blob: b4366ba2771e44fda8734c2a380d0412692c0ed1 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include <time.h>
#include "../../../include/fpdfapi/fpdf_parser.h"
#include "../../../include/fdrm/fx_crypt.h"
const uint8_t defpasscode[32] = {
0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41,
0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08,
0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80,
0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a
};
void CalcEncryptKey(CPDF_Dictionary* pEncrypt, const uint8_t* password, FX_DWORD pass_size,
uint8_t* key, int keylen, FX_BOOL bIgnoreMeta, CPDF_Array* pIdArray)
{
int revision = pEncrypt->GetInteger(FX_BSTRC("R"));
uint8_t passcode[32];
for (FX_DWORD i = 0; i < 32; i ++) {
passcode[i] = i < pass_size ? password[i] : defpasscode[i - pass_size];
}
uint8_t md5[100];
CRYPT_MD5Start(md5);
CRYPT_MD5Update(md5, passcode, 32);
CFX_ByteString okey = pEncrypt->GetString(FX_BSTRC("O"));
CRYPT_MD5Update(md5, (uint8_t*)okey.c_str(), okey.GetLength());
FX_DWORD perm = pEncrypt->GetInteger(FX_BSTRC("P"));
CRYPT_MD5Update(md5, (uint8_t*)&perm, 4);
if (pIdArray) {
CFX_ByteString id = pIdArray->GetString(0);
CRYPT_MD5Update(md5, (uint8_t*)id.c_str(), id.GetLength());
}
if (!bIgnoreMeta && revision >= 3 && !pEncrypt->GetInteger(FX_BSTRC("EncryptMetadata"), 1)) {
FX_DWORD tag = (FX_DWORD) - 1;
CRYPT_MD5Update(md5, (uint8_t*)&tag, 4);
}
uint8_t digest[16];
CRYPT_MD5Finish(md5, digest);
FX_DWORD copy_len = keylen;
if (copy_len > sizeof(digest)) {
copy_len = sizeof(digest);
}
if (revision >= 3) {
for (int i = 0; i < 50; i ++) {
CRYPT_MD5Generate(digest, copy_len, digest);
}
}
FXSYS_memset32(key, 0, keylen);
FXSYS_memcpy32(key, digest, copy_len);
}
CPDF_CryptoHandler* CPDF_StandardSecurityHandler::CreateCryptoHandler()
{
return new CPDF_StandardCryptoHandler;
}
typedef struct _PDF_CRYPTOITEM {
int32_t m_Cipher;
int32_t m_KeyLen;
FX_BOOL m_bChecked;
CPDF_StandardCryptoHandler* m_pCryptoHandler;
} PDF_CRYPTOITEM;
CPDF_StandardSecurityHandler::CPDF_StandardSecurityHandler()
{
m_Version = 0;
m_Revision = 0;
m_pParser = NULL;
m_pEncryptDict = NULL;
m_bOwner = FALSE;
m_Permissions = 0;
m_Cipher = FXCIPHER_NONE;
m_KeyLen = 0;
}
CPDF_StandardSecurityHandler::~CPDF_StandardSecurityHandler()
{
}
FX_BOOL CPDF_StandardSecurityHandler::OnInit(CPDF_Parser* pParser, CPDF_Dictionary* pEncryptDict)
{
m_pParser = pParser;
if (!LoadDict(pEncryptDict)) {
return FALSE;
}
if (m_Cipher == FXCIPHER_NONE) {
return TRUE;
}
return CheckSecurity(m_KeyLen);
}
FX_BOOL CPDF_StandardSecurityHandler::CheckSecurity(int32_t key_len)
{
CFX_ByteString password = m_pParser->GetPassword();
if (CheckPassword(password, password.GetLength(), TRUE, m_EncryptKey, key_len)) {
if (password.IsEmpty()) {
if (!CheckPassword(password, password.GetLength(), FALSE, m_EncryptKey, key_len)) {
return FALSE;
}
}
m_bOwner = TRUE;
return TRUE;
}
return CheckPassword(password, password.GetLength(), FALSE, m_EncryptKey, key_len);
}
FX_DWORD CPDF_StandardSecurityHandler::GetPermissions()
{
return m_Permissions;
}
static FX_BOOL _LoadCryptInfo(CPDF_Dictionary* pEncryptDict, const CFX_ByteStringC& name, int& cipher, int& keylen)
{
int Version = pEncryptDict->GetInteger(FX_BSTRC("V"));
cipher = FXCIPHER_RC4;
keylen = 0;
if (Version >= 4) {
CPDF_Dictionary* pCryptFilters = pEncryptDict->GetDict(FX_BSTRC("CF"));
if (pCryptFilters == NULL) {
return FALSE;
}
if (name == FX_BSTRC("Identity")) {
cipher = FXCIPHER_NONE;
} else {
CPDF_Dictionary* pDefFilter = pCryptFilters->GetDict(name);
if (pDefFilter == NULL) {
return FALSE;
}
int nKeyBits = 0;
