blob: 8fd881b355c128c60427544e2935817029781397 [file] [log] [blame]
// Copyright 2017 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/page/cpdf_dib.h"
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "core/fpdfapi/page/cpdf_colorspace.h"
#include "core/fpdfapi/page/cpdf_docpagedata.h"
#include "core/fpdfapi/page/cpdf_image.h"
#include "core/fpdfapi/page/cpdf_imageobject.h"
#include "core/fpdfapi/page/cpdf_indexedcs.h"
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_document.h"
#include "core/fpdfapi/parser/cpdf_name.h"
#include "core/fpdfapi/parser/cpdf_number.h"
#include "core/fpdfapi/parser/cpdf_stream.h"
#include "core/fpdfapi/parser/cpdf_stream_acc.h"
#include "core/fpdfapi/parser/fpdf_parser_decode.h"
#include "core/fpdfapi/parser/fpdf_parser_utility.h"
#include "core/fxcodec/basic/basicmodule.h"
#include "core/fxcodec/jbig2/jbig2_decoder.h"
#include "core/fxcodec/jpeg/jpegmodule.h"
#include "core/fxcodec/jpx/cjpx_decoder.h"
#include "core/fxcodec/scanlinedecoder.h"
#include "core/fxcrt/cfx_fixedbufgrow.h"
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxcrt/span_util.h"
#include "core/fxge/calculate_pitch.h"
#include "core/fxge/dib/cfx_dibitmap.h"
#include "third_party/base/check.h"
#include "third_party/base/check_op.h"
#include "third_party/base/cxx17_backports.h"
namespace {
bool IsValidDimension(int value) {
constexpr int kMaxImageDimension = 0x01FFFF;
return value > 0 && value <= kMaxImageDimension;
}
unsigned int GetBits8(const uint8_t* pData, uint64_t bitpos, size_t nbits) {
DCHECK(nbits == 1 || nbits == 2 || nbits == 4 || nbits == 8 || nbits == 16);
DCHECK_EQ((bitpos & (nbits - 1)), 0);
unsigned int byte = pData[bitpos / 8];
if (nbits == 8)
return byte;
if (nbits == 16)
return byte * 256 + pData[bitpos / 8 + 1];
return (byte >> (8 - nbits - (bitpos % 8))) & ((1 << nbits) - 1);
}
bool GetBitValue(const uint8_t* pSrc, uint32_t pos) {
return pSrc[pos / 8] & (1 << (7 - pos % 8));
}
// Just to sanity check and filter out obvious bad values.
bool IsMaybeValidBitsPerComponent(int bpc) {
return bpc >= 0 && bpc <= 16;
}
bool IsAllowedBitsPerComponent(int bpc) {
return bpc == 1 || bpc == 2 || bpc == 4 || bpc == 8 || bpc == 16;
}
bool IsColorIndexOutOfBounds(uint8_t index, const DIB_COMP_DATA& comp_datum) {
return index < comp_datum.m_ColorKeyMin || index > comp_datum.m_ColorKeyMax;
}
bool AreColorIndicesOutOfBounds(const uint8_t* indices,
const DIB_COMP_DATA* comp_data,
size_t count) {
for (size_t i = 0; i < count; ++i) {
if (IsColorIndexOutOfBounds(indices[i], comp_data[i]))
return true;
}
return false;
}
int CalculateBitsPerPixel(uint32_t bpc, uint32_t comps) {
// TODO(thestig): Can |bpp| be 0 here? Add an DCHECK() or handle it?
uint32_t bpp = bpc * comps;
if (bpp == 1)
return 1;
if (bpp <= 8)
return 8;
return 24;
}
CJPX_Decoder::ColorSpaceOption ColorSpaceOptionFromColorSpace(
CPDF_ColorSpace* pCS) {
if (!pCS)
return CJPX_Decoder::kNoColorSpace;
if (pCS->GetFamily() == CPDF_ColorSpace::Family::kIndexed)
return CJPX_Decoder::kIndexedColorSpace;
return CJPX_Decoder::kNormalColorSpace;
}
enum class JpxDecodeAction {
kFail,
kDoNothing,
kUseRgb,
kUseCmyk,
kConvertArgbToRgb,
};
JpxDecodeAction GetJpxDecodeAction(const CJPX_Decoder::JpxImageInfo& jpx_info,
const CPDF_ColorSpace* pdf_colorspace) {
if (pdf_colorspace) {
// Make sure the JPX image and the PDF colorspace agree on the number of
// components. In case of a mismatch, try to handle the discrepancy.
if (jpx_info.components != pdf_colorspace->CountComponents()) {
// Many PDFs generated by iOS meets this condition. See
// https://crbug.com/1012369 for example.
if (pdf_colorspace->CountComponents() == 3 && jpx_info.components == 4 &&
jpx_info.colorspace == OPJ_CLRSPC_SRGB) {
return JpxDecodeAction::kConvertArgbToRgb;
}
return JpxDecodeAction::kFail;
}
if (pdf_colorspace ==
CPDF_ColorSpace::GetStockCS(CPDF_ColorSpace::Family::kDeviceRGB)) {
return JpxDecodeAction::kUseRgb;
}
return JpxDecodeAction::kDoNothing;
}
// Cases where the PDF did not provide a colorspace.
