blob: ccb80eba23e43c8e2857ba3054319e26fb2d1a9c [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/include/fxcrt/fx_basic.h"
#include "third_party/base/numerics/safe_math.h"
CFX_BasicArray::CFX_BasicArray(int unit_size)
: m_pData(NULL), m_nSize(0), m_nMaxSize(0) {
if (unit_size < 0 || unit_size > (1 << 28)) {
m_nUnitSize = 4;
} else {
m_nUnitSize = unit_size;
}
}
CFX_BasicArray::~CFX_BasicArray() {
FX_Free(m_pData);
}
FX_BOOL CFX_BasicArray::SetSize(int nNewSize) {
if (nNewSize <= 0) {
FX_Free(m_pData);
m_pData = NULL;
m_nSize = m_nMaxSize = 0;
return 0 == nNewSize;
}
if (m_pData == NULL) {
pdfium::base::CheckedNumeric<int> totalSize = nNewSize;
totalSize *= m_nUnitSize;
if (!totalSize.IsValid()) {
m_nSize = m_nMaxSize = 0;
return FALSE;
}
m_pData = FX_Alloc(uint8_t, totalSize.ValueOrDie());
m_nSize = m_nMaxSize = nNewSize;
} else if (nNewSize <= m_nMaxSize) {
if (nNewSize > m_nSize) {
FXSYS_memset(m_pData + m_nSize * m_nUnitSize, 0,
(nNewSize - m_nSize) * m_nUnitSize);
}
m_nSize = nNewSize;
} else {
int nNewMax = nNewSize < m_nMaxSize ? m_nMaxSize : nNewSize;
pdfium::base::CheckedNumeric<int> totalSize = nNewMax;
totalSize *= m_nUnitSize;
if (!totalSize.IsValid() || nNewMax < m_nSize) {
return FALSE;
}
uint8_t* pNewData = FX_Realloc(uint8_t, m_pData, totalSize.ValueOrDie());
if (pNewData == NULL) {
return FALSE;
}
FXSYS_memset(pNewData + m_nSize * m_nUnitSize, 0,
(nNewMax - m_nSize) * m_nUnitSize);
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
return TRUE;
}
FX_BOOL CFX_BasicArray::Append(const CFX_BasicArray& src) {
int nOldSize = m_nSize;
pdfium::base::CheckedNumeric<int> newSize = m_nSize;
newSize += src.m_nSize;
if (m_nUnitSize != src.m_nUnitSize || !newSize.IsValid() ||
!SetSize(newSize.ValueOrDie())) {
return FALSE;
}
FXSYS_memcpy(m_pData + nOldSize * m_nUnitSize, src.m_pData,
src.m_nSize * m_nUnitSize);
return TRUE;
}
FX_BOOL CFX_BasicArray::Copy(const CFX_BasicArray& src) {
if (!SetSize(src.m_nSize)) {
return FALSE;
}
FXSYS_memcpy(m_pData, src.m_pData, src.m_nSize * m_nUnitSize);
return TRUE;
}
uint8_t* CFX_BasicArray::InsertSpaceAt(int nIndex, int nCount) {
if (nIndex < 0 || nCount <= 0) {
return NULL;
}
if (nIndex >= m_nSize) {
if (!SetSize(nIndex + nCount)) {
return NULL;
}
} else {
int nOldSize = m_nSize;
if (!SetSize(m_nSize + nCount)) {
return NULL;
}
FXSYS_memmove(m_pData + (nIndex + nCount) * m_nUnitSize,
m_pData + nIndex * m_nUnitSize,
(nOldSize - nIndex) * m_nUnitSize);
FXSYS_memset(m_pData + nIndex * m_nUnitSize, 0, nCount * m_nUnitSize);
}
return m_pData + nIndex * m_nUnitSize;
}
FX_BOOL CFX_BasicArray::RemoveAt(int nIndex, int nCount) {
if (nIndex < 0 || nCount <= 0 || m_nSize < nIndex + nCount) {
return FALSE;
}
int nMoveCount = m_nSize - (nIndex + nCount);
if (nMoveCount) {