if (Version == 4) {
nKeyBits = pDefFilter->GetInteger(FX_BSTRC("Length"), 0);
if (nKeyBits == 0) {
nKeyBits = pEncryptDict->GetInteger(FX_BSTRC("Length"), 128);
}
} else {
nKeyBits = pEncryptDict->GetInteger(FX_BSTRC("Length"), 256);
}
if (nKeyBits < 40) {
nKeyBits *= 8;
}
keylen = nKeyBits / 8;
CFX_ByteString cipher_name = pDefFilter->GetString(FX_BSTRC("CFM"));
if (cipher_name == FX_BSTRC("AESV2") || cipher_name == FX_BSTRC("AESV3")) {
cipher = FXCIPHER_AES;
}
}
} else {
keylen = Version > 1 ? pEncryptDict->GetInteger(FX_BSTRC("Length"), 40) / 8 : 5;
}
if (keylen > 32 || keylen < 0) {
return FALSE;
}
return TRUE;
}
FX_BOOL CPDF_StandardSecurityHandler::LoadDict(CPDF_Dictionary* pEncryptDict)
{
m_pEncryptDict = pEncryptDict;
m_bOwner = FALSE;
m_Version = pEncryptDict->GetInteger(FX_BSTRC("V"));
m_Revision = pEncryptDict->GetInteger(FX_BSTRC("R"));
m_Permissions = pEncryptDict->GetInteger(FX_BSTRC("P"), -1);
if (m_Version < 4) {
return _LoadCryptInfo(pEncryptDict, CFX_ByteString(), m_Cipher, m_KeyLen);
}
CFX_ByteString stmf_name = pEncryptDict->GetString(FX_BSTRC("StmF"));
CFX_ByteString strf_name = pEncryptDict->GetString(FX_BSTRC("StrF"));
if (stmf_name != strf_name) {
return FALSE;
}
if (!_LoadCryptInfo(pEncryptDict, strf_name, m_Cipher, m_KeyLen)) {
return FALSE;
}
return TRUE;
}
FX_BOOL CPDF_StandardSecurityHandler::LoadDict(CPDF_Dictionary* pEncryptDict, FX_DWORD type, int& cipher, int& key_len)
{
m_pEncryptDict = pEncryptDict;
m_bOwner = FALSE;
m_Version = pEncryptDict->GetInteger(FX_BSTRC("V"));
m_Revision = pEncryptDict->GetInteger(FX_BSTRC("R"));
m_Permissions = pEncryptDict->GetInteger(FX_BSTRC("P"), -1);
CFX_ByteString strf_name, stmf_name;
if (m_Version >= 4) {
stmf_name = pEncryptDict->GetString(FX_BSTRC("StmF"));
strf_name = pEncryptDict->GetString(FX_BSTRC("StrF"));
if (stmf_name != strf_name) {
return FALSE;
}
}
if (!_LoadCryptInfo(pEncryptDict, strf_name, cipher, key_len)) {
return FALSE;
}
m_Cipher = cipher;
m_KeyLen = key_len;
return TRUE;
return TRUE;
}
FX_BOOL CPDF_StandardSecurityHandler::GetCryptInfo(int& cipher, const uint8_t*& buffer, int& keylen)
{
cipher = m_Cipher;
buffer = m_EncryptKey;
keylen = m_KeyLen;
return TRUE;
}
#define FX_GET_32WORD(n,b,i) \
{ \
(n) = (FX_DWORD)(( (uint64_t) (b)[(i)] << 24 ) \
| ( (uint64_t) (b)[(i) + 1] << 16 ) \
| ( (uint64_t) (b)[(i) + 2] << 8 ) \
| ( (uint64_t) (b)[(i) + 3] )); \
}
int BigOrder64BitsMod3(uint8_t* data)
{
uint64_t ret = 0;
for (int i = 0; i < 4; ++i) {
FX_DWORD value;
FX_GET_32WORD(value, data, 4 * i);
ret <<= 32;
ret |= value;
ret %= 3;
}
return (int)ret;
}
void Revision6_Hash(const uint8_t* password, FX_DWORD size, const uint8_t* salt, const uint8_t* vector, uint8_t* hash)
{
int iBlockSize = 32;
uint8_t sha[128];
CRYPT_SHA256Start(sha);
CRYPT_SHA256Update(sha, password, size);
CRYPT_SHA256Update(sha, salt, 8);
if (vector) {
CRYPT_SHA256Update(sha, vector, 48);
}
uint8_t digest[32];
CRYPT_SHA256Finish(sha, digest);
CFX_ByteTextBuf buf;
uint8_t* input = digest;
uint8_t* key = input;
uint8_t* iv = input + 16;
uint8_t* E = buf.GetBuffer();
int iBufLen = buf.GetLength();
CFX_ByteTextBuf interDigest;
int i = 0;
uint8_t* aes = FX_Alloc(uint8_t, 2048);
while (i < 64 || i < E[iBufLen - 1] + 32) {
int iRoundSize = size + iBlockSize;
if (vector) {
iRoundSize += 48;
}
iBufLen = iRoundSize * 64;
buf.EstimateSize(iBufLen);
E = buf.GetBuffer();
CFX_ByteTextBuf content;
for (int j = 0; j < 64; ++j) {
content.AppendBlock(password, size);
content.AppendBlock(input, iBlockSize);
if (vector) {
content.AppendBlock(vector, 48);
}
}
CRYPT_AESSetKey(aes, 16, key, 16, TRUE);
