blob: cad08807da3a1a41a88502b669905152bbd8b5f4 [file] [log] [blame]
// Copyright 2016 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/page/cpdf_colorspace.h"
#include <math.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "core/fpdfapi/page/cpdf_devicecs.h"
#include "core/fpdfapi/page/cpdf_docpagedata.h"
#include "core/fpdfapi/page/cpdf_function.h"
#include "core/fpdfapi/page/cpdf_iccprofile.h"
#include "core/fpdfapi/page/cpdf_indexedcs.h"
#include "core/fpdfapi/page/cpdf_pagemodule.h"
#include "core/fpdfapi/page/cpdf_pattern.h"
#include "core/fpdfapi/page/cpdf_patterncs.h"
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_document.h"
#include "core/fpdfapi/parser/cpdf_name.h"
#include "core/fpdfapi/parser/cpdf_object.h"
#include "core/fpdfapi/parser/cpdf_stream.h"
#include "core/fpdfapi/parser/fpdf_parser_utility.h"
#include "core/fxcodec/fx_codec.h"
#include "core/fxcodec/icc/icc_transform.h"
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxcrt/maybe_owned.h"
#include "core/fxcrt/scoped_set_insertion.h"
#include "core/fxcrt/stl_util.h"
#include "third_party/base/check.h"
#include "third_party/base/check_op.h"
#include "third_party/base/containers/contains.h"
#include "third_party/base/cxx17_backports.h"
#include "third_party/base/notreached.h"
namespace {
constexpr uint8_t kSRGBSamples1[] = {
0, 3, 6, 10, 13, 15, 18, 20, 22, 23, 25, 27, 28, 30, 31,
32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 49, 50, 51, 52, 53, 53, 54, 55, 56, 56, 57, 58, 58,
59, 60, 61, 61, 62, 62, 63, 64, 64, 65, 66, 66, 67, 67, 68,
68, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 76, 76,
77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 83,
84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90,
90, 91, 91, 91, 92, 92, 93, 93, 93, 94, 94, 95, 95, 95, 96,
96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 100, 100, 101, 101, 101,
102, 102, 102, 103, 103, 103, 104, 104, 104, 105, 105, 106, 106, 106, 107,
107, 107, 108, 108, 108, 109, 109, 109, 110, 110, 110, 110, 111, 111, 111,
112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 115, 116, 116,
116, 117, 117, 117, 118, 118, 118, 118, 119, 119, 119, 120,
};
constexpr uint8_t kSRGBSamples2[] = {
120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 148, 149,
150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 159, 160, 161, 162,
163, 163, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173,
174, 175, 175, 176, 177, 178, 178, 179, 180, 180, 181, 182, 182, 183, 184,
185, 185, 186, 187, 187, 188, 189, 189, 190, 190, 191, 192, 192, 193, 194,
194, 195, 196, 196, 197, 197, 198, 199, 199, 200, 200, 201, 202, 202, 203,
203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 209, 210, 210, 211, 212,
212, 213, 213, 214, 214, 215, 215, 216, 216, 217, 218, 218, 219, 219, 220,
220, 221, 221, 222, 222, 223, 223, 224, 224, 225, 226, 226, 227, 227, 228,
228, 229, 229, 230, 230, 231, 231, 232, 232, 233, 233, 234, 234, 235, 235,
236, 236, 237, 237, 238, 238, 238, 239, 239, 240, 240, 241, 241, 242, 242,
243, 243, 244, 244, 245, 245, 246, 246, 246, 247, 247, 248, 248, 249, 249,
250, 250, 251, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255,
};
constexpr size_t kBlackWhitePointCount = 3;
void GetDefaultBlackPoint(float* pPoints) {
static constexpr float kDefaultValue = 0.0f;
for (size_t i = 0; i < kBlackWhitePointCount; ++i)
pPoints[i] = kDefaultValue;
}
void GetBlackPoint(const CPDF_Dictionary* pDict, float* pPoints) {
const CPDF_Array* pParam = pDict->GetArrayFor("BlackPoint");
if (!pParam || pParam->size() != kBlackWhitePointCount) {
GetDefaultBlackPoint(pPoints);
return;
}
// Check to make sure all values are non-negative.
