blob: 896754cc0201246c2a842aef1b74df0f57028203 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fxcodec/codec/ccodec_jpxmodule.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "core/fpdfapi/page/cpdf_colorspace.h"
#include "core/fxcodec/codec/cjpx_decoder.h"
#include "core/fxcrt/fx_safe_types.h"
#include "third_party/base/optional.h"
#include "third_party/base/ptr_util.h"
#include "third_party/base/stl_util.h"
#ifndef USE_SYSTEM_LIBOPENJPEG2
#include "third_party/libopenjpeg20/openjpeg.h"
#include "third_party/libopenjpeg20/opj_malloc.h"
#endif
namespace {
// Used with std::unique_ptr to call opj_image_data_free on raw memory.
struct OpjImageDataDeleter {
inline void operator()(void* ptr) const { opj_image_data_free(ptr); }
};
using ScopedOpjImageData = std::unique_ptr<int, OpjImageDataDeleter>;
struct OpjImageRgbData {
ScopedOpjImageData r;
ScopedOpjImageData g;
ScopedOpjImageData b;
};
void fx_ignore_callback(const char* msg, void* client_data) {}
opj_stream_t* fx_opj_stream_create_memory_stream(DecodeData* data) {
if (!data || !data->src_data || data->src_size <= 0)
return nullptr;
opj_stream_t* stream = opj_stream_create(OPJ_J2K_STREAM_CHUNK_SIZE,
/*p_is_input=*/OPJ_TRUE);
if (!stream)
return nullptr;
opj_stream_set_user_data(stream, data, nullptr);
opj_stream_set_user_data_length(stream, data->src_size);
opj_stream_set_read_function(stream, opj_read_from_memory);
opj_stream_set_skip_function(stream, opj_skip_from_memory);
opj_stream_set_seek_function(stream, opj_seek_from_memory);
return stream;
}
Optional<OpjImageRgbData> alloc_rgb(size_t size) {
OpjImageRgbData data;
data.r.reset(static_cast<int*>(opj_image_data_alloc(size)));
if (!data.r)
return {};
data.g.reset(static_cast<int*>(opj_image_data_alloc(size)));
if (!data.g)
return {};
data.b.reset(static_cast<int*>(opj_image_data_alloc(size)));
if (!data.b)
return {};
return data;
}
void sycc_to_rgb(int offset,
int upb,
int y,
int cb,
int cr,
int* out_r,
int* out_g,
int* out_b) {
cb -= offset;
cr -= offset;
*out_r = pdfium::clamp(y + static_cast<int>(1.402 * cr), 0, upb);
*out_g = pdfium::clamp(y - static_cast<int>(0.344 * cb + 0.714 * cr), 0, upb);
*out_b = pdfium::clamp(y + static_cast<int>(1.772 * cb), 0, upb);
}
void sycc444_to_rgb(opj_image_t* img) {
int prec = img->comps[0].prec;
// If we shift 31 we're going to go negative, then things go bad.