CRYPT_AESSetIV(aes, iv);
CRYPT_AESEncrypt(aes, E, content.GetBuffer(), iBufLen);
int iHash = 0;
switch (BigOrder64BitsMod3(E)) {
case 0:
iHash = 0;
iBlockSize = 32;
break;
case 1:
iHash = 1;
iBlockSize = 48;
break;
default:
iHash = 2;
iBlockSize = 64;
break;
}
interDigest.EstimateSize(iBlockSize);
input = interDigest.GetBuffer();
if (iHash == 0) {
CRYPT_SHA256Generate(E, iBufLen, input);
} else if (iHash == 1) {
CRYPT_SHA384Generate(E, iBufLen, input);
} else if (iHash == 2) {
CRYPT_SHA512Generate(E, iBufLen, input);
}
key = input;
iv = input + 16;
++i;
}
FX_Free(aes);
if (hash) {
FXSYS_memcpy32(hash, input, 32);
}
}
FX_BOOL CPDF_StandardSecurityHandler::AES256_CheckPassword(const uint8_t* password, FX_DWORD size,
FX_BOOL bOwner, uint8_t* key)
{
CFX_ByteString okey = m_pEncryptDict ? m_pEncryptDict->GetString(FX_BSTRC("O")) : CFX_ByteString();
if (okey.GetLength() < 48) {
return FALSE;
}
CFX_ByteString ukey = m_pEncryptDict ? m_pEncryptDict->GetString(FX_BSTRC("U")) : CFX_ByteString();
if (ukey.GetLength() < 48) {
return FALSE;
}
const uint8_t* pkey = bOwner ? (const uint8_t*)okey : (const uint8_t*)ukey;
uint8_t sha[128];
uint8_t digest[32];
if (m_Revision >= 6) {
Revision6_Hash(password, size, (const uint8_t*)pkey + 32, (bOwner ? (const uint8_t*)ukey : NULL), digest);
} else {
CRYPT_SHA256Start(sha);
CRYPT_SHA256Update(sha, password, size);
CRYPT_SHA256Update(sha, pkey + 32, 8);
if (bOwner) {
CRYPT_SHA256Update(sha, ukey, 48);
}
CRYPT_SHA256Finish(sha, digest);
}
if (FXSYS_memcmp32(digest, pkey, 32) != 0) {
return FALSE;
}
if (key == NULL) {
return TRUE;
}
if (m_Revision >= 6) {
Revision6_Hash(password, size, (const uint8_t*)pkey + 40, (bOwner ? (const uint8_t*)ukey : NULL), digest);
} else {
CRYPT_SHA256Start(sha);
CRYPT_SHA256Update(sha, password, size);
CRYPT_SHA256Update(sha, pkey + 40, 8);
if (bOwner) {
CRYPT_SHA256Update(sha, ukey, 48);
}
CRYPT_SHA256Finish(sha, digest);
}
CFX_ByteString ekey = m_pEncryptDict ? m_pEncryptDict->GetString(bOwner ? FX_BSTRC("OE") : FX_BSTRC("UE")) : CFX_ByteString();
if (ekey.GetLength() < 32) {
return FALSE;
}
uint8_t* aes = FX_Alloc(uint8_t, 2048);
CRYPT_AESSetKey(aes, 16, digest, 32, FALSE);
uint8_t iv[16];
FXSYS_memset32(iv, 0, 16);
CRYPT_AESSetIV(aes, iv);
CRYPT_AESDecrypt(aes, key, ekey, 32);
CRYPT_AESSetKey(aes, 16, key, 32, FALSE);
CRYPT_AESSetIV(aes, iv);
CFX_ByteString perms = m_pEncryptDict->GetString(FX_BSTRC("Perms"));
if (perms.IsEmpty()) {
return FALSE;
}
uint8_t perms_buf[16];
FXSYS_memset32(perms_buf, 0, sizeof(perms_buf));
FX_DWORD copy_len = sizeof(perms_buf);
if (copy_len > (FX_DWORD)perms.GetLength()) {
copy_len = perms.GetLength();
}
FXSYS_memcpy32(perms_buf, (const uint8_t*)perms, copy_len);
uint8_t buf[16];
CRYPT_AESDecrypt(aes, buf, perms_buf, 16);
FX_Free(aes);
if (buf[9] != 'a' || buf[10] != 'd' || buf[11] != 'b') {
return FALSE;
}
if (FXDWORD_GET_LSBFIRST(buf) != m_Permissions) {
return FALSE;
}
if ((buf[8] == 'T' && !IsMetadataEncrypted()) || (buf[8] == 'F' && IsMetadataEncrypted())) {
return FALSE;
}
return TRUE;
}
int CPDF_StandardSecurityHandler::CheckPassword(const uint8_t* password, FX_DWORD pass_size, FX_BOOL bOwner, uint8_t* key)
{
return CheckPassword(password, pass_size, bOwner, key, m_KeyLen);
}
int CPDF_StandardSecurityHandler::CheckPassword(const uint8_t* password, FX_DWORD size, FX_BOOL bOwner, uint8_t* key, int32_t key_len)
{
if (m_Revision >= 5) {
return AES256_CheckPassword(password, size, bOwner, key);
}
uint8_t keybuf[32];
if (key == NULL) {
key = keybuf;
}
if (bOwner) {
return CheckOwnerPassword(password, size, key, key_len);
}