// Choose how to decode based on the number of components in the JPX image.
switch (jpx_info.components) {
case 3:
return JpxDecodeAction::kUseRgb;
case 4:
return JpxDecodeAction::kUseCmyk;
default:
return JpxDecodeAction::kDoNothing;
}
}
} // namespace
CPDF_DIB::CPDF_DIB(CPDF_Document* pDoc, const CPDF_Stream* pStream)
: m_pDocument(pDoc), m_pStream(pStream) {}
CPDF_DIB::~CPDF_DIB() = default;
CPDF_DIB::JpxSMaskInlineData::JpxSMaskInlineData() = default;
CPDF_DIB::JpxSMaskInlineData::~JpxSMaskInlineData() = default;
bool CPDF_DIB::Load() {
if (!LoadInternal(nullptr, nullptr))
return false;
if (CreateDecoder() == LoadState::kFail)
return false;
return ContinueInternal();
}
bool CPDF_DIB::ContinueToLoadMask() {
if (m_pColorSpace && m_bStdCS)
m_pColorSpace->EnableStdConversion(true);
return ContinueInternal();
}
bool CPDF_DIB::ContinueInternal() {
if (m_bImageMask) {
SetMaskProperties();
} else {
if (!m_bpc || !m_nComponents)
return false;
m_Format = MakeRGBFormat(CalculateBitsPerPixel(m_bpc, m_nComponents));
}
absl::optional<uint32_t> pitch =
fxge::CalculatePitch32(GetBppFromFormat(m_Format), m_Width);
if (!pitch.has_value())
return false;
m_LineBuf = std::vector<uint8_t, FxAllocAllocator<uint8_t>>(pitch.value());
LoadPalette();
if (m_bColorKey) {
m_Format = FXDIB_Format::kArgb;
pitch = fxge::CalculatePitch32(GetBppFromFormat(m_Format), m_Width);
if (!pitch.has_value())
return false;
m_MaskBuf = std::vector<uint8_t, FxAllocAllocator<uint8_t>>(pitch.value());
}
m_Pitch = pitch.value();
return true;
}
CPDF_DIB::LoadState CPDF_DIB::StartLoadDIBBase(
bool bHasMask,
const CPDF_Dictionary* pFormResources,
const CPDF_Dictionary* pPageResources,
bool bStdCS,
CPDF_ColorSpace::Family GroupFamily,
bool bLoadMask) {
m_bStdCS = bStdCS;
m_bHasMask = bHasMask;
m_GroupFamily = GroupFamily;
m_bLoadMask = bLoadMask;
if (!m_pStream->IsInline())
pFormResources = nullptr;
if (!LoadInternal(pFormResources, pPageResources))
return LoadState::kFail;
LoadState iCreatedDecoder = CreateDecoder();
if (iCreatedDecoder == LoadState::kFail)
return LoadState::kFail;
if (!ContinueToLoadMask())
return LoadState::kFail;
LoadState iLoadedMask = m_bHasMask ? StartLoadMask() : LoadState::kSuccess;
if (iCreatedDecoder == LoadState::kContinue ||
iLoadedMask == LoadState::kContinue) {
return LoadState::kContinue;
}
DCHECK_EQ(iCreatedDecoder, LoadState::kSuccess);
DCHECK_EQ(iLoadedMask, LoadState::kSuccess);
if (m_pColorSpace && m_bStdCS)
m_pColorSpace->EnableStdConversion(false);
return LoadState::kSuccess;
}
CPDF_DIB::LoadState CPDF_DIB::ContinueLoadDIBBase(PauseIndicatorIface* pPause) {
if (m_Status == LoadState::kContinue)
return ContinueLoadMaskDIB(pPause);
ByteString decoder = m_pStreamAcc->GetImageDecoder();
if (decoder == "JPXDecode")
return LoadState::kFail;
if (decoder != "JBIG2Decode")
return LoadState::kSuccess;
if (m_Status == LoadState::kFail)
return LoadState::kFail;
FXCODEC_STATUS iDecodeStatus;
if (!m_pJbig2Context) {
m_pJbig2Context = std::make_unique<Jbig2Context>();
if (m_pStreamAcc->GetImageParam()) {
const CPDF_Stream* pGlobals =
m_pStreamAcc->GetImageParam()->GetStreamFor("JBIG2Globals");
if (pGlobals) {
m_pGlobalAcc = pdfium::MakeRetain<CPDF_StreamAcc>(pGlobals);
m_pGlobalAcc->LoadAllDataFiltered();
}
}
uint64_t nSrcKey = 0;
pdfium::span<const uint8_t> pSrcSpan;
if (m_pStreamAcc) {
pSrcSpan = m_pStreamAcc->GetSpan();
if (m_pStreamAcc->GetStream())
nSrcKey = m_pStreamAcc->GetStream()->KeyForCache();
}
uint64_t nGlobalKey = 0;
pdfium::span<const uint8_t> pGlobalSpan;
if (m_pGlobalAcc) {
pGlobalSpan = m_pGlobalAcc->GetSpan();
if (m_pGlobalAcc->GetStream())
nGlobalKey = m_pGlobalAcc->GetStream()->KeyForCache();
}
iDecodeStatus = Jbig2Decoder::StartDecode(
m_pJbig2Context.get(), m_pDocument->GetOrCreateCodecContext(), m_Width,
m_Height, pSrcSpan, nSrcKey, pGlobalSpan, nGlobalKey,
m_pCachedBitmap->GetBuffer(), m_pCachedBitmap->GetPitch(), pPause);
} else {
iDecodeStatus = Jbig2Decoder::ContinueDecode(m_pJbig2Context.get(), pPause);
}
if (iDecodeStatus == FXCODEC_STATUS::kError) {
m_pJbig2Context.reset();
m_pCachedBitmap.Reset();
m_pGlobalAcc.Reset();
return LoadState::kFail;
}
if (iDecodeStatus == FXCODEC_STATUS::kDecodeToBeContinued)
return LoadState::kContinue;
LoadState iContinueStatus = LoadState::kSuccess;
if (m_bHasMask) {
if (ContinueLoadMaskDIB(pPause) == LoadState::kContinue) {
iContinueStatus = LoadState::kContinue;
