blob: f519b345b10b151726f6add20374a6df0e017450 [file] [log] [blame]
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This is a copy of breakpad's standalone scoped_ptr, which has been
// renamed to nonstd::unique_ptr, and from which more complicated classes
// have been removed. The reset() method has also been tweaked to more
// closely match c++11, and an implicit conversion to bool has been added.
// Scopers help you manage ownership of a pointer, helping you easily manage the
// a pointer within a scope, and automatically destroying the pointer at the
// end of a scope.
//
// A unique_ptr<T> is like a T*, except that the destructor of unique_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, unique_ptr<T> owns the T object that it points to.
// Like a T*, a unique_ptr<T> may hold either NULL or a pointer to a T object.
// Also like T*, unique_ptr<T> is thread-compatible, and once you
// dereference it, you get the thread safety guarantees of T.
//
// Example usage (unique_ptr):
// {
// unique_ptr<Foo> foo(new Foo("wee"));
// } // foo goes out of scope, releasing the pointer with it.
//
// {
// unique_ptr<Foo> foo; // No pointer managed.
// foo.reset(new Foo("wee")); // Now a pointer is managed.
// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
// foo->Method(); // Foo::Method() called.
// foo.get()->Method(); // Foo::Method() called.
// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
// // manages a pointer.
// foo.reset(new Foo("wee4")); // foo manages a pointer again.
// foo.reset(); // Foo("wee4") destroyed, foo no longer
// // manages a pointer.
// } // foo wasn't managing a pointer, so nothing was destroyed.
//
// The size of a unique_ptr is small: sizeof(unique_ptr<C>) == sizeof(C*)
#ifndef NONSTD_UNIQUE_PTR_H_
#define NONSTD_UNIQUE_PTR_H_
// This is an implementation designed to match the anticipated future C++11
// implementation of the unique_ptr class.
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <ostream>
#include "template_util.h"
namespace nonstd {
// Replacement for move, but doesn't allow things that are already
// rvalue references.
template <class T>
T&& move(T& t) {
return static_cast<T&&>(t);
}
// Function object which deletes its parameter, which must be a pointer.
// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
// invokes 'delete'. The default deleter for unique_ptr<T>.
template <class T>
struct DefaultDeleter {
DefaultDeleter() {}
template <typename U>
DefaultDeleter(const DefaultDeleter<U>& other) {
// IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
// if U* is implicitly convertible to T* and U is not an array type.
//
// Correct implementation should use SFINAE to disable this
// constructor. However, since there are no other 1-argument constructors,
// using a static_assert() based on is_convertible<> and requiring
// complete types is simpler and will cause compile failures for equivalent
// misuses.
//
// Note, the is_convertible<U*, T*> check also ensures that U is not an
// array. T is guaranteed to be a non-array, so any U* where U is an array
// cannot convert to T*.
enum { T_must_be_complete = sizeof(T) };
enum { U_must_be_complete = sizeof(U) };
static_assert((pdfium::base::is_convertible<U*, T*>::value),
"U_ptr_must_implicitly_convert_to_T_ptr");
}
inline void operator()(T* ptr) const {
enum { type_must_be_complete = sizeof(T) };
delete ptr;
}
};
// Specialization of DefaultDeleter for array types.
template <class T>
struct DefaultDeleter<T[]> {
inline void operator()(T* ptr) const {
enum { type_must_be_complete = sizeof(T) };
delete[] ptr;
}
private:
// Disable this operator for any U != T because it is undefined to execute
// an array delete when the static type of the array mismatches the dynamic
// type.
//
// References:
// C++98 [expr.delete]p3
// http://cplusplus.github.com/LWG/lwg-defects.html#938
template <typename U>
void operator()(U* array) const;
};
template <class T, int n>
struct DefaultDeleter<T[n]> {
// Never allow someone to declare something like unique_ptr<int[10]>.
static_assert(sizeof(T) == -1, "do_not_use_array_with_size_as_type");
};
namespace internal {
// Common implementation for both pointers to elements and pointers to
// arrays. These are differentiated below based on the need to invoke
// delete vs. delete[] as appropriate.
template <class C, class D>
class unique_ptr_base {
public:
// The element type
typedef C element_type;
explicit unique_ptr_base(C* p) : data_(p) {}
// Initializer for deleters that have data parameters.
unique_ptr_base(C* p, const D& d) : data_(p, d) {}
// Move constructor.
unique_ptr_base(unique_ptr_base<C, D>&& that)
: data_(that.release(), that.get_deleter()) {}
~unique_ptr_base() {
enum { type_must_be_complete = sizeof(C) };
if (data_.ptr != nullptr) {
// Not using get_deleter() saves one function call in non-optimized
// builds.
static_cast<D&>(data_)(data_.ptr);
}
}
void reset(C* p = nullptr) {
C* old = data_.ptr;
data_.ptr = p;
if (old != nullptr)
static_cast<D&>(data_)(old);
}
C* get() const { return data_.ptr; }
D& get_deleter() { return data_; }
const D& get_deleter() const { return data_; }
// Comparison operators.