if (prec > 30)
return;
int offset = 1 << (prec - 1);
int upb = (1 << prec) - 1;
OPJ_UINT32 maxw =
std::min({img->comps[0].w, img->comps[1].w, img->comps[2].w});
OPJ_UINT32 maxh =
std::min({img->comps[0].h, img->comps[1].h, img->comps[2].h});
FX_SAFE_SIZE_T max_size = maxw;
max_size *= maxh;
max_size *= sizeof(int);
if (!max_size.IsValid())
return;
const int* y = img->comps[0].data;
const int* cb = img->comps[1].data;
const int* cr = img->comps[2].data;
if (!y || !cb || !cr)
return;
Optional<OpjImageRgbData> data = alloc_rgb(max_size.ValueOrDie());
if (!data.has_value())
return;
int* r = data.value().r.get();
int* g = data.value().g.get();
int* b = data.value().b.get();
max_size /= sizeof(int);
for (size_t i = 0; i < max_size.ValueOrDie(); ++i)
sycc_to_rgb(offset, upb, *y++, *cb++, *cr++, r++, g++, b++);
opj_image_data_free(img->comps[0].data);
opj_image_data_free(img->comps[1].data);
opj_image_data_free(img->comps[2].data);
img->comps[0].data = data.value().r.release();
img->comps[1].data = data.value().g.release();
img->comps[2].data = data.value().b.release();
}
bool sycc420_422_size_is_valid(opj_image_t* img) {
return img && img->comps[0].w != std::numeric_limits<OPJ_UINT32>::max() &&
(img->comps[0].w + 1) / 2 == img->comps[1].w &&
img->comps[1].w == img->comps[2].w &&
img->comps[1].h == img->comps[2].h;
}
bool sycc420_size_is_valid(opj_image_t* img) {
return sycc420_422_size_is_valid(img) &&
img->comps[0].h != std::numeric_limits<OPJ_UINT32>::max() &&
(img->comps[0].h + 1) / 2 == img->comps[1].h;
}
bool sycc422_size_is_valid(opj_image_t* img) {
return sycc420_422_size_is_valid(img) && img->comps[0].h == img->comps[1].h;
}
void sycc422_to_rgb(opj_image_t* img) {
if (!sycc422_size_is_valid(img))
return;
int prec = img->comps[0].prec;
if (prec <= 0 || prec >= 32)
return;
int offset = 1 << (prec - 1);
int upb = (1 << prec) - 1;
OPJ_UINT32 maxw = img->comps[0].w;
OPJ_UINT32 maxh = img->comps[0].h;
FX_SAFE_SIZE_T max_size = maxw;
max_size *= maxh;
max_size *= sizeof(int);
if (!max_size.IsValid())
return;
const int* y = img->comps[0].data;
const int* cb = img->comps[1].data;
const int* cr = img->comps[2].data;
if (!y || !cb || !cr)
return;
Optional<OpjImageRgbData> data = alloc_rgb(max_size.ValueOrDie());
if (!data.has_value())
return;
int* r = data.value().r.get();
int* g = data.value().g.get();
int* b = data.value().b.get();
for (uint32_t i = 0; i < maxh; ++i) {
OPJ_UINT32 j;
for (j = 0; j < (maxw & ~static_cast<OPJ_UINT32>(1)); j += 2) {
sycc_to_rgb(offset, upb, *y++, *cb, *cr, r++, g++, b++);
sycc_to_rgb(offset, upb, *y++, *cb++, *cr++, r++, g++, b++);
}
if (j < maxw) {
sycc_to_rgb(offset, upb, *y++, *cb++, *cr++, r++, g++, b++);
}
}
opj_image_data_free(img->comps[0].data);
opj_image_data_free(img->comps[1].data);
opj_image_data_free(img->comps[2].data);
img->comps[0].data = data.value().r.release();
img->comps[1].data = data.value().g.release();
img->comps[2].data = data.value().b.release();
img->comps[1].w = maxw;
img->comps[1].h = maxh;
img->comps[2].w = maxw;
img->comps[2].h = maxh;
img->comps[1].dx = img->comps[0].dx;
img->comps[2].dx = img->comps[0].dx;
img->comps[1].dy = img->comps[0].dy;
img->comps[2].dy = img->comps[0].dy;
}
bool sycc420_must_extend_cbcr(OPJ_UINT32 y, OPJ_UINT32 cbcr) {
return (y & 1) && (cbcr == y / 2);
}
bool is_sycc420(const opj_image_t* img) {
return img->comps[0].dx == 1 && img->comps[0].dy == 1 &&
img->comps[1].dx == 2 && img->comps[1].dy == 2 &&
img->comps[2].dx == 2 && img->comps[2].dy == 2;
}
bool is_sycc422(const opj_image_t* img) {
return img->comps[0].dx == 1 && img->comps[0].dy == 1 &&
img->comps[1].dx == 2 && img->comps[1].dy == 1 &&
img->comps[2].dx == 2 && img->comps[2].dy == 1;
}
bool is_sycc444(const opj_image_t* img) {
return img->comps[0].dx == 1 && img->comps[0].dy == 1 &&
img->comps[1].dx == 1 && img->comps[1].dy == 1 &&
img->comps[2].dx == 1 && img->comps[2].dy == 1;
}
void color_sycc_to_rgb(opj_image_t* img) {
if (img->numcomps < 3) {
img->color_space = OPJ_CLRSPC_GRAY;
return;
}
if (is_sycc420(img))
sycc420_to_rgb(img);
else if (is_sycc422(img))
sycc422_to_rgb(img);
else if (is_sycc444(img))
sycc444_to_rgb(img);
else
return;
img->color_space = OPJ_CLRSPC_SRGB;
}
} // namespace
OPJ_SIZE_T opj_read_from_memory(void* p_buffer,
OPJ_SIZE_T nb_bytes,
void* p_user_data) {
DecodeData* srcData = static_cast<DecodeData*>(p_user_data);
if (!srcData || !srcData->src_data || srcData->src_size == 0)
return static_cast<OPJ_SIZE_T>(-1);
// Reads at EOF return an error code.