for (size_t i = 0; i < kBlackWhitePointCount; ++i) {
pPoints[i] = pParam->GetNumberAt(i);
if (pPoints[i] < 0) {
GetDefaultBlackPoint(pPoints);
return;
}
}
}
bool GetWhitePoint(const CPDF_Dictionary* pDict, float* pPoints) {
const CPDF_Array* pParam = pDict->GetArrayFor("WhitePoint");
if (!pParam || pParam->size() != kBlackWhitePointCount)
return false;
for (size_t i = 0; i < kBlackWhitePointCount; ++i)
pPoints[i] = pParam->GetNumberAt(i);
return pPoints[0] > 0.0f && pPoints[1] == 1.0f && pPoints[2] > 0.0f;
}
class CPDF_CalGray final : public CPDF_ColorSpace {
public:
CONSTRUCT_VIA_MAKE_RETAIN;
~CPDF_CalGray() override;
// CPDF_ColorSpace:
bool GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const override;
uint32_t v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) override;
void TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const override;
private:
static constexpr float kDefaultGamma = 1.0f;
CPDF_CalGray();
float m_Gamma = kDefaultGamma;
float m_WhitePoint[kBlackWhitePointCount] = {1.0f, 1.0f, 1.0f};
float m_BlackPoint[kBlackWhitePointCount] = {0.0f, 0.0f, 0.0f};
};
class CPDF_CalRGB final : public CPDF_ColorSpace {
public:
CONSTRUCT_VIA_MAKE_RETAIN;
~CPDF_CalRGB() override;
// CPDF_ColorSpace:
bool GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const override;
void TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const override;
uint32_t v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) override;
private:
static constexpr size_t kGammaCount = 3;
static constexpr size_t kMatrixCount = 9;
CPDF_CalRGB();
float m_WhitePoint[kBlackWhitePointCount] = {1.0f, 1.0f, 1.0f};
float m_BlackPoint[kBlackWhitePointCount] = {0.0f, 0.0f, 0.0f};
float m_Gamma[kGammaCount];
float m_Matrix[kMatrixCount];
bool m_bHasGamma = false;
bool m_bHasMatrix = false;
};
class CPDF_LabCS final : public CPDF_ColorSpace {
public:
CONSTRUCT_VIA_MAKE_RETAIN;
~CPDF_LabCS() override;
// CPDF_ColorSpace:
bool GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const override;
void GetDefaultValue(int iComponent,
float* value,
float* min,
float* max) const override;
void TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const override;
uint32_t v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) override;
private:
static constexpr size_t kRangesCount = 4;
CPDF_LabCS();
float m_WhitePoint[kBlackWhitePointCount] = {1.0f, 1.0f, 1.0f};
float m_BlackPoint[kBlackWhitePointCount] = {0.0f, 0.0f, 0.0f};
float m_Ranges[kRangesCount];
};
class CPDF_ICCBasedCS final : public CPDF_BasedCS {
public:
CONSTRUCT_VIA_MAKE_RETAIN;
~CPDF_ICCBasedCS() override;
// CPDF_ColorSpace:
bool GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const override;
void TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const override;
bool IsNormal() const override;
uint32_t v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) override;
private:
CPDF_ICCBasedCS();
// If no valid ICC profile or using sRGB, try looking for an alternate.
bool FindAlternateProfile(CPDF_Document* pDoc,
const CPDF_Dictionary* pDict,
std::set<const CPDF_Object*>* pVisited,
uint32_t nExpectedComponents);
static RetainPtr<CPDF_ColorSpace> GetStockAlternateProfile(
uint32_t nComponents);
static std::vector<float> GetRanges(const CPDF_Dictionary* pDict,
uint32_t nComponents);
RetainPtr<CPDF_IccProfile> m_pProfile;
mutable std::vector<uint8_t, FxAllocAllocator<uint8_t>> m_pCache;
std::vector<float> m_pRanges;
};
class CPDF_SeparationCS final : public CPDF_BasedCS {
public:
CONSTRUCT_VIA_MAKE_RETAIN;
~CPDF_SeparationCS() override;
// CPDF_ColorSpace:
bool GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const override;
void GetDefaultValue(int iComponent,
float* value,
float* min,
float* max) const override;
uint32_t v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) override;
private:
CPDF_SeparationCS();
