist_entries + 1 <= num_slots);
num_slots -= (num_new_freelist_entries + 1);
page->num_unprovisioned_slots = num_slots;
page->num_allocated_slots++;
if (LIKELY(num_new_freelist_entries)) {
char* freelist_pointer = firstFreelistPointer;
PartitionFreelistEntry* entry =
reinterpret_cast<PartitionFreelistEntry*>(freelist_pointer);
page->freelist_head = entry;
while (--num_new_freelist_entries) {
freelist_pointer += size;
PartitionFreelistEntry* next_entry =
reinterpret_cast<PartitionFreelistEntry*>(freelist_pointer);
entry->next = PartitionFreelistMask(next_entry);
entry = next_entry;
}
entry->next = PartitionFreelistMask(0);
} else {
page->freelist_head = 0;
}
return return_object;
}
// This helper function scans a bucket's active page list for a suitable new
// active page.
// When it finds a suitable new active page (one that has free slots and is not
// empty), it is set as the new active page. If there is no suitable new
// active page, the current active page is set to the seed page.
// As potential pages are scanned, they are tidied up according to their state.
// Empty pages are swept on to the empty page list, decommitted pages on to the
// decommitted page list and full pages are unlinked from any list.
static bool PartitionSetNewActivePage(PartitionBucket* bucket) {
PartitionPage* page = bucket->active_pages_head;
if (page == &PartitionRootBase::gSeedPage)
return false;
PartitionPage* next_page;
for (; page; page = next_page) {
next_page = page->next_page;
DCHECK(page->bucket == bucket);
DCHECK(page != bucket->empty_pages_head);
DCHECK(page != bucket->decommitted_pages_head);
// Deal with empty and decommitted pages.
if (LIKELY(PartitionPageStateIsActive(page))) {
// This page is usable because it has freelist entries, or has
// unprovisioned slots we can create freelist entries from.
bucket->active_pages_head = page;
return true;
}
if (LIKELY(PartitionPageStateIsEmpty(page))) {
page->next_page = bucket->empty_pages_head;
bucket->empty_pages_head = page;
} else if (LIKELY(PartitionPageStateIsDecommitted(page))) {
page->next_page = bucket->decommitted_pages_head;
bucket->decommitted_pages_head = page;
} else {
DCHECK(PartitionPageStateIsFull(page));
// If we get here, we found a full page. Skip over it too, and also
// tag it as full (via a negative value). We need it tagged so that
// free'ing can tell, and move it back into the active page list.
page->num_allocated_slots = -page->num_allocated_slots;
++bucket->num_full_pages;
// num_full_pages is a uint16_t for efficient packing so guard against
// overflow to be safe.
if (UNLIKELY(!bucket->num_full_pages))
PartitionBucketFull();
// Not necessary but might help stop accidents.
page->next_page = 0;
}
}
bucket->active_pages_head = &PartitionRootGeneric::gSeedPage;
return false;
}
static ALWAYS_INLINE PartitionDirectMapExtent* partitionPageToDirectMapExtent(
PartitionPage* page) {
DCHECK(PartitionBucketIsDirectMapped(page->bucket));
return reinterpret_cast<PartitionDirectMapExtent*>(
reinterpret_cast<char*>(page) + 3 * kPageMetadataSize);
}
static ALWAYS_INLINE void PartitionPageSetRawSize(PartitionPage* page,
size_t size) {
size_t* raw_size_ptr = PartitionPageGetRawSizePtr(page);
if (UNLIKELY(raw_size_ptr != nullptr))
*raw_size_ptr = size;
}
static ALWAYS_INLINE PartitionPage* PartitionDirectMap(PartitionRootBase* root,
int flags,
size_t raw_size) {
size_t size = PartitionDirectMapSize(raw_size);
// Because we need to fake looking like a super page, we need to allocate
// a bunch of system pages more than "size":
// - The first few system pages are the partition page in which the super
// page metadata is stored. We fault just one system page out of a partition
// page sized clump.
// - We add a trailing guard page on 32-bit (on 64-bit we rely on the
// massive address space plus randomization instead).
size_t map_size = size + kPartitionPageSize;
#if !defined(ARCH_CPU_64_BITS)
map_size += kSystemPageSize;
#endif
// Round up to the allocation granularity.
map_size += kPageAllocationGranularityOffsetMask;
map_size &= kPageAllocationGranularityBaseMask;
// TODO: these pages will be zero-filled. Consider internalizing an
// allocZeroed() API so we can avoid a memset() entirely in this case.