if (srcData->offset >= srcData->src_size)
return static_cast<OPJ_SIZE_T>(-1);
OPJ_SIZE_T bufferLength = srcData->src_size - srcData->offset;
OPJ_SIZE_T readlength = nb_bytes < bufferLength ? nb_bytes : bufferLength;
memcpy(p_buffer, &srcData->src_data[srcData->offset], readlength);
srcData->offset += readlength;
return readlength;
}
OPJ_OFF_T opj_skip_from_memory(OPJ_OFF_T nb_bytes, void* p_user_data) {
DecodeData* srcData = static_cast<DecodeData*>(p_user_data);
if (!srcData || !srcData->src_data || srcData->src_size == 0)
return static_cast<OPJ_OFF_T>(-1);
// Offsets are signed and may indicate a negative skip. Do not support this
// because of the strange return convention where either bytes skipped or
// -1 is returned. Following that convention, a successful relative seek of
// -1 bytes would be required to to give the same result as the error case.
if (nb_bytes < 0)
return static_cast<OPJ_OFF_T>(-1);
auto unsigned_nb_bytes =
static_cast<std::make_unsigned<OPJ_OFF_T>::type>(nb_bytes);
// Additionally, the offset may take us beyond the range of a size_t (e.g.
// 32-bit platforms). If so, just clamp at EOF.
if (unsigned_nb_bytes >
std::numeric_limits<OPJ_SIZE_T>::max() - srcData->offset) {
srcData->offset = srcData->src_size;
} else {
OPJ_SIZE_T checked_nb_bytes = static_cast<OPJ_SIZE_T>(unsigned_nb_bytes);
// Otherwise, mimic fseek() semantics to always succeed, even past EOF,
// clamping at EOF. We can get away with this since we don't actually
// provide negative relative skips from beyond EOF back to inside the
// data, which would be the only reason to need to know exactly how far
// beyond EOF we are.
srcData->offset =
std::min(srcData->offset + checked_nb_bytes, srcData->src_size);
}
return nb_bytes;
}
OPJ_BOOL opj_seek_from_memory(OPJ_OFF_T nb_bytes, void* p_user_data) {
DecodeData* srcData = static_cast<DecodeData*>(p_user_data);
if (!srcData || !srcData->src_data || srcData->src_size == 0)
return OPJ_FALSE;
// Offsets are signed and may indicate a negative position, which would
// be before the start of the file. Do not support this.
if (nb_bytes < 0)
return OPJ_FALSE;
auto unsigned_nb_bytes =
static_cast<std::make_unsigned<OPJ_OFF_T>::type>(nb_bytes);
// Additionally, the offset may take us beyond the range of a size_t (e.g.