bool m_IsNoneType = false;
std::unique_ptr<const CPDF_Function> m_pFunc;
};
class CPDF_DeviceNCS final : public CPDF_BasedCS {
public:
CONSTRUCT_VIA_MAKE_RETAIN;
~CPDF_DeviceNCS() override;
// CPDF_ColorSpace:
bool GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const override;
void GetDefaultValue(int iComponent,
float* value,
float* min,
float* max) const override;
uint32_t v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) override;
private:
CPDF_DeviceNCS();
std::unique_ptr<const CPDF_Function> m_pFunc;
};
class Vector_3by1 {
public:
Vector_3by1() : a(0.0f), b(0.0f), c(0.0f) {}
Vector_3by1(float a1, float b1, float c1) : a(a1), b(b1), c(c1) {}
float a;
float b;
float c;
};
class Matrix_3by3 {
public:
Matrix_3by3()
: a(0.0f),
b(0.0f),
c(0.0f),
d(0.0f),
e(0.0f),
f(0.0f),
g(0.0f),
h(0.0f),
i(0.0f) {}
Matrix_3by3(float a1,
float b1,
float c1,
float d1,
float e1,
float f1,
float g1,
float h1,
float i1)
: a(a1), b(b1), c(c1), d(d1), e(e1), f(f1), g(g1), h(h1), i(i1) {}
Matrix_3by3 Inverse() {
float det = a * (e * i - f * h) - b * (i * d - f * g) + c * (d * h - e * g);
if (fabs(det) < std::numeric_limits<float>::epsilon())
return Matrix_3by3();
return Matrix_3by3(
(e * i - f * h) / det, -(b * i - c * h) / det, (b * f - c * e) / det,
-(d * i - f * g) / det, (a * i - c * g) / det, -(a * f - c * d) / det,
(d * h - e * g) / det, -(a * h - b * g) / det, (a * e - b * d) / det);
}
Matrix_3by3 Multiply(const Matrix_3by3& m) {
return Matrix_3by3(a * m.a + b * m.d + c * m.g, a * m.b + b * m.e + c * m.h,
a * m.c + b * m.f + c * m.i, d * m.a + e * m.d + f * m.g,
d * m.b + e * m.e + f * m.h, d * m.c + e * m.f + f * m.i,
g * m.a + h * m.d + i * m.g, g * m.b + h * m.e + i * m.h,
g * m.c + h * m.f + i * m.i);
}
Vector_3by1 TransformVector(const Vector_3by1& v) {
return Vector_3by1(a * v.a + b * v.b + c * v.c, d * v.a + e * v.b + f * v.c,
g * v.a + h * v.b + i * v.c);
}
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
float i;
};
float RGB_Conversion(float colorComponent) {
colorComponent = pdfium::clamp(colorComponent, 0.0f, 1.0f);
int scale = std::max(static_cast<int>(colorComponent * 1023), 0);
if (scale < 192)
return kSRGBSamples1[scale] / 255.0f;
return kSRGBSamples2[scale / 4 - 48] / 255.0f;
}
void XYZ_to_sRGB(float X, float Y, float Z, float* R, float* G, float* B) {
float R1 = 3.2410f * X - 1.5374f * Y - 0.4986f * Z;
float G1 = -0.9692f * X + 1.8760f * Y + 0.0416f * Z;
float B1 = 0.0556f * X - 0.2040f * Y + 1.0570f * Z;
*R = RGB_Conversion(R1);
*G = RGB_Conversion(G1);
*B = RGB_Conversion(B1);
}
void XYZ_to_sRGB_WhitePoint(float X,
float Y,
float Z,
float Xw,
float Yw,
float Zw,
float* R,
float* G,
float* B) {
// The following RGB_xyz is based on
// sRGB value {Rx,Ry}={0.64, 0.33}, {Gx,Gy}={0.30, 0.60}, {Bx,By}={0.15, 0.06}
constexpr float Rx = 0.64f;
constexpr float Ry = 0.33f;
constexpr float Gx = 0.30f;
constexpr float Gy = 0.60f;
constexpr float Bx = 0.15f;
constexpr float By = 0.06f;
Matrix_3by3 RGB_xyz(Rx, Gx, Bx, Ry, Gy, By, 1 - Rx - Ry, 1 - Gx - Gy,
1 - Bx - By);
Vector_3by1 whitePoint(Xw, Yw, Zw);
Vector_3by1 XYZ(X, Y, Z);
Vector_3by1 RGB_Sum_XYZ = RGB_xyz.Inverse().TransformVector(whitePoint);
Matrix_3by3 RGB_SUM_XYZ_DIAG(RGB_Sum_XYZ.a, 0, 0, 0, RGB_Sum_XYZ.b, 0, 0, 0,
RGB_Sum_XYZ.c);
Matrix_3by3 M = RGB_xyz.Multiply(RGB_SUM_XYZ_DIAG);
Vector_3by1 RGB = M.Inverse().TransformVector(XYZ);
*R = RGB_Conversion(RGB.a);
*G = RGB_Conversion(RGB.b);
*B = RGB_Conversion(RGB.c);
}
} // namespace
PatternValue::PatternValue() {
std::fill(std::begin(m_Comps), std::end(m_Comps), 0.0f);
}
PatternValue::PatternValue(const PatternValue& that) = default;
PatternValue::~PatternValue() = default;
void PatternValue::SetComps(pdfium::span<const float> comps) {
CHECK(comps.size() <= m_Comps.size());
std::copy(std::begin(comps), std::end(comps), std::begin(m_Comps));