char* ptr = reinterpret_cast<char*>(
AllocPages(0, map_size, kSuperPageSize, PageAccessible));
if (UNLIKELY(!ptr))
return nullptr;
size_t committed_page_size = size + kSystemPageSize;
root->total_size_of_direct_mapped_pages += committed_page_size;
PartitionIncreaseCommittedPages(root, committed_page_size);
char* slot = ptr + kPartitionPageSize;
SetSystemPagesInaccessible(ptr + (kSystemPageSize * 2),
kPartitionPageSize - (kSystemPageSize * 2));
#if !defined(ARCH_CPU_64_BITS)
SetSystemPagesInaccessible(ptr, kSystemPageSize);
SetSystemPagesInaccessible(slot + size, kSystemPageSize);
#endif
PartitionSuperPageExtentEntry* extent =
reinterpret_cast<PartitionSuperPageExtentEntry*>(
PartitionSuperPageToMetadataArea(ptr));
extent->root = root;
// The new structures are all located inside a fresh system page so they
// will all be zeroed out. These DCHECKs are for documentation.
DCHECK(!extent->super_page_base);
DCHECK(!extent->super_pages_end);
DCHECK(!extent->next);
PartitionPage* page = PartitionPointerToPageNoAlignmentCheck(slot);
PartitionBucket* bucket = reinterpret_cast<PartitionBucket*>(
reinterpret_cast<char*>(page) + (kPageMetadataSize * 2));
DCHECK(!page->next_page);
DCHECK(!page->num_allocated_slots);
DCHECK(!page->num_unprovisioned_slots);
DCHECK(!page->page_offset);
DCHECK(!page->empty_cache_index);
page->bucket = bucket;
page->freelist_head = reinterpret_cast<PartitionFreelistEntry*>(slot);
PartitionFreelistEntry* next_entry =
reinterpret_cast<PartitionFreelistEntry*>(slot);
next_entry->next = PartitionFreelistMask(0);
DCHECK(!bucket->active_pages_head);
DCHECK(!bucket->empty_pages_head);
DCHECK(!bucket->decommitted_pages_head);
DCHECK(!bucket->num_system_pages_per_slot_span);
DCHECK(!bucket->num_full_pages);
bucket->slot_size = size;
PartitionDirectMapExtent* map_extent = partitionPageToDirectMapExtent(page);
map_extent->map_size = map_size - kPartitionPageSize - kSystemPageSize;
map_extent->bucket = bucket;
// Maintain the doubly-linked list of all direct mappings.
map_extent->next_extent = root->direct_map_list;
if (map_extent->next_extent)
map_extent->next_extent->prev_extent = map_extent;
map_extent->prev_extent = nullptr;
root->direct_map_list = map_extent;
return page;
}
static ALWAYS_INLINE void PartitionDirectUnmap(PartitionPage* page) {
PartitionRootBase* root = PartitionPageToRoot(page);
const PartitionDirectMapExtent* extent = partitionPageToDirectMapExtent(page);
size_t unmap_size = extent->map_size;
// Maintain the doubly-linked list of all direct mappings.
if (extent->prev_extent) {
DCHECK(extent->prev_extent->next_extent == extent);
extent->prev_extent->next_extent = extent->next_extent;
} else {
root->direct_map_list = extent->next_extent;
}
if (extent->next_extent) {
DCHECK(extent->next_extent->prev_extent == extent);
extent->next_extent->prev_extent = extent->prev_extent;
}
// Add on the size of the trailing guard page and preceeding partition
// page.
unmap_size += kPartitionPageSize + kSystemPageSize;
size_t uncommitted_page_size = page->bucket->slot_size + kSystemPageSize;
PartitionDecreaseCommittedPages(root, uncommitted_page_size);
DCHECK(root->total_size_of_direct_mapped_pages >= uncommitted_page_size);
root->total_size_of_direct_mapped_pages -= uncommitted_page_size;
DCHECK(!(unmap_size & kPageAllocationGranularityOffsetMask));
char* ptr = reinterpret_cast<char*>(PartitionPageToPointer(page));
// Account for the mapping starting a partition page before the actual
// allocation address.
ptr -= kPartitionPageSize;
FreePages(ptr, unmap_size);
}
void* PartitionAllocSlowPath(PartitionRootBase* root,
int flags,
size_t size,
PartitionBucket* bucket) {
// The slow path is called when the freelist is empty.
DCHECK(!bucket->active_pages_head->freelist_head);
PartitionPage* new_page = nullptr;
// For the PartitionAllocGeneric API, we have a bunch of buckets marked
// as special cases. We bounce them through to the slow path so that we
// can still have a blazing fast hot path due to lack of corner-case
// branches.
bool returnNull = flags & PartitionAllocReturnNull;
if (UNLIKELY(PartitionBucketIsDirectMapped(bucket))) {
DCHECK(size > kGenericMaxBucketed);
DCHECK(bucket == &PartitionRootBase::gPagedBucket);
DCHECK(bucket->active_pages_head == &PartitionRootGeneric::gSeedPage);
if (size > kGenericMaxDirectMapped) {
if (returnNull)
return nullptr;
PartitionExcessiveAllocationSize();
}
new_page = PartitionDirectMap(root, flags, size);
} else if (LIKELY(PartitionSetNewActivePage(bucket))) {
// First, did we find an active page in the active pages list?
new_page = bucket->active_pages_head;
DCHECK(PartitionPageStateIsActive(new_page));
} else if (LIKELY(bucket->empty_pages_head != nullptr) ||
LIKELY(bucket->decommitted_pages_head != nullptr)) {
// Second, look in our lists of empty and decommitted pages.