return CheckUserPassword(password, size, FALSE, key, key_len) || CheckUserPassword(password, size, TRUE, key, key_len);
}
FX_BOOL CPDF_StandardSecurityHandler::CheckUserPassword(const uint8_t* password, FX_DWORD pass_size,
FX_BOOL bIgnoreEncryptMeta, uint8_t* key, int32_t key_len)
{
CalcEncryptKey(m_pEncryptDict, password, pass_size, key, key_len, bIgnoreEncryptMeta,
m_pParser->GetIDArray());
CFX_ByteString ukey = m_pEncryptDict ? m_pEncryptDict->GetString(FX_BSTRC("U")) : CFX_ByteString();
if (ukey.GetLength() < 16) {
return FALSE;
}
uint8_t ukeybuf[32];
if (m_Revision == 2) {
FXSYS_memcpy32(ukeybuf, defpasscode, 32);
CRYPT_ArcFourCryptBlock(ukeybuf, 32, key, key_len);
} else {
uint8_t test[32], tmpkey[32];
FX_DWORD copy_len = sizeof(test);
if (copy_len > (FX_DWORD)ukey.GetLength()) {
copy_len = ukey.GetLength();
}
FXSYS_memset32(test, 0, sizeof(test));
FXSYS_memset32(tmpkey, 0, sizeof(tmpkey));
FXSYS_memcpy32(test, ukey.c_str(), copy_len);
for (int i = 19; i >= 0; i --) {
for (int j = 0; j < key_len; j ++) {
tmpkey[j] = key[j] ^ i;
}
CRYPT_ArcFourCryptBlock(test, 32, tmpkey, key_len);
}
uint8_t md5[100];
CRYPT_MD5Start(md5);
CRYPT_MD5Update(md5, defpasscode, 32);
CPDF_Array* pIdArray = m_pParser->GetIDArray();
if (pIdArray) {
CFX_ByteString id = pIdArray->GetString(0);
CRYPT_MD5Update(md5, (uint8_t*)id.c_str(), id.GetLength());
}
CRYPT_MD5Finish(md5, ukeybuf);
return FXSYS_memcmp32(test, ukeybuf, 16) == 0;
}
if (FXSYS_memcmp32((void*)ukey.c_str(), ukeybuf, 16) == 0) {
return TRUE;
}
return FALSE;
}
CFX_ByteString CPDF_StandardSecurityHandler::GetUserPassword(const uint8_t* owner_pass, FX_DWORD pass_size)
{
return GetUserPassword(owner_pass, pass_size, m_KeyLen);
}
CFX_ByteString CPDF_StandardSecurityHandler::GetUserPassword(const uint8_t* owner_pass, FX_DWORD pass_size, int32_t key_len)
{
CFX_ByteString okey = m_pEncryptDict->GetString(FX_BSTRC("O"));
uint8_t passcode[32];
FX_DWORD i;
for (i = 0; i < 32; i ++) {
passcode[i] = i < pass_size ? owner_pass[i] : defpasscode[i - pass_size];
}
uint8_t digest[16];
CRYPT_MD5Generate(passcode, 32, digest);
if (m_Revision >= 3) {
for (int i = 0; i < 50; i ++) {
CRYPT_MD5Generate(digest, 16, digest);
}
}
uint8_t enckey[32];
FXSYS_memset32(enckey, 0, sizeof(enckey));
FX_DWORD copy_len = key_len;
if (copy_len > sizeof(digest)) {
copy_len = sizeof(digest);
}
FXSYS_memcpy32(enckey, digest, copy_len);
int okeylen = okey.GetLength();
if (okeylen > 32) {
okeylen = 32;
}
uint8_t okeybuf[64];
FXSYS_memset32(okeybuf, 0, sizeof(okeybuf));
FXSYS_memcpy32(okeybuf, okey.c_str(), okeylen);
if (m_Revision == 2) {
CRYPT_ArcFourCryptBlock(okeybuf, okeylen, enckey, key_len);
} else {
for (int i = 19; i >= 0; i --) {
uint8_t tempkey[32];
FXSYS_memset32(tempkey, 0, sizeof(tempkey));
for (int j = 0; j < m_KeyLen; j ++) {
tempkey[j] = enckey[j] ^ i;
}
CRYPT_ArcFourCryptBlock(okeybuf, okeylen, tempkey, key_len);
}
}
int len = 32;
while (len && defpasscode[len - 1] == okeybuf[len - 1]) {
len --;
}
return CFX_ByteString(okeybuf, len);
}
FX_BOOL CPDF_StandardSecurityHandler::CheckOwnerPassword(const uint8_t* password, FX_DWORD pass_size,
uint8_t* key, int32_t key_len)
{
CFX_ByteString user_pass = GetUserPassword(password, pass_size, key_len);
if (CheckUserPassword(user_pass, user_pass.GetLength(), FALSE, key, key_len)) {
return TRUE;
}
return CheckUserPassword(user_pass, user_pass.GetLength(), TRUE, key, key_len);
}
FX_BOOL CPDF_StandardSecurityHandler::IsMetadataEncrypted()
{
return m_pEncryptDict->GetBoolean(FX_BSTRC("EncryptMetadata"), TRUE);
}
CPDF_SecurityHandler* FPDF_CreateStandardSecurityHandler()
{