m_Status = LoadState::kContinue;
}
}
if (iContinueStatus == LoadState::kContinue)
return LoadState::kContinue;
if (m_pColorSpace && m_bStdCS)
m_pColorSpace->EnableStdConversion(false);
return iContinueStatus;
}
bool CPDF_DIB::LoadColorInfo(const CPDF_Dictionary* pFormResources,
const CPDF_Dictionary* pPageResources) {
absl::optional<DecoderArray> decoder_array = GetDecoderArray(m_pDict.Get());
if (!decoder_array.has_value())
return false;
m_bpc_orig = m_pDict->GetIntegerFor("BitsPerComponent");
if (!IsMaybeValidBitsPerComponent(m_bpc_orig))
return false;
m_bImageMask = m_pDict->GetBooleanFor("ImageMask", /*bDefault=*/false);
if (m_bImageMask || !m_pDict->KeyExist("ColorSpace")) {
if (!m_bImageMask && !decoder_array.value().empty()) {
const ByteString& filter = decoder_array.value().back().first;
if (filter == "JPXDecode") {
m_bDoBpcCheck = false;
return true;
}
}
m_bImageMask = true;
m_bpc = m_nComponents = 1;
const CPDF_Array* pDecode = m_pDict->GetArrayFor("Decode");
m_bDefaultDecode = !pDecode || !pDecode->GetIntegerAt(0);
return true;
}
const CPDF_Object* pCSObj = m_pDict->GetDirectObjectFor("ColorSpace");
if (!pCSObj)
return false;
auto* pDocPageData = CPDF_DocPageData::FromDocument(m_pDocument.Get());
if (pFormResources)
m_pColorSpace = pDocPageData->GetColorSpace(pCSObj, pFormResources);
if (!m_pColorSpace)
m_pColorSpace = pDocPageData->GetColorSpace(pCSObj, pPageResources);
if (!m_pColorSpace)
return false;
// If the checks above failed to find a colorspace, and the next line to set
// |m_nComponents| does not get reached, then a decoder can try to set
// |m_nComponents| based on the number of components in the image being
// decoded.
m_nComponents = m_pColorSpace->CountComponents();
m_Family = m_pColorSpace->GetFamily();
if (m_Family == CPDF_ColorSpace::Family::kICCBased && pCSObj->IsName()) {
ByteString cs = pCSObj->GetString();
if (cs == "DeviceGray")
m_nComponents = 1;
else if (cs == "DeviceRGB")
m_nComponents = 3;
else if (cs == "DeviceCMYK")
m_nComponents = 4;
}
ByteString filter;
if (!decoder_array.value().empty())
filter = decoder_array.value().back().first;
if (!ValidateDictParam(filter))
return false;
return GetDecodeAndMaskArray();
}
bool CPDF_DIB::GetDecodeAndMaskArray() {
if (!m_pColorSpace)
return false;
m_CompData.resize(m_nComponents);
int max_data = (1 << m_bpc) - 1;
const CPDF_Array* pDecode = m_pDict->GetArrayFor("Decode");
if (pDecode) {
for (uint32_t i = 0; i < m_nComponents; i++) {
m_CompData[i].m_DecodeMin = pDecode->GetNumberAt(i * 2);
float max = pDecode->GetNumberAt(i * 2 + 1);
m_CompData[i].m_DecodeStep = (max - m_CompData[i].m_DecodeMin) / max_data;
float def_value;
float def_min;
float def_max;
m_pColorSpace->GetDefaultValue(i, &def_value, &def_min, &def_max);
if (m_Family == CPDF_ColorSpace::Family::kIndexed)
def_max = max_data;
if (def_min != m_CompData[i].m_DecodeMin || def_max != max)
m_bDefaultDecode = false;
}
} else {
for (uint32_t i = 0; i < m_nComponents; i++) {
float def_value;
m_pColorSpace->GetDefaultValue(i, &def_value, &m_CompData[i].m_DecodeMin,
&m_CompData[i].m_DecodeStep);
if (m_Family == CPDF_ColorSpace::Family::kIndexed)
m_CompData[i].m_DecodeStep = max_data;
m_CompData[i].m_DecodeStep =
(m_CompData[i].m_DecodeStep - m_CompData[i].m_DecodeMin) / max_data;
}
}
if (m_pDict->KeyExist("SMask"))
return true;
const CPDF_Object* pMask = m_pDict->GetDirectObjectFor("Mask");
if (!pMask)
return true;
if (const CPDF_Array* pArray = pMask->AsArray()) {
if (pArray->size() >= m_nComponents * 2) {
for (uint32_t i = 0; i < m_nComponents; i++) {
int min_num = pArray->GetIntegerAt(i * 2);
int max_num = pArray->GetIntegerAt(i * 2 + 1);
m_CompData[i].m_ColorKeyMin = std::max(min_num, 0);
m_CompData[i].m_ColorKeyMax = std::min(max_num, max_data);
}
}
m_bColorKey = true;
}
return true;
}
CPDF_DIB::LoadState CPDF_DIB::CreateDecoder() {
ByteString decoder = m_pStreamAcc->GetImageDecoder();
if (decoder.IsEmpty())
return LoadState::kSuccess;
if (m_bDoBpcCheck && m_bpc == 0)
return LoadState::kFail;
if (decoder == "JPXDecode") {
m_pCachedBitmap = LoadJpxBitmap();
return m_pCachedBitmap ? LoadState::kSuccess : LoadState::kFail;
}
if (decoder == "JBIG2Decode") {
m_pCachedBitmap = pdfium::MakeRetain<CFX_DIBitmap>();
if (!m_pCachedBitmap->Create(
m_Width, m_Height,
m_bImageMask ? FXDIB_Format::k1bppMask : FXDIB_Format::k1bppRgb)) {
m_pCachedBitmap.Reset();
return LoadState::kFail;
}