// Check empty pages first, which are preferred, but beware that an
// empty page might have been decommitted.
while (LIKELY((new_page = bucket->empty_pages_head) != nullptr)) {
DCHECK(new_page->bucket == bucket);
DCHECK(PartitionPageStateIsEmpty(new_page) ||
PartitionPageStateIsDecommitted(new_page));
bucket->empty_pages_head = new_page->next_page;
// Accept the empty page unless it got decommitted.
if (new_page->freelist_head) {
new_page->next_page = nullptr;
break;
}
DCHECK(PartitionPageStateIsDecommitted(new_page));
new_page->next_page = bucket->decommitted_pages_head;
bucket->decommitted_pages_head = new_page;
}
if (UNLIKELY(!new_page) &&
LIKELY(bucket->decommitted_pages_head != nullptr)) {
new_page = bucket->decommitted_pages_head;
DCHECK(new_page->bucket == bucket);
DCHECK(PartitionPageStateIsDecommitted(new_page));
bucket->decommitted_pages_head = new_page->next_page;
void* addr = PartitionPageToPointer(new_page);
PartitionRecommitSystemPages(root, addr,
PartitionBucketBytes(new_page->bucket));
PartitionPageReset(new_page);
}
DCHECK(new_page);
} else {
// Third. If we get here, we need a brand new page.
uint16_t num_partition_pages = PartitionBucketPartitionPages(bucket);
void* rawPages =
PartitionAllocPartitionPages(root, flags, num_partition_pages);
if (LIKELY(rawPages != nullptr)) {
new_page = PartitionPointerToPageNoAlignmentCheck(rawPages);
PartitionPageSetup(new_page, bucket);
}
}
// Bail if we had a memory allocation failure.
if (UNLIKELY(!new_page)) {
DCHECK(bucket->active_pages_head == &PartitionRootGeneric::gSeedPage);
if (returnNull)
return nullptr;
PartitionOutOfMemory(root);
}
bucket = new_page->bucket;
DCHECK(bucket != &PartitionRootBase::gPagedBucket);
bucket->active_pages_head = new_page;
PartitionPageSetRawSize(new_page, size);
// If we found an active page with free slots, or an empty page, we have a
// usable freelist head.
if (LIKELY(new_page->freelist_head != nullptr)) {
PartitionFreelistEntry* entry = new_page->freelist_head;
PartitionFreelistEntry* new_head = PartitionFreelistMask(entry->next);
new_page->freelist_head = new_head;
new_page->num_allocated_slots++;
return entry;
}
// Otherwise, we need to build the freelist.
DCHECK(new_page->num_unprovisioned_slots);
return PartitionPageAllocAndFillFreelist(new_page);
}
static ALWAYS_INLINE void PartitionDecommitPage(PartitionRootBase* root,
PartitionPage* page) {
DCHECK(PartitionPageStateIsEmpty(page));
DCHECK(!PartitionBucketIsDirectMapped(page->bucket));
void* addr = PartitionPageToPointer(page);
PartitionDecommitSystemPages(root, addr, PartitionBucketBytes(page->bucket));
// We actually leave the decommitted page in the active list. We'll sweep
// it on to the decommitted page list when we next walk the active page
// list.
// Pulling this trick enables us to use a singly-linked page list for all
// cases, which is critical in keeping the page metadata structure down to
// 32 bytes in size.
page->freelist_head = 0;
page->num_unprovisioned_slots = 0;
DCHECK(PartitionPageStateIsDecommitted(page));
}
static void PartitionDecommitPageIfPossible(PartitionRootBase* root,
PartitionPage* page) {
DCHECK(page->empty_cache_index >= 0);
DCHECK(static_cast<unsigned>(page->empty_cache_index) < kMaxFreeableSpans);
DCHECK(page == root->global_empty_page_ring[page->empty_cache_index]);
page->empty_cache_index = -1;
if (PartitionPageStateIsEmpty(page))
PartitionDecommitPage(root, page);
}
static ALWAYS_INLINE void PartitionRegisterEmptyPage(PartitionPage* page) {
DCHECK(PartitionPageStateIsEmpty(page));
PartitionRootBase* root = PartitionPageToRoot(page);
// If the page is already registered as empty, give it another life.