return new CPDF_StandardSecurityHandler;
}
void CPDF_StandardSecurityHandler::OnCreate(CPDF_Dictionary* pEncryptDict, CPDF_Array* pIdArray,
const uint8_t* user_pass, FX_DWORD user_size,
const uint8_t* owner_pass, FX_DWORD owner_size, FX_BOOL bDefault, FX_DWORD type)
{
int cipher = 0, key_len = 0;
if (!LoadDict(pEncryptDict, type, cipher, key_len)) {
return;
}
if (bDefault && (owner_pass == NULL || owner_size == 0)) {
owner_pass = user_pass;
owner_size = user_size;
}
if (m_Revision >= 5) {
int t = (int)time(NULL);
uint8_t sha[128];
CRYPT_SHA256Start(sha);
CRYPT_SHA256Update(sha, (uint8_t*)&t, sizeof t);
CRYPT_SHA256Update(sha, m_EncryptKey, 32);
CRYPT_SHA256Update(sha, (uint8_t*)"there", 5);
CRYPT_SHA256Finish(sha, m_EncryptKey);
AES256_SetPassword(pEncryptDict, user_pass, user_size, FALSE, m_EncryptKey);
if (bDefault) {
AES256_SetPassword(pEncryptDict, owner_pass, owner_size, TRUE, m_EncryptKey);
AES256_SetPerms(pEncryptDict, m_Permissions, pEncryptDict->GetBoolean(FX_BSTRC("EncryptMetadata"), TRUE), m_EncryptKey);
}
return;
}
if (bDefault) {
uint8_t passcode[32];
FX_DWORD i;
for (i = 0; i < 32; i ++) {
passcode[i] = i < owner_size ? owner_pass[i] : defpasscode[i - owner_size];
}
uint8_t digest[16];
CRYPT_MD5Generate(passcode, 32, digest);
if (m_Revision >= 3) {
for (int i = 0; i < 50; i ++) {
CRYPT_MD5Generate(digest, 16, digest);
}
}
uint8_t enckey[32];
FXSYS_memcpy32(enckey, digest, key_len);
for (i = 0; i < 32; i ++) {
passcode[i] = i < user_size ? user_pass[i] : defpasscode[i - user_size];
}
CRYPT_ArcFourCryptBlock(passcode, 32, enckey, key_len);
uint8_t tempkey[32];
if (m_Revision >= 3) {
for (i = 1; i <= 19; i ++) {
for (int j = 0; j < key_len; j ++) {
tempkey[j] = enckey[j] ^ (uint8_t)i;
}
CRYPT_ArcFourCryptBlock(passcode, 32, tempkey, key_len);
}
}
pEncryptDict->SetAtString(FX_BSTRC("O"), CFX_ByteString(passcode, 32));
}
CalcEncryptKey(m_pEncryptDict, (uint8_t*)user_pass, user_size, m_EncryptKey, key_len, FALSE, pIdArray);
if (m_Revision < 3) {
uint8_t tempbuf[32];
FXSYS_memcpy32(tempbuf, defpasscode, 32);
CRYPT_ArcFourCryptBlock(tempbuf, 32, m_EncryptKey, key_len);
pEncryptDict->SetAtString(FX_BSTRC("U"), CFX_ByteString(tempbuf, 32));
} else {
uint8_t md5[100];
CRYPT_MD5Start(md5);
CRYPT_MD5Update(md5, defpasscode, 32);
if (pIdArray) {
CFX_ByteString id = pIdArray->GetString(0);
CRYPT_MD5Update(md5, (uint8_t*)id.c_str(), id.GetLength());
}
uint8_t digest[32];
CRYPT_MD5Finish(md5, digest);
CRYPT_ArcFourCryptBlock(digest, 16, m_EncryptKey, key_len);
uint8_t tempkey[32];
for (int i = 1; i <= 19; i ++) {
for (int j = 0; j < key_len; j ++) {
tempkey[j] = m_EncryptKey[j] ^ (uint8_t)i;
}
CRYPT_ArcFourCryptBlock(digest, 16, tempkey, key_len);
}
CRYPT_MD5Generate(digest, 16, digest + 16);
pEncryptDict->SetAtString(FX_BSTRC("U"), CFX_ByteString(digest, 32));
}
}
void CPDF_StandardSecurityHandler::OnCreate(CPDF_Dictionary* pEncryptDict, CPDF_Array* pIdArray,
const uint8_t* user_pass, FX_DWORD user_size,
const uint8_t* owner_pass, FX_DWORD owner_size, FX_DWORD type)
{
OnCreate(pEncryptDict, pIdArray, user_pass, user_size, owner_pass, owner_size, TRUE, type);
}
void CPDF_StandardSecurityHandler::OnCreate(CPDF_Dictionary* pEncryptDict, CPDF_Array* pIdArray, const uint8_t* user_pass, FX_DWORD user_size, FX_DWORD type)
{
OnCreate(pEncryptDict, pIdArray, user_pass, user_size, NULL, 0, FALSE, type);
}
void CPDF_StandardSecurityHandler::AES256_SetPassword(CPDF_Dictionary* pEncryptDict, const uint8_t* password, FX_DWORD size, FX_BOOL bOwner, const uint8_t* key)
{
uint8_t sha[128];
CRYPT_SHA1Start(sha);
CRYPT_SHA1Update(sha, key, 32);