}
// static
RetainPtr<CPDF_ColorSpace> CPDF_ColorSpace::GetStockCSForName(
const ByteString& name) {
if (name == "DeviceRGB" || name == "RGB")
return GetStockCS(Family::kDeviceRGB);
if (name == "DeviceGray" || name == "G")
return GetStockCS(Family::kDeviceGray);
if (name == "DeviceCMYK" || name == "CMYK")
return GetStockCS(Family::kDeviceCMYK);
if (name == "Pattern")
return GetStockCS(Family::kPattern);
return nullptr;
}
// static
RetainPtr<CPDF_ColorSpace> CPDF_ColorSpace::GetStockCS(Family family) {
return CPDF_PageModule::GetInstance()->GetStockCS(family);
}
// static
RetainPtr<CPDF_ColorSpace> CPDF_ColorSpace::Load(
CPDF_Document* pDoc,
const CPDF_Object* pObj,
std::set<const CPDF_Object*>* pVisited) {
if (!pObj)
return nullptr;
if (pdfium::Contains(*pVisited, pObj))
return nullptr;
ScopedSetInsertion<const CPDF_Object*> insertion(pVisited, pObj);
if (pObj->IsName())
return GetStockCSForName(pObj->GetString());
if (const CPDF_Stream* pStream = pObj->AsStream()) {
const CPDF_Dictionary* pDict = pStream->GetDict();
if (!pDict)
return nullptr;
CPDF_DictionaryLocker locker(pDict);
for (const auto& it : locker) {
CPDF_Name* pValue = ToName(it.second.Get());
if (pValue) {
RetainPtr<CPDF_ColorSpace> pRet =
GetStockCSForName(pValue->GetString());
if (pRet)
return pRet;
}
}
return nullptr;
}
const CPDF_Array* pArray = pObj->AsArray();
if (!pArray || pArray->IsEmpty())
return nullptr;
const CPDF_Object* pFamilyObj = pArray->GetDirectObjectAt(0);
if (!pFamilyObj)
return nullptr;
ByteString familyname = pFamilyObj->GetString();
if (pArray->size() == 1)
return GetStockCSForName(familyname);
RetainPtr<CPDF_ColorSpace> pCS =
CPDF_ColorSpace::AllocateColorSpace(familyname.AsStringView());
if (!pCS)
return nullptr;
pCS->m_pArray.Reset(pArray);
pCS->m_nComponents = pCS->v_Load(pDoc, pArray, pVisited);
if (pCS->m_nComponents == 0)
return nullptr;
return pCS;
}
// static
RetainPtr<CPDF_ColorSpace> CPDF_ColorSpace::AllocateColorSpace(
ByteStringView bsFamilyName) {
switch (bsFamilyName.GetID()) {
case FXBSTR_ID('C', 'a', 'l', 'G'):
return pdfium::MakeRetain<CPDF_CalGray>();
case FXBSTR_ID('C', 'a', 'l', 'R'):
return pdfium::MakeRetain<CPDF_CalRGB>();
case FXBSTR_ID('L', 'a', 'b', 0):
return pdfium::MakeRetain<CPDF_LabCS>();
case FXBSTR_ID('I', 'C', 'C', 'B'):
return pdfium::MakeRetain<CPDF_ICCBasedCS>();
case FXBSTR_ID('I', 'n', 'd', 'e'):
case FXBSTR_ID('I', 0, 0, 0):
return pdfium::MakeRetain<CPDF_IndexedCS>();
case FXBSTR_ID('S', 'e', 'p', 'a'):
return pdfium::MakeRetain<CPDF_SeparationCS>();
case FXBSTR_ID('D', 'e', 'v', 'i'):
return pdfium::MakeRetain<CPDF_DeviceNCS>();
case FXBSTR_ID('P', 'a', 't', 't'):
return pdfium::MakeRetain<CPDF_PatternCS>();
default:
return nullptr;
}
}
// static
uint32_t CPDF_ColorSpace::ComponentsForFamily(Family family) {
switch (family) {
case Family::kDeviceGray:
return 1;
case Family::kDeviceRGB:
return 3;
case Family::kDeviceCMYK:
return 4;
default:
NOTREACHED();
return 4;
}
}
// static
bool CPDF_ColorSpace::IsValidIccComponents(int components) {
return components == 1 || components == 3 || components == 4;
}
std::vector<float> CPDF_ColorSpace::CreateBufAndSetDefaultColor() const {
DCHECK(m_Family != Family::kPattern);
float min;
float max;
std::vector<float> buf(m_nComponents);
for (uint32_t i = 0; i < m_nComponents; i++)
GetDefaultValue(i, &buf[i], &min, &max);
return buf;
}
uint32_t CPDF_ColorSpace::CountComponents() const {
return m_nComponents;
}
void CPDF_ColorSpace::GetDefaultValue(int iComponent,
float* value,
float* min,
float* max) const {
*value = 0.0f;
*min = 0.0f;
*max = 1.0f;
}
void CPDF_ColorSpace::TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const {
uint8_t* dest_buf = dest_span.data();
const uint8_t* src_buf = src_span.data();
std::vector<float> src(m_nComponents);
float R;
float G;
float B;