// 32-bit platforms). If so, just clamp at EOF.
if (unsigned_nb_bytes > std::numeric_limits<OPJ_SIZE_T>::max()) {
srcData->offset = srcData->src_size;
} else {
OPJ_SIZE_T checked_nb_bytes = static_cast<OPJ_SIZE_T>(nb_bytes);
// Otherwise, mimic fseek() semantics to always succeed, even past EOF,
// again clamping at EOF.
srcData->offset = std::min(checked_nb_bytes, srcData->src_size);
}
return OPJ_TRUE;
}
void sycc420_to_rgb(opj_image_t* img) {
if (!sycc420_size_is_valid(img))
return;
OPJ_UINT32 prec = img->comps[0].prec;
if (!prec)
return;
OPJ_UINT32 offset = 1 << (prec - 1);
OPJ_UINT32 upb = (1 << prec) - 1;
OPJ_UINT32 yw = img->comps[0].w;
OPJ_UINT32 yh = img->comps[0].h;
OPJ_UINT32 cbw = img->comps[1].w;
OPJ_UINT32 cbh = img->comps[1].h;
OPJ_UINT32 crw = img->comps[2].w;
bool extw = sycc420_must_extend_cbcr(yw, cbw);
bool exth = sycc420_must_extend_cbcr(yh, cbh);
FX_SAFE_UINT32 safe_size = yw;
safe_size *= yh;
safe_size *= sizeof(int);
if (!safe_size.IsValid())
return;
const int* y = img->comps[0].data;
const int* cb = img->comps[1].data;
const int* cr = img->comps[2].data;
if (!y || !cb || !cr)
return;
Optional<OpjImageRgbData> data = alloc_rgb(safe_size.ValueOrDie());
if (!data.has_value())
return;
int* r = data.value().r.get();
int* g = data.value().g.get();
int* b = data.value().b.get();
const int* ny = nullptr;
int* nr = nullptr;
int* ng = nullptr;
int* nb = nullptr;
OPJ_UINT32 i = 0;
OPJ_UINT32 j = 0;
for (i = 0; i < (yh & ~(OPJ_UINT32)1); i += 2) {
ny = y + yw;
nr = r + yw;
ng = g + yw;
nb = b + yw;
for (j = 0; j < (yw & ~(OPJ_UINT32)1); j += 2) {
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb);
++ny;
++nr;
++ng;
++nb;
sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb);
++ny;
++nr;
++ng;
++nb;
++cb;
++cr;
}
if (j < yw) {
if (extw) {
--cb;
--cr;
}
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb);
++ny;
++nr;
++ng;
++nb;
++cb;
++cr;
}
y += yw;
r += yw;
g += yw;
b += yw;
}
if (i < yh) {
if (exth) {
cb -= cbw;
cr -= crw;
}
for (j = 0; j < (yw & ~(OPJ_UINT32)1); j += 2) {
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
++y;
++r;
++g;
++b;
++cb;
++cr;
}
if (j < yw) {
if (extw) {
--cb;
--cr;
}
sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b);
}
}
opj_image_data_free(img->comps[0].data);
opj_image_data_free(img->comps[1].data);
opj_image_data_free(img->comps[2].data);
img->comps[0].data = data.value().r.release();
img->comps[1].data = data.value().g.release();
img->comps[2].data = data.value().b.release();
img->comps[1].w = yw;
img->comps[1].h = yh;
img->comps[2].w = yw;
img->comps[2].h = yh;
img->comps[1].dx = img->comps[0].dx;
img->comps[2].dx = img->comps[0].dx;
img->comps[1].dy = img->comps[0].dy;
img->comps[2].dy = img->comps[0].dy;
}
CJPX_Decoder::CJPX_Decoder(const RetainPtr<CPDF_ColorSpace>& cs)
: m_Image(nullptr),
m_Codec(nullptr),
m_DecodeData(nullptr),
m_Stream(nullptr),