if (page->empty_cache_index != -1) {
DCHECK(page->empty_cache_index >= 0);
DCHECK(static_cast<unsigned>(page->empty_cache_index) < kMaxFreeableSpans);
DCHECK(root->global_empty_page_ring[page->empty_cache_index] == page);
root->global_empty_page_ring[page->empty_cache_index] = 0;
}
int16_t current_index = root->global_empty_page_ring_index;
PartitionPage* pageToDecommit = root->global_empty_page_ring[current_index];
// The page might well have been re-activated, filled up, etc. before we get
// around to looking at it here.
if (pageToDecommit)
PartitionDecommitPageIfPossible(root, pageToDecommit);
// We put the empty slot span on our global list of "pages that were once
// empty". thus providing it a bit of breathing room to get re-used before
// we really free it. This improves performance, particularly on Mac OS X
// which has subpar memory management performance.
root->global_empty_page_ring[current_index] = page;
page->empty_cache_index = current_index;
++current_index;
if (current_index == kMaxFreeableSpans)
current_index = 0;
root->global_empty_page_ring_index = current_index;
}
static void PartitionDecommitEmptyPages(PartitionRootBase* root) {
for (size_t i = 0; i < kMaxFreeableSpans; ++i) {
PartitionPage* page = root->global_empty_page_ring[i];
if (page)
PartitionDecommitPageIfPossible(root, page);
root->global_empty_page_ring[i] = nullptr;
}
}
void PartitionFreeSlowPath(PartitionPage* page) {
PartitionBucket* bucket = page->bucket;
DCHECK(page != &PartitionRootGeneric::gSeedPage);
if (LIKELY(page->num_allocated_slots == 0)) {
// Page became fully unused.
if (UNLIKELY(PartitionBucketIsDirectMapped(bucket))) {
PartitionDirectUnmap(page);
return;
}
// If it's the current active page, change it. We bounce the page to
// the empty list as a force towards defragmentation.
if (LIKELY(page == bucket->active_pages_head))
(void)PartitionSetNewActivePage(bucket);
DCHECK(bucket->active_pages_head != page);
PartitionPageSetRawSize(page, 0);
DCHECK(!PartitionPageGetRawSize(page));
PartitionRegisterEmptyPage(page);
} else {
DCHECK(!PartitionBucketIsDirectMapped(bucket));
// Ensure that the page is full. That's the only valid case if we
// arrive here.
DCHECK(page->num_allocated_slots < 0);
// A transition of num_allocated_slots from 0 to -1 is not legal, and
// likely indicates a double-free.
CHECK(page->num_allocated_slots != -1);
page->num_allocated_slots = -page->num_allocated_slots - 2;
DCHECK(page->num_allocated_slots == PartitionBucketSlots(bucket) - 1);
// Fully used page became partially used. It must be put back on the
// non-full page list. Also make it the current page to increase the
// chances of it being filled up again. The old current page will be
// the next page.
DCHECK(!page->next_page);
if (LIKELY(bucket->active_pages_head != &PartitionRootGeneric::gSeedPage))
page->next_page = bucket->active_pages_head;
bucket->active_pages_head = page;
--bucket->num_full_pages;
// Special case: for a partition page with just a single slot, it may
// now be empty and we want to run it through the empty logic.
if (UNLIKELY(page->num_allocated_slots == 0))
PartitionFreeSlowPath(page);
}
}
bool partitionReallocDirectMappedInPlace(PartitionRootGeneric* root,
PartitionPage* page,
size_t raw_size) {
DCHECK(PartitionBucketIsDirectMapped(page->bucket));
raw_size = PartitionCookieSizeAdjustAdd(raw_size);
// Note that the new size might be a bucketed size; this function is called
// whenever we're reallocating a direct mapped allocation.
size_t new_size = PartitionDirectMapSize(raw_size);
if (new_size < kGenericMinDirectMappedDownsize)
return false;
// bucket->slot_size is the current size of the allocation.
size_t current_size = page->bucket->slot_size;
if (new_size == current_size)
return true;
char* char_ptr = static_cast<char*>(PartitionPageToPointer(page));
if (new_size < current_size) {
size_t map_size = partitionPageToDirectMapExtent(page)->map_size;
// Don't reallocate in-place if new size is less than 80 % of the full
// map size, to avoid holding on to too much unused address space.
if ((new_size / kSystemPageSize) * 5 < (map_size / kSystemPageSize) * 4)
return false;
// Shrink by decommitting unneeded pages and making them inaccessible.
size_t decommitSize = current_size - new_size;
PartitionDecommitSystemPages(root, char_ptr + new_size, decommitSize);
SetSystemPagesInaccessible(char_ptr + new_size, decommitSize);
} else if (new_size <= partitionPageToDirectMapExtent(page)->map_size) {
// Grow within the actually allocated memory. Just need to make the
// pages accessible again.
size_t recommit_size = new_size - current_size;
bool ret = SetSystemPagesAccessible(char_ptr + current_size, recommit_size);
CHECK(ret);
PartitionRecommitSystemPages(root, char_ptr + current_size, recommit_size);
#if DCHECK_IS_ON()
memset(char_ptr + current_size, kUninitializedByte, recommit_size);
#endif
} else {
// We can't perform the realloc in-place.