FXSYS_memmove(m_pData + nIndex * m_nUnitSize,
m_pData + (nIndex + nCount) * m_nUnitSize,
nMoveCount * m_nUnitSize);
}
m_nSize -= nCount;
return TRUE;
}
FX_BOOL CFX_BasicArray::InsertAt(int nStartIndex,
const CFX_BasicArray* pNewArray) {
if (pNewArray == NULL) {
return FALSE;
}
if (pNewArray->m_nSize == 0) {
return TRUE;
}
if (!InsertSpaceAt(nStartIndex, pNewArray->m_nSize)) {
return FALSE;
}
FXSYS_memcpy(m_pData + nStartIndex * m_nUnitSize, pNewArray->m_pData,
pNewArray->m_nSize * m_nUnitSize);
return TRUE;
}
const void* CFX_BasicArray::GetDataPtr(int index) const {
if (index < 0 || index >= m_nSize || m_pData == NULL) {
return NULL;
}
return m_pData + index * m_nUnitSize;
}
CFX_BaseSegmentedArray::CFX_BaseSegmentedArray(int unit_size,
int segment_units,
int index_size)
: m_UnitSize(unit_size),
m_SegmentSize(segment_units),
m_IndexSize(index_size),
m_IndexDepth(0),
m_DataSize(0),
m_pIndex(NULL) {}
void CFX_BaseSegmentedArray::SetUnitSize(int unit_size,
int segment_units,
int index_size) {
ASSERT(m_DataSize == 0);
m_UnitSize = unit_size;
m_SegmentSize = segment_units;
m_IndexSize = index_size;
}
CFX_BaseSegmentedArray::~CFX_BaseSegmentedArray() {
RemoveAll();
}
static void _ClearIndex(int level, int size, void** pIndex) {
if (level == 0) {
FX_Free(pIndex);
return;
}
for (int i = 0; i < size; i++) {
if (pIndex[i] == NULL) {
continue;
}
_ClearIndex(level - 1, size, (void**)pIndex[i]);
}
FX_Free(pIndex);
}
void CFX_BaseSegmentedArray::RemoveAll() {
if (m_pIndex == NULL) {
return;
}
_ClearIndex(m_IndexDepth, m_IndexSize, (void**)m_pIndex);
m_pIndex = NULL;
m_IndexDepth = 0;
m_DataSize = 0;
}
void* CFX_BaseSegmentedArray::Add() {
if (m_DataSize % m_SegmentSize) {
return GetAt(m_DataSize++);
}
void* pSegment = FX_Alloc2D(uint8_t, m_UnitSize, m_SegmentSize);
if (m_pIndex == NULL) {
m_pIndex = pSegment;
m_DataSize++;
return pSegment;
}
if (m_IndexDepth == 0) {
void** pIndex = FX_Alloc(void*, m_IndexSize);
pIndex[0] = m_pIndex;
pIndex[1] = pSegment;
m_pIndex = pIndex;
m_DataSize++;
m_IndexDepth++;
return pSegment;
}
int seg_index = m_DataSize / m_SegmentSize;
if (seg_index % m_IndexSize) {
void** pIndex = GetIndex(seg_index);
pIndex[seg_index % m_IndexSize] = pSegment;
m_DataSize++;
return pSegment;
}
int tree_size = 1;
int i;
for (i = 0; i < m_IndexDepth; i++) {
tree_size *= m_IndexSize;
}
if (m_DataSize == tree_size * m_SegmentSize) {
void** pIndex = FX_Alloc(void*, m_IndexSize);
pIndex[0] = m_pIndex;
m_pIndex = pIndex;
m_IndexDepth++;
} else {
tree_size /= m_IndexSize;
}
void** pSpot = (void**)m_pIndex;
for (i = 1; i < m_IndexDepth; i++) {
if (pSpot[seg_index / tree_size] == NULL) {
pSpot[seg_index / tree_size] = FX_Alloc(void*, m_IndexSize);
}
pSpot = (void**)pSpot[seg_index / tree_size];
seg_index = seg_index % tree_size;
tree_size /= m_IndexSize;
}