m_ColorSpace(cs) {}
CJPX_Decoder::~CJPX_Decoder() {
if (m_Codec)
opj_destroy_codec(m_Codec.Release());
if (m_Stream)
opj_stream_destroy(m_Stream.Release());
if (m_Image)
opj_image_destroy(m_Image.Release());
}
bool CJPX_Decoder::Init(pdfium::span<const uint8_t> src_data) {
static const unsigned char szJP2Header[] = {
0x00, 0x00, 0x00, 0x0c, 0x6a, 0x50, 0x20, 0x20, 0x0d, 0x0a, 0x87, 0x0a};
if (src_data.empty() || src_data.size() < sizeof(szJP2Header))
return false;
m_Image = nullptr;
m_SrcData = src_data;
m_DecodeData =
pdfium::MakeUnique<DecodeData>(src_data.data(), src_data.size());
m_Stream = fx_opj_stream_create_memory_stream(m_DecodeData.get());
if (!m_Stream)
return false;
opj_set_default_decoder_parameters(&m_Parameters);
m_Parameters.decod_format = 0;
m_Parameters.cod_format = 3;
if (memcmp(m_SrcData.data(), szJP2Header, sizeof(szJP2Header)) == 0) {
m_Codec = opj_create_decompress(OPJ_CODEC_JP2);
m_Parameters.decod_format = 1;
} else {
m_Codec = opj_create_decompress(OPJ_CODEC_J2K);
}
if (!m_Codec)
return false;
if (m_ColorSpace && m_ColorSpace->GetFamily() == PDFCS_INDEXED)
m_Parameters.flags |= OPJ_DPARAMETERS_IGNORE_PCLR_CMAP_CDEF_FLAG;
opj_set_info_handler(m_Codec.Get(), fx_ignore_callback, nullptr);
opj_set_warning_handler(m_Codec.Get(), fx_ignore_callback, nullptr);
opj_set_error_handler(m_Codec.Get(), fx_ignore_callback, nullptr);
if (!opj_setup_decoder(m_Codec.Get(), &m_Parameters))
return false;
m_Image = nullptr;
opj_image_t* pTempImage = nullptr;
if (!opj_read_header(m_Stream.Get(), m_Codec.Get(), &pTempImage))
return false;
m_Image = pTempImage;
#ifndef USE_SYSTEM_LIBOPENJPEG2
m_Image->pdfium_use_colorspace = !!m_ColorSpace;
#endif
return true;
}
bool CJPX_Decoder::StartDecode() {
if (!m_Parameters.nb_tile_to_decode) {
if (!opj_set_decode_area(m_Codec.Get(), m_Image.Get(), m_Parameters.DA_x0,
m_Parameters.DA_y0, m_Parameters.DA_x1,
m_Parameters.DA_y1)) {
opj_image_destroy(m_Image.Release());
return false;
}
if (!(opj_decode(m_Codec.Get(), m_Stream.Get(), m_Image.Get()) &&
opj_end_decompress(m_Codec.Get(), m_Stream.Get()))) {
opj_image_destroy(m_Image.Release());
return false;
}
} else if (!opj_get_decoded_tile(m_Codec.Get(), m_Stream.Get(), m_Image.Get(),
m_Parameters.tile_index)) {
return false;
}
opj_stream_destroy(m_Stream.Release());
if (m_Image->color_space != OPJ_CLRSPC_SYCC && m_Image->numcomps == 3 &&
m_Image->comps[0].dx == m_Image->comps[0].dy &&
m_Image->comps[1].dx != 1) {
m_Image->color_space = OPJ_CLRSPC_SYCC;
} else if (m_Image->numcomps <= 2) {
m_Image->color_space = OPJ_CLRSPC_GRAY;
}
if (m_Image->color_space == OPJ_CLRSPC_SYCC)
color_sycc_to_rgb(m_Image.Get());
if (m_Image->icc_profile_buf) {
// TODO(palmer): Using |opj_free| here resolves the crash described in
// https://crbug.com/737033, but ultimately we need to harmonize the
// memory allocation strategy across OpenJPEG and its PDFium callers.