m_Status = LoadState::kSuccess;
return LoadState::kContinue;
}
pdfium::span<const uint8_t> src_span = m_pStreamAcc->GetSpan();
const CPDF_Dictionary* pParams = m_pStreamAcc->GetImageParam();
if (decoder == "CCITTFaxDecode") {
m_pDecoder = CreateFaxDecoder(src_span, m_Width, m_Height, pParams);
} else if (decoder == "FlateDecode") {
m_pDecoder = CreateFlateDecoder(src_span, m_Width, m_Height, m_nComponents,
m_bpc, pParams);
} else if (decoder == "RunLengthDecode") {
m_pDecoder = BasicModule::CreateRunLengthDecoder(
src_span, m_Width, m_Height, m_nComponents, m_bpc);
} else if (decoder == "DCTDecode") {
if (!CreateDCTDecoder(src_span, pParams))
return LoadState::kFail;
}
if (!m_pDecoder)
return LoadState::kFail;
const absl::optional<uint32_t> requested_pitch =
fxge::CalculatePitch8(m_bpc, m_nComponents, m_Width);
if (!requested_pitch.has_value())
return LoadState::kFail;
const absl::optional<uint32_t> provided_pitch = fxge::CalculatePitch8(
m_pDecoder->GetBPC(), m_pDecoder->CountComps(), m_pDecoder->GetWidth());
if (!provided_pitch.has_value())
return LoadState::kFail;
if (provided_pitch.value() < requested_pitch.value())
return LoadState::kFail;
return LoadState::kSuccess;
}
bool CPDF_DIB::CreateDCTDecoder(pdfium::span<const uint8_t> src_span,
const CPDF_Dictionary* pParams) {
m_pDecoder = JpegModule::CreateDecoder(
src_span, m_Width, m_Height, m_nComponents,
!pParams || pParams->GetIntegerFor("ColorTransform", 1));
if (m_pDecoder)
return true;
absl::optional<JpegModule::ImageInfo> info_opt =
JpegModule::LoadInfo(src_span);
if (!info_opt.has_value())
return false;
const JpegModule::ImageInfo& info = info_opt.value();
m_Width = info.width;
m_Height = info.height;
if (!CPDF_Image::IsValidJpegComponent(info.num_components) ||
!CPDF_Image::IsValidJpegBitsPerComponent(info.bits_per_components)) {
return false;
}
if (m_nComponents == static_cast<uint32_t>(info.num_components)) {
m_bpc = info.bits_per_components;
m_pDecoder = JpegModule::CreateDecoder(src_span, m_Width, m_Height,
m_nComponents, info.color_transform);
return true;
}
m_nComponents = static_cast<uint32_t>(info.num_components);
m_CompData.clear();
if (m_pColorSpace) {
uint32_t colorspace_comps = m_pColorSpace->CountComponents();
switch (m_Family) {
case CPDF_ColorSpace::Family::kDeviceGray:
case CPDF_ColorSpace::Family::kDeviceRGB:
case CPDF_ColorSpace::Family::kDeviceCMYK: {
uint32_t dwMinComps = CPDF_ColorSpace::ComponentsForFamily(m_Family);
if (colorspace_comps < dwMinComps || m_nComponents < dwMinComps)
return false;
break;
}
case CPDF_ColorSpace::Family::kLab: {
if (m_nComponents != 3 || colorspace_comps < 3)
return false;
break;
}
case CPDF_ColorSpace::Family::kICCBased: {
if (!CPDF_ColorSpace::IsValidIccComponents(colorspace_comps) ||
!CPDF_ColorSpace::IsValidIccComponents(m_nComponents) ||
colorspace_comps < m_nComponents) {
return false;
}
break;
}
default: {
if (colorspace_comps != m_nComponents)
return false;
break;
}
}
} else {
if (m_Family == CPDF_ColorSpace::Family::kLab && m_nComponents != 3)
return false;
}
if (!GetDecodeAndMaskArray())
return false;
m_bpc = info.bits_per_components;
m_pDecoder = JpegModule::CreateDecoder(src_span, m_Width, m_Height,
m_nComponents, info.color_transform);
return true;
}
RetainPtr<CFX_DIBitmap> CPDF_DIB::LoadJpxBitmap() {
std::unique_ptr<CJPX_Decoder> decoder =
CJPX_Decoder::Create(m_pStreamAcc->GetSpan(),
ColorSpaceOptionFromColorSpace(m_pColorSpace.Get()));
if (!decoder)
return nullptr;
if (!decoder->StartDecode())
return nullptr;
CJPX_Decoder::JpxImageInfo image_info = decoder->GetInfo();
if (static_cast<int>(image_info.width) < m_Width ||
static_cast<int>(image_info.height) < m_Height) {
return nullptr;
}
RetainPtr<CPDF_ColorSpace> original_colorspace = m_pColorSpace;
bool swap_rgb = false;
bool convert_argb_to_rgb = false;
switch (GetJpxDecodeAction(image_info, m_pColorSpace.Get())) {
case JpxDecodeAction::kFail:
return nullptr;
case JpxDecodeAction::kDoNothing:
break;
case JpxDecodeAction::kUseRgb:
DCHECK(image_info.components >= 3);
swap_rgb = true;
m_pColorSpace = nullptr;
break;
case JpxDecodeAction::kUseCmyk:
m_pColorSpace =
CPDF_ColorSpace::GetStockCS(CPDF_ColorSpace::Family::kDeviceCMYK);
break;
case JpxDecodeAction::kConvertArgbToRgb:
swap_rgb = true;
convert_argb_to_rgb = true;
m_pColorSpace.Reset();
}
// If |original_colorspace| exists, then LoadColorInfo() already set
// |m_nComponents|.