// TODO: support this too when possible.
return false;
}
#if DCHECK_IS_ON()
// Write a new trailing cookie.
PartitionCookieWriteValue(char_ptr + raw_size - kCookieSize);
#endif
PartitionPageSetRawSize(page, raw_size);
DCHECK(PartitionPageGetRawSize(page) == raw_size);
page->bucket->slot_size = new_size;
return true;
}
void* PartitionReallocGenericFlags(PartitionRootGeneric* root,
int flags,
void* ptr,
size_t new_size,
const char* type_name) {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
void* result = realloc(ptr, new_size);
CHECK(result || flags & PartitionAllocReturnNull);
return result;
#else
if (UNLIKELY(!ptr))
return PartitionAllocGenericFlags(root, flags, new_size, type_name);
if (UNLIKELY(!new_size)) {
PartitionFreeGeneric(root, ptr);
return nullptr;
}
if (new_size > kGenericMaxDirectMapped) {
if (flags & PartitionAllocReturnNull)
return nullptr;
else
PartitionExcessiveAllocationSize();
}
DCHECK(PartitionPointerIsValid(PartitionCookieFreePointerAdjust(ptr)));
PartitionPage* page =
PartitionPointerToPage(PartitionCookieFreePointerAdjust(ptr));
if (UNLIKELY(PartitionBucketIsDirectMapped(page->bucket))) {
// We may be able to perform the realloc in place by changing the
// accessibility of memory pages and, if reducing the size, decommitting
// them.
if (partitionReallocDirectMappedInPlace(root, page, new_size)) {
PartitionAllocHooks::ReallocHookIfEnabled(ptr, ptr, new_size, type_name);
return ptr;
}
}
size_t actual_new_size = PartitionAllocActualSize(root, new_size);
size_t actual_old_size = PartitionAllocGetSize(ptr);
// TODO: note that tcmalloc will "ignore" a downsizing realloc() unless the
// new size is a significant percentage smaller. We could do the same if we
// determine it is a win.
if (actual_new_size == actual_old_size) {
// Trying to allocate a block of size new_size would give us a block of
// the same size as the one we've already got, so re-use the allocation
// after updating statistics (and cookies, if present).
PartitionPageSetRawSize(page, PartitionCookieSizeAdjustAdd(new_size));
#if DCHECK_IS_ON()
// Write a new trailing cookie when it is possible to keep track of
// |new_size| via the raw size pointer.
if (PartitionPageGetRawSizePtr(page))
PartitionCookieWriteValue(static_cast<char*>(ptr) + new_size);
#endif // DCHECK_IS_ON()
return ptr;
}
// This realloc cannot be resized in-place. Sadness.
void* ret = PartitionAllocGenericFlags(root, flags, new_size, type_name);
if (!ret) {
if (flags & PartitionAllocReturnNull)
return nullptr;
else
PartitionExcessiveAllocationSize();
}
size_t copy_size = actual_old_size;
if (new_size < copy_size)
copy_size = new_size;
memcpy(ret, ptr, copy_size);
PartitionFreeGeneric(root, ptr);
return ret;
#endif // defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
}
void* PartitionReallocGeneric(PartitionRootGeneric* root,
void* ptr,
size_t new_size,
const char* type_name) {
return PartitionReallocGenericFlags(root, 0, ptr, new_size, type_name);
}
static size_t PartitionPurgePage(PartitionPage* page, bool discard) {
const PartitionBucket* bucket = page->bucket;
size_t slot_size = bucket->slot_size;
if (slot_size < kSystemPageSize || !page->num_allocated_slots)
return 0;
size_t bucket_num_slots = PartitionBucketSlots(bucket);
size_t discardable_bytes = 0;
size_t raw_size = PartitionPageGetRawSize(const_cast<PartitionPage*>(page));
if (raw_size) {
uint32_t usedBytes = static_cast<uint32_t>(RoundUpToSystemPage(raw_size));
discardable_bytes = bucket->slot_size - usedBytes;
if (discardable_bytes && discard) {
char* ptr = reinterpret_cast<char*>(PartitionPageToPointer(page));
ptr += usedBytes;
DiscardSystemPages(ptr, discardable_bytes);
}
return discardable_bytes;
}
const size_t max_slot_count =
(kPartitionPageSize * kMaxPartitionPagesPerSlotSpan) / kSystemPageSize;
DCHECK(bucket_num_slots <= max_slot_count);
DCHECK(page->num_unprovisioned_slots < bucket_num_slots);
size_t num_slots = bucket_num_slots - page->num_unprovisioned_slots;
char slot_usage[max_slot_count];
size_t last_slot = static_cast<size_t>(-1);
memset(slot_usage, 1, num_slots);
char* ptr = reinterpret_cast<char*>(PartitionPageToPointer(page));
PartitionFreelistEntry* entry = page->freelist_head;
// First, walk the freelist for this page and make a bitmap of which slots
// are not in use.