#ifndef USE_SYSTEM_LIBOPENJPEG2
opj_free(m_Image->icc_profile_buf);
#else
free(m_Image->icc_profile_buf);
#endif
m_Image->icc_profile_buf = nullptr;
m_Image->icc_profile_len = 0;
}
return true;
}
void CJPX_Decoder::GetInfo(uint32_t* width,
uint32_t* height,
uint32_t* components) {
*width = m_Image->x1;
*height = m_Image->y1;
*components = m_Image->numcomps;
}
bool CJPX_Decoder::Decode(uint8_t* dest_buf,
uint32_t pitch,
const std::vector<uint8_t>& offsets) {
if (m_Image->comps[0].w != m_Image->x1 || m_Image->comps[0].h != m_Image->y1)
return false;
if (pitch<(m_Image->comps[0].w * 8 * m_Image->numcomps + 31)>> 5 << 2) {
return false;
}
memset(dest_buf, 0xff, m_Image->y1 * pitch);
std::vector<uint8_t*> channel_bufs(m_Image->numcomps);
std::vector<int> adjust_comps(m_Image->numcomps);
for (uint32_t i = 0; i < m_Image->numcomps; i++) {
channel_bufs[i] = dest_buf + offsets[i];
adjust_comps[i] = m_Image->comps[i].prec - 8;
if (i > 0) {
if (m_Image->comps[i].dx != m_Image->comps[i - 1].dx ||
m_Image->comps[i].dy != m_Image->comps[i - 1].dy ||
m_Image->comps[i].prec != m_Image->comps[i - 1].prec) {
return false;
}
}
}
uint32_t width = m_Image->comps[0].w;
uint32_t height = m_Image->comps[0].h;
for (uint32_t channel = 0; channel < m_Image->numcomps; ++channel) {
uint8_t* pChannel = channel_bufs[channel];
if (adjust_comps[channel] < 0) {
for (uint32_t row = 0; row < height; ++row) {
uint8_t* pScanline = pChannel + row * pitch;
for (uint32_t col = 0; col < width; ++col) {
uint8_t* pPixel = pScanline + col * m_Image->numcomps;
if (!m_Image->comps[channel].data)
continue;
int src = m_Image->comps[channel].data[row * width + col];
src += m_Image->comps[channel].sgnd
? 1 << (m_Image->comps[channel].prec - 1)
: 0;
if (adjust_comps[channel] > 0) {
*pPixel = 0;
} else {
*pPixel = static_cast<uint8_t>(src << -adjust_comps[channel]);
}
}
}
} else {
for (uint32_t row = 0; row < height; ++row) {
uint8_t* pScanline = pChannel + row * pitch;
for (uint32_t col = 0; col < width; ++col) {
uint8_t* pPixel = pScanline + col * m_Image->numcomps;
if (!m_Image->comps[channel].data)
continue;
int src = m_Image->comps[channel].data[row * width + col];
src += m_Image->comps[channel].sgnd
? 1 << (m_Image->comps[channel].prec - 1)
: 0;
if (adjust_comps[channel] - 1 < 0) {
*pPixel = static_cast<uint8_t>((src >> adjust_comps[channel]));
} else {
int tmpPixel = (src >> adjust_comps[channel]) +
((src >> (adjust_comps[channel] - 1)) % 2);
tmpPixel = pdfium::clamp(tmpPixel, 0, 255);
*pPixel = static_cast<uint8_t>(tmpPixel);
}
}
}
}
}
return true;
}
CCodec_JpxModule::CCodec_JpxModule() {}
CCodec_JpxModule::~CCodec_JpxModule() {}
std::unique_ptr<CJPX_Decoder> CCodec_JpxModule::CreateDecoder(
pdfium::span<const uint8_t> src_span,
const RetainPtr<CPDF_ColorSpace>& cs) {
auto decoder = pdfium::MakeUnique<CJPX_Decoder>(cs);
if (!decoder->Init(src_span))
return nullptr;
return decoder;
}
void CCodec_JpxModule::GetImageInfo(CJPX_Decoder* pDecoder,
uint32_t* width,
uint32_t* height,
uint32_t* components) {
pDecoder->GetInfo(width, height, components);
}
bool CCodec_JpxModule::Decode(CJPX_Decoder* pDecoder,
uint8_t* dest_data,
uint32_t pitch,
const std::vector<uint8_t>& offsets) {
return pDecoder->Decode(dest_data, pitch, offsets);
}