const int divisor = m_Family != Family::kIndexed ? 255 : 1;
for (int i = 0; i < pixels; i++) {
for (uint32_t j = 0; j < m_nComponents; j++)
src[j] = static_cast<float>(*src_buf++) / divisor;
GetRGB(src, &R, &G, &B);
*dest_buf++ = static_cast<int32_t>(B * 255);
*dest_buf++ = static_cast<int32_t>(G * 255);
*dest_buf++ = static_cast<int32_t>(R * 255);
}
}
void CPDF_ColorSpace::EnableStdConversion(bool bEnabled) {
if (bEnabled)
m_dwStdConversion++;
else if (m_dwStdConversion)
m_dwStdConversion--;
}
bool CPDF_ColorSpace::IsNormal() const {
return GetFamily() == Family::kDeviceGray ||
GetFamily() == Family::kDeviceRGB ||
GetFamily() == Family::kDeviceCMYK ||
GetFamily() == Family::kCalGray || GetFamily() == Family::kCalRGB;
}
const CPDF_PatternCS* CPDF_ColorSpace::AsPatternCS() const {
return nullptr;
}
const CPDF_IndexedCS* CPDF_ColorSpace::AsIndexedCS() const {
return nullptr;
}
CPDF_ColorSpace::CPDF_ColorSpace(Family family) : m_Family(family) {}
CPDF_ColorSpace::~CPDF_ColorSpace() = default;
void CPDF_ColorSpace::SetComponentsForStockCS(uint32_t nComponents) {
m_nComponents = nComponents;
}
CPDF_CalGray::CPDF_CalGray() : CPDF_ColorSpace(Family::kCalGray) {}
CPDF_CalGray::~CPDF_CalGray() = default;
uint32_t CPDF_CalGray::v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) {
const CPDF_Dictionary* pDict = pArray->GetDictAt(1);
if (!pDict)
return 0;
if (!GetWhitePoint(pDict, m_WhitePoint))
return 0;
GetBlackPoint(pDict, m_BlackPoint);
m_Gamma = pDict->GetNumberFor("Gamma");
if (m_Gamma == 0)
m_Gamma = kDefaultGamma;
return 1;
}
bool CPDF_CalGray::GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const {
*R = pBuf[0];
*G = pBuf[0];
*B = pBuf[0];
return true;
}
void CPDF_CalGray::TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const {
uint8_t* pDestBuf = dest_span.data();
const uint8_t* pSrcBuf = src_span.data();
for (int i = 0; i < pixels; i++) {
// Compiler can not conclude that src/dest don't overlap.
const uint8_t pix = pSrcBuf[i];
*pDestBuf++ = pix;
*pDestBuf++ = pix;
*pDestBuf++ = pix;
}
}
CPDF_CalRGB::CPDF_CalRGB() : CPDF_ColorSpace(Family::kCalRGB) {}
CPDF_CalRGB::~CPDF_CalRGB() = default;
uint32_t CPDF_CalRGB::v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) {
const CPDF_Dictionary* pDict = pArray->GetDictAt(1);
if (!pDict)
return 0;
if (!GetWhitePoint(pDict, m_WhitePoint))
return 0;
GetBlackPoint(pDict, m_BlackPoint);
const CPDF_Array* pParam = pDict->GetArrayFor("Gamma");
if (pParam) {
m_bHasGamma = true;
for (size_t i = 0; i < std::size(m_Gamma); ++i)
m_Gamma[i] = pParam->GetNumberAt(i);
}
pParam = pDict->GetArrayFor("Matrix");
if (pParam) {
m_bHasMatrix = true;
for (size_t i = 0; i < std::size(m_Matrix); ++i)
m_Matrix[i] = pParam->GetNumberAt(i);
}
return 3;
}
bool CPDF_CalRGB::GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const {
float A_ = pBuf[0];
float B_ = pBuf[1];
float C_ = pBuf[2];
if (m_bHasGamma) {
A_ = powf(A_, m_Gamma[0]);
B_ = powf(B_, m_Gamma[1]);
C_ = powf(C_, m_Gamma[2]);
}
float X;
float Y;
float Z;
if (m_bHasMatrix) {
X = m_Matrix[0] * A_ + m_Matrix[3] * B_ + m_Matrix[6] * C_;
Y = m_Matrix[1] * A_ + m_Matrix[4] * B_ + m_Matrix[7] * C_;
Z = m_Matrix[2] * A_ + m_Matrix[5] * B_ + m_Matrix[8] * C_;
} else {
X = A_;
Y = B_;
Z = C_;
}
XYZ_to_sRGB_WhitePoint(X, Y, Z, m_WhitePoint[0], m_WhitePoint[1],
m_WhitePoint[2], R, G, B);
return true;
}
void CPDF_CalRGB::TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const {
uint8_t* pDestBuf = dest_span.data();
const uint8_t* pSrcBuf = src_span.data();
if (!bTransMask) {
fxcodec::ReverseRGB(pDestBuf, pSrcBuf, pixels);
return;
}
float Cal[3];
float R;
float G;
float B;
for (int i = 0; i < pixels; i++) {
Cal[0] = static_cast<float>(pSrcBuf[2]) / 255;
Cal[1] = static_cast<float>(pSrcBuf[1]) / 255;
Cal[2] = static_cast<float>(pSrcBuf[0]) / 255;
GetRGB(Cal, &R, &G, &B);
pDestBuf[0] = FXSYS_roundf(B * 255);