if (original_colorspace) {
DCHECK_NE(0, m_nComponents);
} else {
DCHECK_EQ(0, m_nComponents);
m_nComponents = image_info.components;
}
FXDIB_Format format;
if (image_info.components == 1) {
format = FXDIB_Format::k8bppRgb;
} else if (image_info.components <= 3) {
format = FXDIB_Format::kRgb;
} else if (image_info.components == 4) {
format = FXDIB_Format::kRgb32;
} else {
image_info.width = (image_info.width * image_info.components + 2) / 3;
format = FXDIB_Format::kRgb;
}
auto result_bitmap = pdfium::MakeRetain<CFX_DIBitmap>();
if (!result_bitmap->Create(image_info.width, image_info.height, format))
return nullptr;
result_bitmap->Clear(0xFFFFFFFF);
if (!decoder->Decode(result_bitmap->GetBuffer(), result_bitmap->GetPitch(),
swap_rgb)) {
return nullptr;
}
if (convert_argb_to_rgb) {
DCHECK_EQ(3, m_nComponents);
auto rgb_bitmap = pdfium::MakeRetain<CFX_DIBitmap>();
if (!rgb_bitmap->Create(image_info.width, image_info.height,
FXDIB_Format::kRgb)) {
return nullptr;
}
if (m_pDict->GetIntegerFor("SMaskInData") == 1) {
// TODO(thestig): Acrobat does not support "/SMaskInData 1" combined with
// filters. Check for that and fail early.
DCHECK(m_JpxInlineData.data.empty());
m_JpxInlineData.width = image_info.width;
m_JpxInlineData.height = image_info.height;
m_JpxInlineData.data.reserve(image_info.width * image_info.height);
for (uint32_t row = 0; row < image_info.height; ++row) {
const uint8_t* src = result_bitmap->GetScanline(row).data();
uint8_t* dest = rgb_bitmap->GetWritableScanline(row).data();
for (uint32_t col = 0; col < image_info.width; ++col) {
uint8_t a = src[3];
m_JpxInlineData.data.push_back(a);
uint8_t na = 255 - a;
uint8_t b = (src[0] * a + 255 * na) / 255;
uint8_t g = (src[1] * a + 255 * na) / 255;
uint8_t r = (src[2] * a + 255 * na) / 255;
dest[0] = b;
dest[1] = g;
dest[2] = r;
src += 4;
dest += 3;
}
}
} else {
// TODO(thestig): Is there existing code that does this already?
for (uint32_t row = 0; row < image_info.height; ++row) {
const uint8_t* src = result_bitmap->GetScanline(row).data();
uint8_t* dest = rgb_bitmap->GetWritableScanline(row).data();
for (uint32_t col = 0; col < image_info.width; ++col) {
memcpy(dest, src, 3);
src += 4;
dest += 3;
}
}
}
result_bitmap = std::move(rgb_bitmap);
} else if (m_pColorSpace &&
m_pColorSpace->GetFamily() == CPDF_ColorSpace::Family::kIndexed &&
m_bpc < 8) {
int scale = 8 - m_bpc;
for (uint32_t row = 0; row < image_info.height; ++row) {
uint8_t* scanline = result_bitmap->GetWritableScanline(row).data();
for (uint32_t col = 0; col < image_info.width; ++col) {
*scanline = (*scanline) >> scale;
++scanline;
}
}
}
m_bpc = 8;
return result_bitmap;
}
bool CPDF_DIB::LoadInternal(const CPDF_Dictionary* pFormResources,
const CPDF_Dictionary* pPageResources) {
if (!m_pStream)
return false;
m_pDict.Reset(m_pStream->GetDict());
if (!m_pDict)
return false;
m_Width = m_pDict->GetIntegerFor("Width");
m_Height = m_pDict->GetIntegerFor("Height");
if (!IsValidDimension(m_Width) || !IsValidDimension(m_Height))
return false;
if (!LoadColorInfo(pFormResources, pPageResources))
return false;
if (m_bDoBpcCheck && (m_bpc == 0 || m_nComponents == 0))
return false;
const absl::optional<uint32_t> maybe_size =
fxge::CalculatePitch8(m_bpc, m_nComponents, m_Width);
if (!maybe_size.has_value())
return false;
FX_SAFE_UINT32 src_size = maybe_size.value();
src_size *= m_Height;
if (!src_size.IsValid())
return false;
m_pStreamAcc = pdfium::MakeRetain<CPDF_StreamAcc>(m_pStream.Get());
m_pStreamAcc->LoadAllDataImageAcc(src_size.ValueOrDie());
if (m_pStreamAcc->GetSize() == 0 || !m_pStreamAcc->GetData())
return false;
return true;
}
CPDF_DIB::LoadState CPDF_DIB::StartLoadMask() {
m_MatteColor = 0XFFFFFFFF;
if (!m_JpxInlineData.data.empty()) {
auto dict = pdfium::MakeRetain<CPDF_Dictionary>();
dict->SetNewFor<CPDF_Name>("Type", "XObject");
dict->SetNewFor<CPDF_Name>("Subtype", "Image");
dict->SetNewFor<CPDF_Name>("ColorSpace", "DeviceGray");
dict->SetNewFor<CPDF_Number>("Width", m_JpxInlineData.width);
dict->SetNewFor<CPDF_Number>("Height", m_JpxInlineData.height);
dict->SetNewFor<CPDF_Number>("BitsPerComponent", 8);
return StartLoadMaskDIB(
pdfium::MakeRetain<CPDF_Stream>(m_JpxInlineData.data, std::move(dict)));
}
RetainPtr<const CPDF_Stream> mask(m_pDict->GetStreamFor("SMask"));
if (!mask) {
mask.Reset(ToStream(m_pDict->GetDirectObjectFor("Mask")));
return mask ? StartLoadMaskDIB(std::move(mask)) : LoadState::kSuccess;
}
const CPDF_Array* pMatte = mask->GetDict()->GetArrayFor("Matte");
if (pMatte && m_pColorSpace &&