// These return whether two unique_ptr refer to the same object, not just to
// two different but equal objects.
bool operator==(C* p) const { return data_.ptr == p; }
bool operator!=(C* p) const { return data_.ptr != p; }
// Swap two unique pointers.
void swap(unique_ptr_base& p2) {
Data tmp = data_;
data_ = p2.data_;
p2.data_ = tmp;
}
// Release a pointer.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() {
C* ptr = data_.ptr;
data_.ptr = nullptr;
return ptr;
}
// Allow promotion to bool for conditional statements.
explicit operator bool() const { return data_.ptr != nullptr; }
protected:
// Use the empty base class optimization to allow us to have a D
// member, while avoiding any space overhead for it when D is an
// empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
// discussion of this technique.
struct Data : public D {
explicit Data(C* ptr_in) : ptr(ptr_in) {}
Data(C* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
C* ptr;
};
Data data_;
};
} // namespace internal
// Implementation for ordinary pointers using delete.
template <class C, class D = DefaultDeleter<C>>
class unique_ptr : public internal::unique_ptr_base<C, D> {
public:
// Constructor. Defaults to initializing with nullptr.
unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {}
// Constructor. Takes ownership of p.
explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {}
// Constructor. Allows initialization of a stateful deleter.
unique_ptr(C* p, const D& d) : internal::unique_ptr_base<C, D>(p, d) {}
// Constructor. Allows construction from a nullptr.
unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {}
// Move constructor.
unique_ptr(unique_ptr&& that)
: internal::unique_ptr_base<C, D>(nonstd::move(that)) {}
// operator=. Allows assignment from a nullptr. Deletes the currently owned
// object, if any.
unique_ptr& operator=(decltype(nullptr)) {
this->reset();
return *this;
}
// Move assignment.
unique_ptr<C>& operator=(unique_ptr<C>&& that) {
this->reset(that.release());
return *this;
}
// Accessors to get the owned object.
// operator* and operator-> will assert() if there is no current object.
C& operator*() const {
assert(this->data_.ptr != nullptr);
return *this->data_.ptr;
}
C* operator->() const {
assert(this->data_.ptr != nullptr);
return this->data_.ptr;
}
// Comparison operators.
// These return whether two unique_ptr refer to the same object, not just to
// two different but equal objects.
bool operator==(const C* p) const { return this->get() == p; }
bool operator!=(const C* p) const { return this->get() != p; }
private:
// Disallow evil constructors. It doesn't make sense to make a copy of
// something that's allegedly unique.
unique_ptr(const unique_ptr&) = delete;
void operator=(const unique_ptr&) = delete;
// Forbid comparison of unique_ptr types. If U != C, it totally
// doesn't make sense, and if U == C, it still doesn't make sense
// because you should never have the same object owned by two different
// unique_ptrs.
template <class U>
bool operator==(unique_ptr<U> const& p2) const;
template <class U>
bool operator!=(unique_ptr<U> const& p2) const;
};
// Specialization for arrays using delete[].
template <class C, class D>
class unique_ptr<C[], D> : public internal::unique_ptr_base<C, D> {
public:
// Constructor. Defaults to initializing with nullptr.
unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {}
// Constructor. Stores the given array. Note that the argument's type
// must exactly match T*. In particular:
// - it cannot be a pointer to a type derived from T, because it is
// inherently unsafe in the general case to access an array through a
// pointer whose dynamic type does not match its static type (eg., if
// T and the derived types had different sizes access would be
// incorrectly calculated). Deletion is also always undefined
// (C++98 [expr.delete]p3). If you're doing this, fix your code.
// - it cannot be const-qualified differently from T per unique_ptr spec
// (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
// to work around this may use const_cast<const T*>().
explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {}
// Constructor. Allows construction from a nullptr.
unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {}
// Move constructor.
unique_ptr(unique_ptr&& that)
: internal::unique_ptr_base<C, D>(nonstd::move(that)) {}
// operator=. Allows assignment from a nullptr. Deletes the currently owned
// array, if any.
unique_ptr& operator=(decltype(nullptr)) {
this->reset();
return *this;
}
// Move assignment.
unique_ptr<C>& operator=(unique_ptr<C>&& that) {
this->reset(that.release());
return *this;
}
// Reset. Deletes the currently owned array, if any.
// Then takes ownership of a new object, if given.
void reset(C* array = nullptr) {
static_cast<internal::unique_ptr_base<C, D>*>(this)->reset(array);
}
// Support indexing since it is holding array.
C& operator[](size_t i) { return this->data_.ptr[i]; }
// Comparison operators.
// These return whether two unique_ptr refer to the same object, not just to
// two different but equal objects.
bool operator==(C* array) const { return this->get() == array; }
bool operator!=(C* array) const { return this->get() != array; }
private:
// Disable initialization from any type other than element_type*, by
// providing a constructor that matches such an initialization, but is
// private and has no definition. This is disabled because it is not safe to
// call delete[] on an array whose static type does not match its dynamic
// type.
template <typename U>
explicit unique_ptr(U* array);
explicit unique_ptr(int disallow_construction_from_null);
// Disable reset() from any type other than element_type*, for the same
// reasons as the constructor above.
template <typename U>
void reset(U* array);
void reset(int disallow_reset_from_null);
// Disallow evil constructors. It doesn't make sense to make a copy of
// something that's allegedly unique.
unique_ptr(const unique_ptr&) = delete;
void operator=(const unique_ptr&) = delete;
// Forbid comparison of unique_ptr types. If U != C, it totally
// doesn't make sense, and if U == C, it still doesn't make sense
// because you should never have the same object owned by two different
// unique_ptrs.
template <class U>
bool operator==(unique_ptr<U> const& p2) const;
template <class U>
bool operator!=(unique_ptr<U> const& p2) const;
};
// Free functions
template <class C>
void swap(unique_ptr<C>& p1, unique_ptr<C>& p2) {
p1.swap(p2);
}
template <class C>
bool operator==(C* p1, const unique_ptr<C>& p2) {
return p1 == p2.get();
}
template <class C>
bool operator!=(C* p1, const unique_ptr<C>& p2) {
return p1 != p2.get();
}
template <typename T>
std::ostream& operator<<(std::ostream& out, const unique_ptr<T>& p) {
return out << p.get();
}
} // namespace nonstd
#endif // NONSTD_UNIQUE_PTR_H_