pDestBuf[1] = FXSYS_roundf(G * 255);
pDestBuf[2] = FXSYS_roundf(R * 255);
pSrcBuf += 3;
pDestBuf += 3;
}
}
CPDF_LabCS::CPDF_LabCS() : CPDF_ColorSpace(Family::kLab) {}
CPDF_LabCS::~CPDF_LabCS() = default;
void CPDF_LabCS::GetDefaultValue(int iComponent,
float* value,
float* min,
float* max) const {
DCHECK_LT(iComponent, 3);
if (iComponent > 0) {
float range_min = m_Ranges[iComponent * 2 - 2];
float range_max = m_Ranges[iComponent * 2 - 1];
if (range_min <= range_max) {
*min = range_min;
*max = range_max;
*value = pdfium::clamp(0.0f, *min, *max);
return;
}
}
*min = 0.0f;
*max = 100.0f;
*value = 0.0f;
}
uint32_t CPDF_LabCS::v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) {
const CPDF_Dictionary* pDict = pArray->GetDictAt(1);
if (!pDict)
return 0;
if (!GetWhitePoint(pDict, m_WhitePoint))
return 0;
GetBlackPoint(pDict, m_BlackPoint);
const CPDF_Array* pParam = pDict->GetArrayFor("Range");
static constexpr float kDefaultRanges[kRangesCount] = {-100.0f, 100.0f,
-100.0f, 100.0f};
static_assert(std::size(kDefaultRanges) == std::extent<decltype(m_Ranges)>(),
"Range size mismatch");
for (size_t i = 0; i < std::size(kDefaultRanges); ++i)
m_Ranges[i] = pParam ? pParam->GetNumberAt(i) : kDefaultRanges[i];
return 3;
}
bool CPDF_LabCS::GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const {
float Lstar = pBuf[0];
float astar = pBuf[1];
float bstar = pBuf[2];
float M = (Lstar + 16.0f) / 116.0f;
float L = M + astar / 500.0f;
float N = M - bstar / 200.0f;
float X;
float Y;
float Z;
if (L < 0.2069f)
X = 0.957f * 0.12842f * (L - 0.1379f);
else
X = 0.957f * L * L * L;
if (M < 0.2069f)
Y = 0.12842f * (M - 0.1379f);
else
Y = M * M * M;
if (N < 0.2069f)
Z = 1.0889f * 0.12842f * (N - 0.1379f);
else
Z = 1.0889f * N * N * N;
XYZ_to_sRGB(X, Y, Z, R, G, B);
return true;
}
void CPDF_LabCS::TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const {
uint8_t* pDestBuf = dest_span.data();
const uint8_t* pSrcBuf = src_span.data();
for (int i = 0; i < pixels; i++) {
float lab[3];
lab[0] = pSrcBuf[0] * 100 / 255.0f;
lab[1] = pSrcBuf[1] - 128;
lab[2] = pSrcBuf[2] - 128;
float R;
float G;
float B;
GetRGB(lab, &R, &G, &B);
pDestBuf[0] = static_cast<int32_t>(B * 255);
pDestBuf[1] = static_cast<int32_t>(G * 255);
pDestBuf[2] = static_cast<int32_t>(R * 255);
pDestBuf += 3;
pSrcBuf += 3;
}
}
CPDF_ICCBasedCS::CPDF_ICCBasedCS() : CPDF_BasedCS(Family::kICCBased) {}
CPDF_ICCBasedCS::~CPDF_ICCBasedCS() = default;
uint32_t CPDF_ICCBasedCS::v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) {
const CPDF_Stream* pStream = pArray->GetStreamAt(1);
if (!pStream)
return 0;
// The PDF 1.7 spec says the number of components must be valid. While some
// PDF viewers tolerate invalid values, Acrobat does not, so be consistent
// with Acrobat and reject bad values.
const CPDF_Dictionary* pDict = pStream->GetDict();
int32_t nDictComponents = pDict ? pDict->GetIntegerFor("N") : 0;
if (!IsValidIccComponents(nDictComponents))
return 0;
uint32_t nComponents = static_cast<uint32_t>(nDictComponents);
m_pProfile = CPDF_DocPageData::FromDocument(pDoc)->GetIccProfile(pStream);
if (!m_pProfile)
return 0;
// The PDF 1.7 spec also says the number of components in the ICC profile
// must match the N value. However, that assumes the viewer actually
// understands the ICC profile.
// If the valid ICC profile has a mismatch, fail.
if (m_pProfile->IsValid() && m_pProfile->GetComponents() != nComponents)
return 0;
// If PDFium does not understand the ICC profile format at all, or if it's
// SRGB, a profile PDFium recognizes but does not support well, then try the
// alternate profile.
if (!m_pProfile->IsSupported() &&
!FindAlternateProfile(pDoc, pDict, pVisited, nComponents)) {
// If there is no alternate profile, use a stock profile as mentioned in
// the PDF 1.7 spec in table 4.16 in the "Alternate" key description.