m_Family != CPDF_ColorSpace::Family::kPattern &&
pMatte->size() == m_nComponents &&
m_pColorSpace->CountComponents() <= m_nComponents) {
std::vector<float> colors =
ReadArrayElementsToVector(pMatte, m_nComponents);
float R;
float G;
float B;
m_pColorSpace->GetRGB(colors, &R, &G, &B);
m_MatteColor = ArgbEncode(0, FXSYS_roundf(R * 255), FXSYS_roundf(G * 255),
FXSYS_roundf(B * 255));
}
return StartLoadMaskDIB(std::move(mask));
}
CPDF_DIB::LoadState CPDF_DIB::ContinueLoadMaskDIB(PauseIndicatorIface* pPause) {
if (!m_pMask)
return LoadState::kSuccess;
LoadState ret = m_pMask->ContinueLoadDIBBase(pPause);
if (ret == LoadState::kContinue)
return LoadState::kContinue;
if (m_pColorSpace && m_bStdCS)
m_pColorSpace->EnableStdConversion(false);
if (ret == LoadState::kFail) {
m_pMask.Reset();
return LoadState::kFail;
}
return LoadState::kSuccess;
}
RetainPtr<CPDF_DIB> CPDF_DIB::DetachMask() {
return std::move(m_pMask);
}
bool CPDF_DIB::IsJBigImage() const {
return m_pStreamAcc->GetImageDecoder() == "JBIG2Decode";
}
CPDF_DIB::LoadState CPDF_DIB::StartLoadMaskDIB(
RetainPtr<const CPDF_Stream> mask_stream) {
m_pMask = pdfium::MakeRetain<CPDF_DIB>(m_pDocument.Get(), mask_stream.Get());
LoadState ret = m_pMask->StartLoadDIBBase(
false, nullptr, nullptr, true, CPDF_ColorSpace::Family::kUnknown, false);
if (ret == LoadState::kContinue) {
if (m_Status == LoadState::kFail)
m_Status = LoadState::kContinue;
return LoadState::kContinue;
}
if (ret == LoadState::kFail)
m_pMask.Reset();
return LoadState::kSuccess;
}
void CPDF_DIB::LoadPalette() {
if (!m_pColorSpace || m_Family == CPDF_ColorSpace::Family::kPattern)
return;
if (m_bpc == 0)
return;
// Use FX_SAFE_UINT32 just to be on the safe side, in case |m_bpc| or
// |m_nComponents| somehow gets a bad value.
FX_SAFE_UINT32 safe_bits = m_bpc;
safe_bits *= m_nComponents;
uint32_t bits = safe_bits.ValueOrDefault(255);
if (bits > 8)
return;
if (bits == 1) {
if (m_bDefaultDecode && (m_Family == CPDF_ColorSpace::Family::kDeviceGray ||
m_Family == CPDF_ColorSpace::Family::kDeviceRGB)) {
return;
}
if (m_pColorSpace->CountComponents() > 3) {
return;
}
float color_values[3];
std::fill(std::begin(color_values), std::end(color_values),
m_CompData[0].m_DecodeMin);
float R = 0.0f;
float G = 0.0f;
float B = 0.0f;
m_pColorSpace->GetRGB(color_values, &R, &G, &B);
FX_ARGB argb0 = ArgbEncode(255, FXSYS_roundf(R * 255),
FXSYS_roundf(G * 255), FXSYS_roundf(B * 255));
FX_ARGB argb1;
const CPDF_IndexedCS* indexed_cs = m_pColorSpace->AsIndexedCS();
if (indexed_cs && indexed_cs->GetMaxIndex() == 0) {
// If an indexed color space's hival value is 0, only 1 color is specified
// in the lookup table. Another color should be set to 0xFF000000 by
// default to set the range of the color space.
argb1 = 0xFF000000;
} else {
color_values[0] += m_CompData[0].m_DecodeStep;
color_values[1] += m_CompData[0].m_DecodeStep;
color_values[2] += m_CompData[0].m_DecodeStep;
m_pColorSpace->GetRGB(color_values, &R, &G, &B);
argb1 = ArgbEncode(255, FXSYS_roundf(R * 255), FXSYS_roundf(G * 255),
FXSYS_roundf(B * 255));
}
if (argb0 != 0xFF000000 || argb1 != 0xFFFFFFFF) {
SetPaletteArgb(0, argb0);
SetPaletteArgb(1, argb1);
}
return;
}
if (m_bpc == 8 && m_bDefaultDecode &&
m_pColorSpace ==
CPDF_ColorSpace::GetStockCS(CPDF_ColorSpace::Family::kDeviceGray)) {
return;
}
int palette_count = 1 << bits;
// Using at least 16 elements due to the call m_pColorSpace->GetRGB().
std::vector<float> color_values(std::max(m_nComponents, 16u));
for (int i = 0; i < palette_count; i++) {
int color_data = i;
for (uint32_t j = 0; j < m_nComponents; j++) {
int encoded_component = color_data % (1 << m_bpc);
color_data /= 1 << m_bpc;
color_values[j] = m_CompData[j].m_DecodeMin +
m_CompData[j].m_DecodeStep * encoded_component;
}
float R = 0;
float G = 0;
float B = 0;
if (m_nComponents == 1 && m_Family == CPDF_ColorSpace::Family::kICCBased &&
m_pColorSpace->CountComponents() > 1) {
int nComponents = m_pColorSpace->CountComponents();
std::vector<float> temp_buf(nComponents);
for (int k = 0; k < nComponents; ++k)
temp_buf[k] = color_values[0];
m_pColorSpace->GetRGB(temp_buf, &R, &G, &B);
} else {
m_pColorSpace->GetRGB(color_values, &R, &G, &B);
}
SetPaletteArgb(i, ArgbEncode(255, FXSYS_roundf(R * 255),
FXSYS_roundf(G * 255), FXSYS_roundf(B * 255)));
}
}
bool CPDF_DIB::ValidateDictParam(const ByteString& filter) {
m_bpc = m_bpc_orig;
// Per spec, |m_bpc| should always be 8 for RunLengthDecode, but too many
// documents do not conform to it. So skip this check.