if (i < m_IndexDepth) {
FX_Free(pSegment);
RemoveAll();
return NULL;
}
pSpot[seg_index % m_IndexSize] = pSegment;
m_DataSize++;
return pSegment;
}
void** CFX_BaseSegmentedArray::GetIndex(int seg_index) const {
ASSERT(m_IndexDepth != 0);
if (m_IndexDepth == 1) {
return (void**)m_pIndex;
}
if (m_IndexDepth == 2) {
return (void**)((void**)m_pIndex)[seg_index / m_IndexSize];
}
int tree_size = 1;
int i;
for (i = 1; i < m_IndexDepth; i++) {
tree_size *= m_IndexSize;
}
void** pSpot = (void**)m_pIndex;
for (i = 1; i < m_IndexDepth; i++) {
pSpot = (void**)pSpot[seg_index / tree_size];
seg_index = seg_index % tree_size;
tree_size /= m_IndexSize;
}
return pSpot;
}
void* CFX_BaseSegmentedArray::IterateSegment(const uint8_t* pSegment,
int count,
FX_BOOL (*callback)(void* param,
void* pData),
void* param) const {
for (int i = 0; i < count; i++) {
if (!callback(param, (void*)(pSegment + i * m_UnitSize))) {
return (void*)(pSegment + i * m_UnitSize);
}
}
return NULL;
}
void* CFX_BaseSegmentedArray::IterateIndex(int level,
int& start,
void** pIndex,
FX_BOOL (*callback)(void* param,
void* pData),
void* param) const {
if (level == 0) {
int count = m_DataSize - start;
if (count > m_SegmentSize) {
count = m_SegmentSize;
}
start += count;
return IterateSegment((const uint8_t*)pIndex, count, callback, param);
}
for (int i = 0; i < m_IndexSize; i++) {
if (pIndex[i] == NULL) {
continue;
}
void* p =
IterateIndex(level - 1, start, (void**)pIndex[i], callback, param);
if (p) {
return p;
}
}
return NULL;
}
void* CFX_BaseSegmentedArray::Iterate(FX_BOOL (*callback)(void* param,
void* pData),
void* param) const {
if (m_pIndex == NULL) {
return NULL;
}
int start = 0;
return IterateIndex(m_IndexDepth, start, (void**)m_pIndex, callback, param);
}
void* CFX_BaseSegmentedArray::GetAt(int index) const {
if (index < 0 || index >= m_DataSize) {
return NULL;
}
if (m_IndexDepth == 0) {
return (uint8_t*)m_pIndex + m_UnitSize * index;
}
int seg_index = index / m_SegmentSize;
return (uint8_t*)GetIndex(seg_index)[seg_index % m_IndexSize] +
(index % m_SegmentSize) * m_UnitSize;
}
void CFX_BaseSegmentedArray::Delete(int index, int count) {
if (index < 0 || count < 1 || index + count > m_DataSize) {
return;
}
int i;
for (i = index; i < m_DataSize - count; i++) {
uint8_t* pSrc = (uint8_t*)GetAt(i + count);
uint8_t* pDest = (uint8_t*)GetAt(i);
for (int j = 0; j < m_UnitSize; j++) {
pDest[j] = pSrc[j];
}
}
int new_segs = (m_DataSize - count + m_SegmentSize - 1) / m_SegmentSize;
int old_segs = (m_DataSize + m_SegmentSize - 1) / m_SegmentSize;
if (new_segs < old_segs) {
if (m_IndexDepth) {
for (i = new_segs; i < old_segs; i++) {
void** pIndex = GetIndex(i);
FX_Free(pIndex[i % m_IndexSize]);
pIndex[i % m_IndexSize] = NULL;
}
} else {
FX_Free(m_pIndex);
m_pIndex = NULL;
}
}
m_DataSize -= count;
}