DCHECK(!m_pBaseCS);
m_pBaseCS = GetStockAlternateProfile(nComponents);
}
m_pRanges = GetRanges(pDict, nComponents);
return nComponents;
}
bool CPDF_ICCBasedCS::GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const {
DCHECK(m_pProfile);
if (m_pProfile->IsSRGB()) {
*R = pBuf[0];
*G = pBuf[1];
*B = pBuf[2];
return true;
}
if (m_pProfile->transform()) {
float rgb[3];
m_pProfile->transform()->Translate(pBuf.first(CountComponents()), rgb);
*R = rgb[0];
*G = rgb[1];
*B = rgb[2];
return true;
}
if (m_pBaseCS)
return m_pBaseCS->GetRGB(pBuf, R, G, B);
*R = 0.0f;
*G = 0.0f;
*B = 0.0f;
return true;
}
void CPDF_ICCBasedCS::TranslateImageLine(pdfium::span<uint8_t> dest_span,
pdfium::span<const uint8_t> src_span,
int pixels,
int image_width,
int image_height,
bool bTransMask) const {
if (m_pProfile->IsSRGB()) {
fxcodec::ReverseRGB(dest_span.data(), src_span.data(), pixels);
return;
}
if (!m_pProfile->transform()) {
if (m_pBaseCS) {
m_pBaseCS->TranslateImageLine(dest_span, src_span, pixels, image_width,
image_height, false);
}
return;
}
// |nMaxColors| will not overflow since |nComponents| is limited in size.
const uint32_t nComponents = CountComponents();
DCHECK(IsValidIccComponents(nComponents));
int nMaxColors = 1;
for (uint32_t i = 0; i < nComponents; i++)
nMaxColors *= 52;
bool bTranslate = nComponents > 3;
if (!bTranslate) {
FX_SAFE_INT32 nPixelCount = image_width;
nPixelCount *= image_height;
if (nPixelCount.IsValid())
bTranslate = nPixelCount.ValueOrDie() < nMaxColors * 3 / 2;
}
if (bTranslate && m_pProfile->transform()) {
m_pProfile->transform()->TranslateScanline(dest_span, src_span, pixels);
return;
}
if (m_pCache.empty()) {
m_pCache =
fxcrt::Vector2D<uint8_t, FxAllocAllocator<uint8_t>>(nMaxColors, 3);
auto temp_src = fxcrt::Vector2D<uint8_t, FxAllocAllocator<uint8_t>>(
nMaxColors, nComponents);
size_t src_index = 0;
for (int i = 0; i < nMaxColors; i++) {
uint32_t color = i;
uint32_t order = nMaxColors / 52;
for (uint32_t c = 0; c < nComponents; c++) {
temp_src[src_index++] = static_cast<uint8_t>(color / order * 5);
color %= order;
order /= 52;
}
}
if (m_pProfile->transform()) {
m_pProfile->transform()->TranslateScanline(m_pCache, temp_src,
nMaxColors);
}
}
uint8_t* pDestBuf = dest_span.data();
const uint8_t* pSrcBuf = src_span.data();
for (int i = 0; i < pixels; i++) {
int index = 0;
for (uint32_t c = 0; c < nComponents; c++) {
index = index * 52 + (*pSrcBuf) / 5;
pSrcBuf++;
}
index *= 3;
*pDestBuf++ = m_pCache[index];
*pDestBuf++ = m_pCache[index + 1];
*pDestBuf++ = m_pCache[index + 2];
}
}
bool CPDF_ICCBasedCS::IsNormal() const {
if (m_pProfile->IsSRGB())
return true;
if (m_pProfile->transform())
return m_pProfile->transform()->IsNormal();
if (m_pBaseCS)
return m_pBaseCS->IsNormal();
return false;
}
bool CPDF_ICCBasedCS::FindAlternateProfile(
CPDF_Document* pDoc,
const CPDF_Dictionary* pDict,
std::set<const CPDF_Object*>* pVisited,
uint32_t nExpectedComponents) {
const CPDF_Object* pAlterCSObj = pDict->GetDirectObjectFor("Alternate");
if (!pAlterCSObj)
return false;
auto pAlterCS = CPDF_ColorSpace::Load(pDoc, pAlterCSObj, pVisited);
if (!pAlterCS)
return false;
if (pAlterCS->GetFamily() == Family::kPattern)
return false;
if (pAlterCS->CountComponents() != nExpectedComponents)
return false;
m_pBaseCS = std::move(pAlterCS);
return true;
}
// static
RetainPtr<CPDF_ColorSpace> CPDF_ICCBasedCS::GetStockAlternateProfile(
uint32_t nComponents) {
if (nComponents == 1)
return GetStockCS(Family::kDeviceGray);
if (nComponents == 3)