if (filter == "JPXDecode") {
m_bDoBpcCheck = false;
return true;
}
if (filter == "CCITTFaxDecode" || filter == "JBIG2Decode") {
m_bpc = 1;
m_nComponents = 1;
} else if (filter == "DCTDecode") {
m_bpc = 8;
}
if (!IsAllowedBitsPerComponent(m_bpc)) {
m_bpc = 0;
return false;
}
return true;
}
void CPDF_DIB::TranslateScanline24bpp(
pdfium::span<uint8_t> dest_scan,
pdfium::span<const uint8_t> src_scan) const {
if (m_bpc == 0)
return;
if (TranslateScanline24bppDefaultDecode(dest_scan, src_scan))
return;
// Using at least 16 elements due to the call m_pColorSpace->GetRGB().
std::vector<float> color_values(std::max(m_nComponents, 16u));
float R = 0.0f;
float G = 0.0f;
float B = 0.0f;
uint64_t src_bit_pos = 0;
uint64_t src_byte_pos = 0;
size_t dest_byte_pos = 0;
const bool bpp8 = m_bpc == 8;
for (int column = 0; column < m_Width; column++) {
for (uint32_t color = 0; color < m_nComponents; color++) {
if (bpp8) {
uint8_t data = src_scan[src_byte_pos++];
color_values[color] = m_CompData[color].m_DecodeMin +
m_CompData[color].m_DecodeStep * data;
} else {
unsigned int data = GetBits8(src_scan.data(), src_bit_pos, m_bpc);
color_values[color] = m_CompData[color].m_DecodeMin +
m_CompData[color].m_DecodeStep * data;
src_bit_pos += m_bpc;
}
}
if (TransMask()) {
float k = 1.0f - color_values[3];
R = (1.0f - color_values[0]) * k;
G = (1.0f - color_values[1]) * k;
B = (1.0f - color_values[2]) * k;
} else if (m_Family != CPDF_ColorSpace::Family::kPattern) {
m_pColorSpace->GetRGB(color_values, &R, &G, &B);
}
R = pdfium::clamp(R, 0.0f, 1.0f);
G = pdfium::clamp(G, 0.0f, 1.0f);
B = pdfium::clamp(B, 0.0f, 1.0f);
dest_scan[dest_byte_pos] = static_cast<uint8_t>(B * 255);
dest_scan[dest_byte_pos + 1] = static_cast<uint8_t>(G * 255);
dest_scan[dest_byte_pos + 2] = static_cast<uint8_t>(R * 255);
dest_byte_pos += 3;
}
}
bool CPDF_DIB::TranslateScanline24bppDefaultDecode(
pdfium::span<uint8_t> dest_scan,
pdfium::span<const uint8_t> src_scan) const {
if (!m_bDefaultDecode)
return false;
if (m_Family != CPDF_ColorSpace::Family::kDeviceRGB &&
m_Family != CPDF_ColorSpace::Family::kCalRGB) {
if (m_bpc != 8)
return false;
if (m_nComponents == m_pColorSpace->CountComponents()) {
m_pColorSpace->TranslateImageLine(dest_scan, src_scan, m_Width, m_Width,
m_Height, TransMask());
}
return true;
}
if (m_nComponents != 3)
return true;
uint8_t* dest_pos = dest_scan.data();
const uint8_t* src_pos = src_scan.data();
switch (m_bpc) {
case 8:
for (int column = 0; column < m_Width; column++) {
*dest_pos++ = src_pos[2];
*dest_pos++ = src_pos[1];
*dest_pos++ = *src_pos;
src_pos += 3;
}
break;
case 16:
for (int col = 0; col < m_Width; col++) {
*dest_pos++ = src_pos[4];
*dest_pos++ = src_pos[2];
*dest_pos++ = *src_pos;
src_pos += 6;
}
break;
default:
const unsigned int max_data = (1 << m_bpc) - 1;
uint64_t src_bit_pos = 0;
size_t dest_byte_pos = 0;
for (int column = 0; column < m_Width; column++) {
unsigned int R = GetBits8(src_scan.data(), src_bit_pos, m_bpc);
src_bit_pos += m_bpc;
unsigned int G = GetBits8(src_scan.data(), src_bit_pos, m_bpc);
src_bit_pos += m_bpc;
unsigned int B = GetBits8(src_scan.data(), src_bit_pos, m_bpc);
src_bit_pos += m_bpc;
R = std::min(R, max_data);
G = std::min(G, max_data);
B = std::min(B, max_data);
dest_pos[dest_byte_pos] = B * 255 / max_data;
dest_pos[dest_byte_pos + 1] = G * 255 / max_data;
dest_pos[dest_byte_pos + 2] = R * 255 / max_data;
dest_byte_pos += 3;
}
break;
}
return true;
}
uint8_t* CPDF_DIB::GetBuffer() const {
return m_pCachedBitmap ? m_pCachedBitmap->GetBuffer() : nullptr;
}
pdfium::span<const uint8_t> CPDF_DIB::GetScanline(int line) const {
if (m_bpc == 0)
return pdfium::span<const uint8_t>();
const absl::optional<uint32_t> src_pitch =
fxge::CalculatePitch8(m_bpc, m_nComponents, m_Width);
if (!src_pitch.has_value())
return pdfium::span<const uint8_t>();
uint32_t src_pitch_value = src_pitch.value();
pdfium::span<const uint8_t> pSrcLine;
if (m_pCachedBitmap && src_pitch_value <= m_pCachedBitmap->GetPitch()) {
if (line >= m_pCachedBitmap->GetHeight())
line = m_pCachedBitmap->GetHeight() - 1;
pSrcLine = m_pCachedBitmap->GetScanline(line);
} else if (m_pDecoder) {
pSrcLine = m_pDecoder->GetScanline(line);
} else if (m_pStreamAcc->GetSize() >= (line + 1) * src_pitch_value) {
pSrcLine = m_pStreamAcc->GetSpan().subspan(line * src_pitch_value,
src_pitch_value);
}
if (pSrcLine.empty()) {
pdfium::span<uint8_t> result = !m_MaskBuf.empty() ? m_MaskBuf : m_LineBuf;
fxcrt::spanset(result, 0xFF);
return result;
}
if (m_bpc * m_nComponents == 1) {
if (m_bImageMask && m_bDefaultDecode) {
for (uint32_t i = 0; i < src_pitch_value; i++) {
// TODO(tsepez): Bounds check if cost is acceptable.