CRYPT_SHA1Update(sha, (uint8_t*)"hello", 5);
uint8_t digest[20];
CRYPT_SHA1Finish(sha, digest);
CFX_ByteString ukey = pEncryptDict->GetString(FX_BSTRC("U"));
uint8_t digest1[48];
if (m_Revision >= 6) {
Revision6_Hash(password, size, digest, (bOwner ? (const uint8_t*)ukey : NULL), digest1);
} else {
CRYPT_SHA256Start(sha);
CRYPT_SHA256Update(sha, password, size);
CRYPT_SHA256Update(sha, digest, 8);
if (bOwner) {
CRYPT_SHA256Update(sha, ukey, ukey.GetLength());
}
CRYPT_SHA256Finish(sha, digest1);
}
FXSYS_memcpy32(digest1 + 32, digest, 16);
pEncryptDict->SetAtString(bOwner ? FX_BSTRC("O") : FX_BSTRC("U"), CFX_ByteString(digest1, 48));
if (m_Revision >= 6) {
Revision6_Hash(password, size, digest + 8, (bOwner ? (const uint8_t*)ukey : NULL), digest1);
} else {
CRYPT_SHA256Start(sha);
CRYPT_SHA256Update(sha, password, size);
CRYPT_SHA256Update(sha, digest + 8, 8);
if (bOwner) {
CRYPT_SHA256Update(sha, ukey, ukey.GetLength());
}
CRYPT_SHA256Finish(sha, digest1);
}
uint8_t* aes = FX_Alloc(uint8_t, 2048);
CRYPT_AESSetKey(aes, 16, digest1, 32, TRUE);
uint8_t iv[16];
FXSYS_memset32(iv, 0, 16);
CRYPT_AESSetIV(aes, iv);
CRYPT_AESEncrypt(aes, digest1, key, 32);
FX_Free(aes);
pEncryptDict->SetAtString(bOwner ? FX_BSTRC("OE") : FX_BSTRC("UE"), CFX_ByteString(digest1, 32));
}
void CPDF_StandardSecurityHandler::AES256_SetPerms(CPDF_Dictionary* pEncryptDict, FX_DWORD permissions,
FX_BOOL bEncryptMetadata, const uint8_t* key)
{
uint8_t buf[16];
buf[0] = (uint8_t)permissions;
buf[1] = (uint8_t)(permissions >> 8);
buf[2] = (uint8_t)(permissions >> 16);
buf[3] = (uint8_t)(permissions >> 24);
buf[4] = 0xff;
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
buf[8] = bEncryptMetadata ? 'T' : 'F';
buf[9] = 'a';
buf[10] = 'd';
buf[11] = 'b';
uint8_t* aes = FX_Alloc(uint8_t, 2048);
CRYPT_AESSetKey(aes, 16, key, 32, TRUE);
uint8_t iv[16], buf1[16];
FXSYS_memset32(iv, 0, 16);
CRYPT_AESSetIV(aes, iv);
CRYPT_AESEncrypt(aes, buf1, buf, 16);
FX_Free(aes);
pEncryptDict->SetAtString(FX_BSTRC("Perms"), CFX_ByteString(buf1, 16));
}
void CPDF_StandardCryptoHandler::CryptBlock(FX_BOOL bEncrypt, FX_DWORD objnum, FX_DWORD gennum, const uint8_t* src_buf, FX_DWORD src_size,
uint8_t* dest_buf, FX_DWORD& dest_size)
{
if (m_Cipher == FXCIPHER_NONE) {
FXSYS_memcpy32(dest_buf, src_buf, src_size);
return;
}
uint8_t realkey[16];
int realkeylen = 16;
if (m_Cipher != FXCIPHER_AES || m_KeyLen != 32) {
uint8_t key1[32];
FXSYS_memcpy32(key1, m_EncryptKey, m_KeyLen);
key1[m_KeyLen + 0] = (uint8_t)objnum;
key1[m_KeyLen + 1] = (uint8_t)(objnum >> 8);
key1[m_KeyLen + 2] = (uint8_t)(objnum >> 16);
key1[m_KeyLen + 3] = (uint8_t)gennum;
key1[m_KeyLen + 4] = (uint8_t)(gennum >> 8);
FXSYS_memcpy32(key1 + m_KeyLen, &objnum, 3);
FXSYS_memcpy32(key1 + m_KeyLen + 3, &gennum, 2);
if (m_Cipher == FXCIPHER_AES) {
FXSYS_memcpy32(key1 + m_KeyLen + 5, "sAlT", 4);
}
CRYPT_MD5Generate(key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey);
realkeylen = m_KeyLen + 5;
if (realkeylen > 16) {
realkeylen = 16;
}
}
if (m_Cipher == FXCIPHER_AES) {
CRYPT_AESSetKey(m_pAESContext, 16, m_KeyLen == 32 ? m_EncryptKey : realkey, m_KeyLen, bEncrypt);
if (bEncrypt) {
uint8_t iv[16];
for (int i = 0; i < 16; i ++) {
iv[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(m_pAESContext, iv);
FXSYS_memcpy32(dest_buf, iv, 16);
int nblocks = src_size / 16;
CRYPT_AESEncrypt(m_pAESContext, dest_buf + 16, src_buf, nblocks * 16);
uint8_t padding[16];
FXSYS_memcpy32(padding, src_buf + nblocks * 16, src_size % 16);
FXSYS_memset8(padding + src_size % 16, 16 - src_size % 16, 16 - src_size % 16);