return GetStockCS(Family::kDeviceRGB);
if (nComponents == 4)
return GetStockCS(Family::kDeviceCMYK);
NOTREACHED();
return nullptr;
}
// static
std::vector<float> CPDF_ICCBasedCS::GetRanges(const CPDF_Dictionary* pDict,
uint32_t nComponents) {
DCHECK(IsValidIccComponents(nComponents));
const CPDF_Array* pRanges = pDict->GetArrayFor("Range");
if (pRanges && pRanges->size() >= nComponents * 2)
return ReadArrayElementsToVector(pRanges, nComponents * 2);
std::vector<float> ranges;
ranges.reserve(nComponents * 2);
for (uint32_t i = 0; i < nComponents; i++) {
ranges.push_back(0.0f);
ranges.push_back(1.0f);
}
return ranges;
}
CPDF_SeparationCS::CPDF_SeparationCS() : CPDF_BasedCS(Family::kSeparation) {}
CPDF_SeparationCS::~CPDF_SeparationCS() = default;
void CPDF_SeparationCS::GetDefaultValue(int iComponent,
float* value,
float* min,
float* max) const {
*value = 1.0f;
*min = 0;
*max = 1.0f;
}
uint32_t CPDF_SeparationCS::v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) {
m_IsNoneType = pArray->GetStringAt(1) == "None";
if (m_IsNoneType)
return 1;
const CPDF_Object* pAltArray = pArray->GetDirectObjectAt(2);
if (pAltArray == m_pArray)
return 0;
m_pBaseCS = Load(pDoc, pAltArray, pVisited);
if (!m_pBaseCS)
return 0;
if (m_pBaseCS->IsSpecial())
return 0;
const CPDF_Object* pFuncObj = pArray->GetDirectObjectAt(3);
if (pFuncObj && !pFuncObj->IsName()) {
auto pFunc = CPDF_Function::Load(pFuncObj);
if (pFunc && pFunc->CountOutputs() >= m_pBaseCS->CountComponents())
m_pFunc = std::move(pFunc);
}
return 1;
}
bool CPDF_SeparationCS::GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const {
if (m_IsNoneType)
return false;
if (!m_pFunc) {
if (!m_pBaseCS)
return false;
int nComps = m_pBaseCS->CountComponents();
std::vector<float> results(nComps);
for (int i = 0; i < nComps; i++)
results[i] = pBuf[0];
return m_pBaseCS->GetRGB(results, R, G, B);
}
// Using at least 16 elements due to the call m_pAltCS->GetRGB() below.
std::vector<float> results(std::max(m_pFunc->CountOutputs(), 16u));
uint32_t nresults = m_pFunc->Call(pBuf.first(1), results).value_or(0);
if (nresults == 0)
return false;
if (m_pBaseCS)
return m_pBaseCS->GetRGB(results, R, G, B);
*R = 0.0f;
*G = 0.0f;
*B = 0.0f;
return false;
}
CPDF_DeviceNCS::CPDF_DeviceNCS() : CPDF_BasedCS(Family::kDeviceN) {}
CPDF_DeviceNCS::~CPDF_DeviceNCS() = default;
void CPDF_DeviceNCS::GetDefaultValue(int iComponent,
float* value,
float* min,
float* max) const {
*value = 1.0f;
*min = 0;
*max = 1.0f;
}
uint32_t CPDF_DeviceNCS::v_Load(CPDF_Document* pDoc,
const CPDF_Array* pArray,
std::set<const CPDF_Object*>* pVisited) {
const CPDF_Array* pObj = ToArray(pArray->GetDirectObjectAt(1));
if (!pObj)
return 0;
const CPDF_Object* pAltCS = pArray->GetDirectObjectAt(2);
if (!pAltCS || pAltCS == m_pArray)
return 0;
m_pBaseCS = Load(pDoc, pAltCS, pVisited);
m_pFunc = CPDF_Function::Load(pArray->GetDirectObjectAt(3));
if (!m_pBaseCS || !m_pFunc)
return 0;
if (m_pBaseCS->IsSpecial())
return 0;
if (m_pFunc->CountOutputs() < m_pBaseCS->CountComponents())
return 0;
return fxcrt::CollectionSize<uint32_t>(*pObj);
}
bool CPDF_DeviceNCS::GetRGB(pdfium::span<const float> pBuf,
float* R,
float* G,
float* B) const {
if (!m_pFunc)
return false;
// Using at least 16 elements due to the call m_pAltCS->GetRGB() below.
std::vector<float> results(std::max(m_pFunc->CountOutputs(), 16u));
uint32_t nresults =
m_pFunc->Call(pBuf.first(CountComponents()), pdfium::make_span(results))
.value_or(0);
if (nresults == 0)
return false;
return m_pBaseCS->GetRGB(results, R, G, B);
}