while (entry) {
size_t slotIndex = (reinterpret_cast<char*>(entry) - ptr) / slot_size;
DCHECK(slotIndex < num_slots);
slot_usage[slotIndex] = 0;
entry = PartitionFreelistMask(entry->next);
// If we have a slot where the masked freelist entry is 0, we can
// actually discard that freelist entry because touching a discarded
// page is guaranteed to return original content or 0.
// (Note that this optimization won't fire on big endian machines
// because the masking function is negation.)
if (!PartitionFreelistMask(entry))
last_slot = slotIndex;
}
// If the slot(s) at the end of the slot span are not in used, we can
// truncate them entirely and rewrite the freelist.
size_t truncated_slots = 0;
while (!slot_usage[num_slots - 1]) {
truncated_slots++;
num_slots--;
DCHECK(num_slots);
}
// First, do the work of calculating the discardable bytes. Don't actually
// discard anything unless the discard flag was passed in.
char* begin_ptr = nullptr;
char* end_ptr = nullptr;
size_t unprovisioned_bytes = 0;
if (truncated_slots) {
begin_ptr = ptr + (num_slots * slot_size);
end_ptr = begin_ptr + (slot_size * truncated_slots);
begin_ptr = reinterpret_cast<char*>(
RoundUpToSystemPage(reinterpret_cast<size_t>(begin_ptr)));
// We round the end pointer here up and not down because we're at the
// end of a slot span, so we "own" all the way up the page boundary.
end_ptr = reinterpret_cast<char*>(
RoundUpToSystemPage(reinterpret_cast<size_t>(end_ptr)));
DCHECK(end_ptr <= ptr + PartitionBucketBytes(bucket));
if (begin_ptr < end_ptr) {
unprovisioned_bytes = end_ptr - begin_ptr;
discardable_bytes += unprovisioned_bytes;
}
}
if (unprovisioned_bytes && discard) {
DCHECK(truncated_slots > 0);
size_t num_new_entries = 0;
page->num_unprovisioned_slots += static_cast<uint16_t>(truncated_slots);
// Rewrite the freelist.
PartitionFreelistEntry** entry_ptr = &page->freelist_head;
for (size_t slotIndex = 0; slotIndex < num_slots; ++slotIndex) {
if (slot_usage[slotIndex])
continue;
PartitionFreelistEntry* entry = reinterpret_cast<PartitionFreelistEntry*>(
ptr + (slot_size * slotIndex));
*entry_ptr = PartitionFreelistMask(entry);
entry_ptr = reinterpret_cast<PartitionFreelistEntry**>(entry);
num_new_entries++;
}
// Terminate the freelist chain.
*entry_ptr = nullptr;
// The freelist head is stored unmasked.
page->freelist_head = PartitionFreelistMask(page->freelist_head);
DCHECK(num_new_entries == num_slots - page->num_allocated_slots);
// Discard the memory.
DiscardSystemPages(begin_ptr, unprovisioned_bytes);
}
// Next, walk the slots and for any not in use, consider where the system
// page boundaries occur. We can release any system pages back to the
// system as long as we don't interfere with a freelist pointer or an
// adjacent slot.
for (size_t i = 0; i < num_slots; ++i) {
if (slot_usage[i])
continue;
// The first address we can safely discard is just after the freelist
// pointer. There's one quirk: if the freelist pointer is actually a
// null, we can discard that pointer value too.
char* begin_ptr = ptr + (i * slot_size);
char* end_ptr = begin_ptr + slot_size;
if (i != last_slot)
begin_ptr += sizeof(PartitionFreelistEntry);
begin_ptr = reinterpret_cast<char*>(
RoundUpToSystemPage(reinterpret_cast<size_t>(begin_ptr)));
end_ptr = reinterpret_cast<char*>(
RoundDownToSystemPage(reinterpret_cast<size_t>(end_ptr)));
if (begin_ptr < end_ptr) {
size_t partial_slot_bytes = end_ptr - begin_ptr;
discardable_bytes += partial_slot_bytes;
if (discard)
DiscardSystemPages(begin_ptr, partial_slot_bytes);
}
}
return discardable_bytes;
}
static void PartitionPurgeBucket(PartitionBucket* bucket) {
if (bucket->active_pages_head != &PartitionRootGeneric::gSeedPage) {
for (PartitionPage* page = bucket->active_pages_head; page;
page = page->next_page) {
DCHECK(page != &PartitionRootGeneric::gSeedPage);
(void)PartitionPurgePage(page, true);
}
}
}
void PartitionPurgeMemory(PartitionRoot* root, int flags) {
if (flags & PartitionPurgeDecommitEmptyPages)
PartitionDecommitEmptyPages(root);
// We don't currently do anything for PartitionPurgeDiscardUnusedSystemPages
// here because that flag is only useful for allocations >= system page
// size. We only have allocations that large inside generic partitions
// at the moment.