CRYPT_AESEncrypt(m_pAESContext, dest_buf + nblocks * 16 + 16, padding, 16);
dest_size = 32 + nblocks * 16;
} else {
CRYPT_AESSetIV(m_pAESContext, src_buf);
CRYPT_AESDecrypt(m_pAESContext, dest_buf, src_buf + 16, src_size - 16);
dest_size = src_size - 16;
dest_size -= dest_buf[dest_size - 1];
}
} else {
ASSERT(dest_size == src_size);
if (dest_buf != src_buf) {
FXSYS_memcpy32(dest_buf, src_buf, src_size);
}
CRYPT_ArcFourCryptBlock(dest_buf, dest_size, realkey, realkeylen);
}
}
typedef struct _AESCryptContext {
uint8_t m_Context[2048];
FX_BOOL m_bIV;
uint8_t m_Block[16];
FX_DWORD m_BlockOffset;
} AESCryptContext;
void* CPDF_StandardCryptoHandler::CryptStart(FX_DWORD objnum, FX_DWORD gennum, FX_BOOL bEncrypt)
{
if (m_Cipher == FXCIPHER_NONE) {
return this;
}
if (m_Cipher == FXCIPHER_AES && m_KeyLen == 32) {
AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1);
pContext->m_bIV = TRUE;
pContext->m_BlockOffset = 0;
CRYPT_AESSetKey(pContext->m_Context, 16, m_EncryptKey, 32, bEncrypt);
if (bEncrypt) {
for (int i = 0; i < 16; i ++) {
pContext->m_Block[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(pContext->m_Context, pContext->m_Block);
}
return pContext;
}
uint8_t key1[48];
FXSYS_memcpy32(key1, m_EncryptKey, m_KeyLen);
FXSYS_memcpy32(key1 + m_KeyLen, &objnum, 3);
FXSYS_memcpy32(key1 + m_KeyLen + 3, &gennum, 2);
if (m_Cipher == FXCIPHER_AES) {
FXSYS_memcpy32(key1 + m_KeyLen + 5, "sAlT", 4);
}
uint8_t realkey[16];
CRYPT_MD5Generate(key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey);
int realkeylen = m_KeyLen + 5;
if (realkeylen > 16) {
realkeylen = 16;
}
if (m_Cipher == FXCIPHER_AES) {
AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1);
pContext->m_bIV = TRUE;
pContext->m_BlockOffset = 0;
CRYPT_AESSetKey(pContext->m_Context, 16, realkey, 16, bEncrypt);
if (bEncrypt) {
for (int i = 0; i < 16; i ++) {
pContext->m_Block[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(pContext->m_Context, pContext->m_Block);
}
return pContext;
}
void* pContext = FX_Alloc(uint8_t, 1040);
CRYPT_ArcFourSetup(pContext, realkey, realkeylen);
return pContext;
}
FX_BOOL CPDF_StandardCryptoHandler::CryptStream(void* context, const uint8_t* src_buf, FX_DWORD src_size, CFX_BinaryBuf& dest_buf, FX_BOOL bEncrypt)
{
if (!context) {
return FALSE;
}
if (m_Cipher == FXCIPHER_NONE) {
dest_buf.AppendBlock(src_buf, src_size);
return TRUE;
}
if (m_Cipher == FXCIPHER_RC4) {
int old_size = dest_buf.GetSize();
dest_buf.AppendBlock(src_buf, src_size);
CRYPT_ArcFourCrypt(context, dest_buf.GetBuffer() + old_size, src_size);
return TRUE;
}
AESCryptContext* pContext = (AESCryptContext*)context;
if (pContext->m_bIV && bEncrypt) {
dest_buf.AppendBlock(pContext->m_Block, 16);
pContext->m_bIV = FALSE;
}
FX_DWORD src_off = 0;
FX_DWORD src_left = src_size;
while (1) {
FX_DWORD copy_size = 16 - pContext->m_BlockOffset;
if (copy_size > src_left) {
copy_size = src_left;
}
FXSYS_memcpy32(pContext->m_Block + pContext->m_BlockOffset, src_buf + src_off, copy_size);
src_off += copy_size;
src_left -= copy_size;
pContext->m_BlockOffset += copy_size;
if (pContext->m_BlockOffset == 16) {
if (!bEncrypt && pContext->m_bIV) {
CRYPT_AESSetIV(pContext->m_Context, pContext->m_Block);
pContext->m_bIV = FALSE;
pContext->m_BlockOffset = 0;
} else if (src_off < src_size) {
uint8_t block_buf[16];
if (bEncrypt) {
CRYPT_AESEncrypt(pContext->m_Context, block_buf, pContext->m_Block, 16);
} else {
CRYPT_AESDecrypt(pContext->m_Context, block_buf, pContext->m_Block, 16);
}
dest_buf.AppendBlock(block_buf, 16);
pContext->m_BlockOffset = 0;
}
}
if (!src_left) {
break;
}
}
return TRUE;
}