m_LineBuf[i] = ~pSrcLine.data()[i];
}
return pdfium::make_span(m_LineBuf).first(src_pitch_value);
}
if (!m_bColorKey) {
pdfium::span<uint8_t> result = m_LineBuf;
fxcrt::spancpy(result, pSrcLine.first(src_pitch_value));
return result.first(src_pitch_value);
}
uint32_t reset_argb = Get1BitResetValue();
uint32_t set_argb = Get1BitSetValue();
uint32_t* dest_scan = reinterpret_cast<uint32_t*>(m_MaskBuf.data());
for (int col = 0; col < m_Width; col++, dest_scan++) {
*dest_scan = GetBitValue(pSrcLine.data(), col) ? set_argb : reset_argb;
}
return pdfium::make_span(m_MaskBuf).first(m_Width * sizeof(uint32_t));
}
if (m_bpc * m_nComponents <= 8) {
pdfium::span<uint8_t> result = m_LineBuf;
if (m_bpc == 8) {
fxcrt::spancpy(result, pSrcLine.first(src_pitch_value));
result = result.first(src_pitch_value);
} else {
uint64_t src_bit_pos = 0;
for (int col = 0; col < m_Width; col++) {
unsigned int color_index = 0;
for (uint32_t color = 0; color < m_nComponents; color++) {
unsigned int data = GetBits8(pSrcLine.data(), src_bit_pos, m_bpc);
color_index |= data << (color * m_bpc);
src_bit_pos += m_bpc;
}
m_LineBuf[col] = color_index;
}
result = result.first(m_Width);
}
if (!m_bColorKey)
return result;
uint8_t* pDestPixel = m_MaskBuf.data();
const uint8_t* pSrcPixel = m_LineBuf.data();
pdfium::span<const uint32_t> palette = GetPaletteSpan();
if (HasPalette()) {
for (int col = 0; col < m_Width; col++) {
uint8_t index = *pSrcPixel++;
*pDestPixel++ = FXARGB_B(palette[index]);
*pDestPixel++ = FXARGB_G(palette[index]);
*pDestPixel++ = FXARGB_R(palette[index]);
*pDestPixel++ =
IsColorIndexOutOfBounds(index, m_CompData[0]) ? 0xFF : 0;
}
} else {
for (int col = 0; col < m_Width; col++) {
uint8_t index = *pSrcPixel++;
*pDestPixel++ = index;
*pDestPixel++ = index;
*pDestPixel++ = index;
*pDestPixel++ =
IsColorIndexOutOfBounds(index, m_CompData[0]) ? 0xFF : 0;
}
}
return pdfium::make_span(m_MaskBuf).first(4 * m_Width);
}
if (m_bColorKey) {
if (m_nComponents == 3 && m_bpc == 8) {
uint8_t* alpha_channel = m_MaskBuf.data() + 3;
for (int col = 0; col < m_Width; col++) {
const uint8_t* pPixel = pSrcLine.data() + col * 3;
alpha_channel[col * 4] =
AreColorIndicesOutOfBounds(pPixel, m_CompData.data(), 3) ? 0xFF : 0;
}
} else {
fxcrt::spanset(pdfium::make_span(m_MaskBuf), 0xFF);
}
}
if (m_pColorSpace) {
TranslateScanline24bpp(m_LineBuf, pSrcLine);
src_pitch_value = 3 * m_Width;
pSrcLine = pdfium::make_span(m_LineBuf).first(src_pitch_value);
}
if (!m_bColorKey)
return pSrcLine;
// TODO(tsepez): Bounds check if cost is acceptable.
const uint8_t* pSrcPixel = pSrcLine.data();
uint8_t* pDestPixel = m_MaskBuf.data();
for (int col = 0; col < m_Width; col++) {
*pDestPixel++ = *pSrcPixel++;
*pDestPixel++ = *pSrcPixel++;
*pDestPixel++ = *pSrcPixel++;
pDestPixel++;
}
return pdfium::make_span(m_MaskBuf).first(4 * m_Width);
}
bool CPDF_DIB::SkipToScanline(int line, PauseIndicatorIface* pPause) const {
return m_pDecoder && m_pDecoder->SkipToScanline(line, pPause);
}
size_t CPDF_DIB::GetEstimatedImageMemoryBurden() const {
return m_pCachedBitmap ? m_pCachedBitmap->GetEstimatedImageMemoryBurden() : 0;
}
bool CPDF_DIB::TransMask() const {
return m_bLoadMask && m_GroupFamily == CPDF_ColorSpace::Family::kDeviceCMYK &&
m_Family == CPDF_ColorSpace::Family::kDeviceCMYK;
}
void CPDF_DIB::SetMaskProperties() {
m_bpc = 1;
m_nComponents = 1;
m_Format = FXDIB_Format::k1bppMask;
}
uint32_t CPDF_DIB::Get1BitSetValue() const {
if (m_CompData[0].m_ColorKeyMax == 1)
return 0x00000000;
return HasPalette() ? GetPaletteSpan()[1] : 0xFFFFFFFF;
}
uint32_t CPDF_DIB::Get1BitResetValue() const {
if (m_CompData[0].m_ColorKeyMin == 0)
return 0x00000000;
return HasPalette() ? GetPaletteSpan()[0] : 0xFF000000;
}