}
void PartitionPurgeMemoryGeneric(PartitionRootGeneric* root, int flags) {
subtle::SpinLock::Guard guard(root->lock);
if (flags & PartitionPurgeDecommitEmptyPages)
PartitionDecommitEmptyPages(root);
if (flags & PartitionPurgeDiscardUnusedSystemPages) {
for (size_t i = 0; i < kGenericNumBuckets; ++i) {
PartitionBucket* bucket = &root->buckets[i];
if (bucket->slot_size >= kSystemPageSize)
PartitionPurgeBucket(bucket);
}
}
}
static void PartitionDumpPageStats(PartitionBucketMemoryStats* stats_out,
const PartitionPage* page) {
uint16_t bucket_num_slots = PartitionBucketSlots(page->bucket);
if (PartitionPageStateIsDecommitted(page)) {
++stats_out->num_decommitted_pages;
return;
}
stats_out->discardable_bytes +=
PartitionPurgePage(const_cast<PartitionPage*>(page), false);
size_t raw_size = PartitionPageGetRawSize(const_cast<PartitionPage*>(page));
if (raw_size)
stats_out->active_bytes += static_cast<uint32_t>(raw_size);
else
stats_out->active_bytes +=
(page->num_allocated_slots * stats_out->bucket_slot_size);
size_t page_bytes_resident =
RoundUpToSystemPage((bucket_num_slots - page->num_unprovisioned_slots) *
stats_out->bucket_slot_size);
stats_out->resident_bytes += page_bytes_resident;
if (PartitionPageStateIsEmpty(page)) {
stats_out->decommittable_bytes += page_bytes_resident;
++stats_out->num_empty_pages;
} else if (PartitionPageStateIsFull(page)) {
++stats_out->num_full_pages;
} else {
DCHECK(PartitionPageStateIsActive(page));
++stats_out->num_active_pages;
}
}
static void PartitionDumpBucketStats(PartitionBucketMemoryStats* stats_out,
const PartitionBucket* bucket) {
DCHECK(!PartitionBucketIsDirectMapped(bucket));
stats_out->is_valid = false;
// If the active page list is empty (== &PartitionRootGeneric::gSeedPage),
// the bucket might still need to be reported if it has a list of empty,
// decommitted or full pages.
if (bucket->active_pages_head == &PartitionRootGeneric::gSeedPage &&
!bucket->empty_pages_head && !bucket->decommitted_pages_head &&
!bucket->num_full_pages)
return;
memset(stats_out, '\0', sizeof(*stats_out));
stats_out->is_valid = true;
stats_out->is_direct_map = false;
stats_out->num_full_pages = static_cast<size_t>(bucket->num_full_pages);
stats_out->bucket_slot_size = bucket->slot_size;
uint16_t bucket_num_slots = PartitionBucketSlots(bucket);
size_t bucket_useful_storage = stats_out->bucket_slot_size * bucket_num_slots;
stats_out->allocated_page_size = PartitionBucketBytes(bucket);
stats_out->active_bytes = bucket->num_full_pages * bucket_useful_storage;
stats_out->resident_bytes =
bucket->num_full_pages * stats_out->allocated_page_size;
for (const PartitionPage* page = bucket->empty_pages_head; page;
page = page->next_page) {
DCHECK(PartitionPageStateIsEmpty(page) ||
PartitionPageStateIsDecommitted(page));
PartitionDumpPageStats(stats_out, page);
}
for (const PartitionPage* page = bucket->decommitted_pages_head; page;
page = page->next_page) {
DCHECK(PartitionPageStateIsDecommitted(page));
PartitionDumpPageStats(stats_out, page);
}
if (bucket->active_pages_head != &PartitionRootGeneric::gSeedPage) {
for (const PartitionPage* page = bucket->active_pages_head; page;
page = page->next_page) {
DCHECK(page != &PartitionRootGeneric::gSeedPage);
PartitionDumpPageStats(stats_out, page);
}
}
}
void PartitionDumpStatsGeneric(PartitionRootGeneric* partition,
const char* partition_name,
bool is_light_dump,
PartitionStatsDumper* dumper) {
PartitionMemoryStats stats = {0};
stats.total_mmapped_bytes = partition->total_size_of_super_pages +
partition->total_size_of_direct_mapped_pages;
stats.total_committed_bytes = partition->total_size_of_committed_pages;
size_t direct_mapped_allocations_total_size = 0;
static const size_t kMaxReportableDirectMaps = 4096;
// Allocate on the heap rather than on the stack to avoid stack overflow
// skirmishes (on Windows, in particular).