FX_BOOL CPDF_StandardCryptoHandler::CryptFinish(void* context, CFX_BinaryBuf& dest_buf, FX_BOOL bEncrypt)
{
if (!context) {
return FALSE;
}
if (m_Cipher == FXCIPHER_NONE) {
return TRUE;
}
if (m_Cipher == FXCIPHER_RC4) {
FX_Free(context);
return TRUE;
}
AESCryptContext* pContext = (AESCryptContext*)context;
if (bEncrypt) {
uint8_t block_buf[16];
if (pContext->m_BlockOffset == 16) {
CRYPT_AESEncrypt(pContext->m_Context, block_buf, pContext->m_Block, 16);
dest_buf.AppendBlock(block_buf, 16);
pContext->m_BlockOffset = 0;
}
FXSYS_memset8(pContext->m_Block + pContext->m_BlockOffset, (uint8_t)(16 - pContext->m_BlockOffset), 16 - pContext->m_BlockOffset);
CRYPT_AESEncrypt(pContext->m_Context, block_buf, pContext->m_Block, 16);
dest_buf.AppendBlock(block_buf, 16);
} else if (pContext->m_BlockOffset == 16) {
uint8_t block_buf[16];
CRYPT_AESDecrypt(pContext->m_Context, block_buf, pContext->m_Block, 16);
if (block_buf[15] <= 16) {
dest_buf.AppendBlock(block_buf, 16 - block_buf[15]);
}
}
FX_Free(pContext);
return TRUE;
}
void* CPDF_StandardCryptoHandler::DecryptStart(FX_DWORD objnum, FX_DWORD gennum)
{
return CryptStart(objnum, gennum, FALSE);
}
FX_DWORD CPDF_StandardCryptoHandler::DecryptGetSize(FX_DWORD src_size)
{
return m_Cipher == FXCIPHER_AES ? src_size - 16 : src_size;
}
FX_BOOL CPDF_StandardCryptoHandler::Init(CPDF_Dictionary* pEncryptDict, CPDF_SecurityHandler* pSecurityHandler)
{
const uint8_t* key;
if (!pSecurityHandler->GetCryptInfo(m_Cipher, key, m_KeyLen)) {
return FALSE;
}
if (m_KeyLen > 32 || m_KeyLen < 0) {
return FALSE;
}
if (m_Cipher != FXCIPHER_NONE) {
FXSYS_memcpy32(m_EncryptKey, key, m_KeyLen);
}
if (m_Cipher == FXCIPHER_AES) {
m_pAESContext = FX_Alloc(uint8_t, 2048);
}
return TRUE;
}
FX_BOOL CPDF_StandardCryptoHandler::Init(int cipher, const uint8_t* key, int keylen)
{
if (cipher == FXCIPHER_AES) {
switch(keylen) {
case 16:
case 24:
case 32:
break;
default:
return FALSE;
}
} else if (cipher == FXCIPHER_AES2) {
if (keylen != 32) {
return FALSE;
}
} else if (cipher == FXCIPHER_RC4) {
if (keylen < 5 || keylen > 16) {
return FALSE;
}
} else {
if (keylen > 32) {
keylen = 32;
}
}
m_Cipher = cipher;
m_KeyLen = keylen;
FXSYS_memcpy32(m_EncryptKey, key, keylen);
if (m_Cipher == FXCIPHER_AES) {
m_pAESContext = FX_Alloc(uint8_t, 2048);
}
return TRUE;
}
FX_BOOL CPDF_StandardCryptoHandler::DecryptStream(void* context, const uint8_t* src_buf, FX_DWORD src_size,
CFX_BinaryBuf& dest_buf)
{
return CryptStream(context, src_buf, src_size, dest_buf, FALSE);
}
FX_BOOL CPDF_StandardCryptoHandler::DecryptFinish(void* context, CFX_BinaryBuf& dest_buf)
{
return CryptFinish(context, dest_buf, FALSE);
}
FX_DWORD CPDF_StandardCryptoHandler::EncryptGetSize(FX_DWORD objnum, FX_DWORD version, const uint8_t* src_buf, FX_DWORD src_size)
{
if (m_Cipher == FXCIPHER_AES) {
return src_size + 32;
}
return src_size;
}
FX_BOOL CPDF_StandardCryptoHandler::EncryptContent(FX_DWORD objnum, FX_DWORD gennum, const uint8_t* src_buf, FX_DWORD src_size,
uint8_t* dest_buf, FX_DWORD& dest_size)
{
CryptBlock(TRUE, objnum, gennum, src_buf, src_size, dest_buf, dest_size);
return TRUE;
}
void CPDF_CryptoHandler::Decrypt(FX_DWORD objnum, FX_DWORD gennum, CFX_ByteString& str)
{
CFX_BinaryBuf dest_buf;
void* context = DecryptStart(objnum, gennum);
DecryptStream(context, (const uint8_t*)str, str.GetLength(), dest_buf);
DecryptFinish(context, dest_buf);
str = dest_buf;
}
CPDF_StandardCryptoHandler::CPDF_StandardCryptoHandler()
{
m_pAESContext = NULL;
m_Cipher = FXCIPHER_NONE;
m_KeyLen = 0;
}
CPDF_StandardCryptoHandler::~CPDF_StandardCryptoHandler()
{
if (m_pAESContext) {
FX_Free(m_pAESContext);
}
}