std::unique_ptr<uint32_t[]> direct_map_lengths = nullptr;
if (!is_light_dump) {
direct_map_lengths =
std::unique_ptr<uint32_t[]>(new uint32_t[kMaxReportableDirectMaps]);
}
PartitionBucketMemoryStats bucket_stats[kGenericNumBuckets];
size_t num_direct_mapped_allocations = 0;
{
subtle::SpinLock::Guard guard(partition->lock);
for (size_t i = 0; i < kGenericNumBuckets; ++i) {
const PartitionBucket* bucket = &partition->buckets[i];
// Don't report the pseudo buckets that the generic allocator sets up in
// order to preserve a fast size->bucket map (see
// PartitionAllocGenericInit for details).
if (!bucket->active_pages_head)
bucket_stats[i].is_valid = false;
else
PartitionDumpBucketStats(&bucket_stats[i], bucket);
if (bucket_stats[i].is_valid) {
stats.total_resident_bytes += bucket_stats[i].resident_bytes;
stats.total_active_bytes += bucket_stats[i].active_bytes;
stats.total_decommittable_bytes += bucket_stats[i].decommittable_bytes;
stats.total_discardable_bytes += bucket_stats[i].discardable_bytes;
}
}
for (PartitionDirectMapExtent *extent = partition->direct_map_list;
extent && num_direct_mapped_allocations < kMaxReportableDirectMaps;
extent = extent->next_extent, ++num_direct_mapped_allocations) {
DCHECK(!extent->next_extent ||
extent->next_extent->prev_extent == extent);
size_t slot_size = extent->bucket->slot_size;
direct_mapped_allocations_total_size += slot_size;
if (is_light_dump)
continue;
direct_map_lengths[num_direct_mapped_allocations] = slot_size;
}
}
if (!is_light_dump) {
// Call |PartitionsDumpBucketStats| after collecting stats because it can
// try to allocate using |PartitionAllocGeneric| and it can't obtain the
// lock.
for (size_t i = 0; i < kGenericNumBuckets; ++i) {
if (bucket_stats[i].is_valid)
dumper->PartitionsDumpBucketStats(partition_name, &bucket_stats[i]);
}
for (size_t i = 0; i < num_direct_mapped_allocations; ++i) {
uint32_t size = direct_map_lengths[i];
PartitionBucketMemoryStats stats;
memset(&stats, '\0', sizeof(stats));
stats.is_valid = true;
stats.is_direct_map = true;
stats.num_full_pages = 1;
stats.allocated_page_size = size;
stats.bucket_slot_size = size;
stats.active_bytes = size;
stats.resident_bytes = size;
dumper->PartitionsDumpBucketStats(partition_name, &stats);
}
}
stats.total_resident_bytes += direct_mapped_allocations_total_size;
stats.total_active_bytes += direct_mapped_allocations_total_size;
dumper->PartitionDumpTotals(partition_name, &stats);
}
void PartitionDumpStats(PartitionRoot* partition,
const char* partition_name,
bool is_light_dump,
PartitionStatsDumper* dumper) {
static const size_t kMaxReportableBuckets = 4096 / sizeof(void*);
PartitionBucketMemoryStats memory_stats[kMaxReportableBuckets];
const size_t partitionNumBuckets = partition->num_buckets;
DCHECK(partitionNumBuckets <= kMaxReportableBuckets);
for (size_t i = 0; i < partitionNumBuckets; ++i)
PartitionDumpBucketStats(&memory_stats[i], &partition->buckets()[i]);
// PartitionsDumpBucketStats is called after collecting stats because it
// can use PartitionAlloc to allocate and this can affect the statistics.
PartitionMemoryStats stats = {0};
stats.total_mmapped_bytes = partition->total_size_of_super_pages;
stats.total_committed_bytes = partition->total_size_of_committed_pages;
DCHECK(!partition->total_size_of_direct_mapped_pages);
for (size_t i = 0; i < partitionNumBuckets; ++i) {
if (memory_stats[i].is_valid) {
stats.total_resident_bytes += memory_stats[i].resident_bytes;
stats.total_active_bytes += memory_stats[i].active_bytes;
stats.total_decommittable_bytes += memory_stats[i].decommittable_bytes;
stats.total_discardable_bytes += memory_stats[i].discardable_bytes;
if (!is_light_dump)
dumper->PartitionsDumpBucketStats(partition_name, &memory_stats[i]);
}
}
dumper->PartitionDumpTotals(partition_name, &stats);
}
} // namespace base
} // namespace pdfium