blob: ed8e6093d58787879df230a0dd8c27e81427b51d [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/fpdf_page/pageint.h"
#include <limits.h>
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "core/fpdfapi/fpdf_parser/include/cpdf_array.h"
#include "core/fpdfapi/fpdf_parser/include/cpdf_dictionary.h"
#include "core/fpdfapi/fpdf_parser/include/cpdf_simple_parser.h"
#include "core/fpdfapi/fpdf_parser/include/cpdf_stream.h"
#include "core/fpdfapi/fpdf_parser/include/cpdf_stream_acc.h"
#include "core/fxcrt/include/fx_safe_types.h"
#include "third_party/base/numerics/safe_conversions_impl.h"
namespace {
enum PDF_PSOP {
PSOP_ADD,
PSOP_SUB,
PSOP_MUL,
PSOP_DIV,
PSOP_IDIV,
PSOP_MOD,
PSOP_NEG,
PSOP_ABS,
PSOP_CEILING,
PSOP_FLOOR,
PSOP_ROUND,
PSOP_TRUNCATE,
PSOP_SQRT,
PSOP_SIN,
PSOP_COS,
PSOP_ATAN,
PSOP_EXP,
PSOP_LN,
PSOP_LOG,
PSOP_CVI,
PSOP_CVR,
PSOP_EQ,
PSOP_NE,
PSOP_GT,
PSOP_GE,
PSOP_LT,
PSOP_LE,
PSOP_AND,
PSOP_OR,
PSOP_XOR,
PSOP_NOT,
PSOP_BITSHIFT,
PSOP_TRUE,
PSOP_FALSE,
PSOP_IF,
PSOP_IFELSE,
PSOP_POP,
PSOP_EXCH,
PSOP_DUP,
PSOP_COPY,
PSOP_INDEX,
PSOP_ROLL,
PSOP_PROC,
PSOP_CONST
};
class CPDF_PSEngine;
class CPDF_PSProc;
class CPDF_PSOP {
public:
explicit CPDF_PSOP(PDF_PSOP op) : m_op(op), m_value(0) {
ASSERT(m_op != PSOP_CONST);
ASSERT(m_op != PSOP_PROC);
}
explicit CPDF_PSOP(FX_FLOAT value) : m_op(PSOP_CONST), m_value(value) {}
explicit CPDF_PSOP(std::unique_ptr<CPDF_PSProc> proc)
: m_op(PSOP_PROC), m_value(0), m_proc(std::move(proc)) {}
FX_FLOAT GetFloatValue() const {
if (m_op == PSOP_CONST)
return m_value;
ASSERT(false);
return 0;
}
CPDF_PSProc* GetProc() const {
if (m_op == PSOP_PROC)
return m_proc.get();
ASSERT(false);
return nullptr;
}
PDF_PSOP GetOp() const { return m_op; }
private:
const PDF_PSOP m_op;
const FX_FLOAT m_value;
std::unique_ptr<CPDF_PSProc> m_proc;
};
class CPDF_PSProc {
public:
CPDF_PSProc() {}
~CPDF_PSProc() {}
FX_BOOL Parse(CPDF_SimpleParser* parser);
FX_BOOL Execute(CPDF_PSEngine* pEngine);
private:
std::vector<std::unique_ptr<CPDF_PSOP>> m_Operators;
};
const uint32_t PSENGINE_STACKSIZE = 100;
class CPDF_PSEngine {
public:
CPDF_PSEngine();
~CPDF_PSEngine();
FX_BOOL Parse(const FX_CHAR* str, int size);
FX_BOOL Execute() { return m_MainProc.Execute(this); }
FX_BOOL DoOperator(PDF_PSOP op);
void Reset() { m_StackCount = 0; }
void Push(FX_FLOAT value);
void Push(int value) { Push((FX_FLOAT)value); }
FX_FLOAT Pop();
uint32_t GetStackSize() const { return m_StackCount; }
private:
FX_FLOAT m_Stack[PSENGINE_STACKSIZE];
uint32_t m_StackCount;
CPDF_PSProc m_MainProc;
};
FX_BOOL CPDF_PSProc::Execute(CPDF_PSEngine* pEngine) {
for (size_t i = 0; i < m_Operators.size(); ++i) {
const PDF_PSOP op = m_Operators[i]->GetOp();
if (op == PSOP_PROC)
continue;
if (op == PSOP_CONST) {
pEngine->Push(m_Operators[i]->GetFloatValue());
continue;
}
if (op == PSOP_IF) {
if (i == 0 || m_Operators[i - 1]->GetOp() != PSOP_PROC)
return FALSE;
if (static_cast<int>(pEngine->Pop()))
m_Operators[i - 1]->GetProc()->Execute(pEngine);
} else if (op == PSOP_IFELSE) {
if (i < 2 || m_Operators[i - 1]->GetOp() != PSOP_PROC ||
m_Operators[i - 2]->GetOp() != PSOP_PROC) {
return FALSE;
}
size_t offset = static_cast<int>(pEngine->Pop()) ? 2 : 1;
m_Operators[i - offset]->GetProc()->Execute(pEngine);
} else {
pEngine->DoOperator(op);
}
}
return TRUE;
}
CPDF_PSEngine::CPDF_PSEngine() {
m_StackCount = 0;
}
CPDF_PSEngine::~CPDF_PSEngine() {}
void CPDF_PSEngine::Push(FX_FLOAT v) {
if (m_StackCount == PSENGINE_STACKSIZE) {
return;
}
m_Stack[m_StackCount++] = v;
}
FX_FLOAT CPDF_PSEngine::Pop() {
if (m_StackCount == 0) {
return 0;
}
return m_Stack[--m_StackCount];
}
const struct PDF_PSOpName {
const FX_CHAR* name;
PDF_PSOP op;
} PDF_PSOpNames[] = {{"add", PSOP_ADD}, {"sub", PSOP_SUB},
{"mul", PSOP_MUL}, {"div", PSOP_DIV},
{"idiv", PSOP_IDIV}, {"mod", PSOP_MOD},
{"neg", PSOP_NEG}, {"abs", PSOP_ABS},
{"ceiling", PSOP_CEILING}, {"floor", PSOP_FLOOR},
{"round", PSOP_ROUND}, {"truncate", PSOP_TRUNCATE},
{"sqrt", PSOP_SQRT}, {"sin", PSOP_SIN},
{"cos", PSOP_COS}, {"atan", PSOP_ATAN},
{"exp", PSOP_EXP}, {"ln", PSOP_LN},
{"log", PSOP_LOG}, {"cvi", PSOP_CVI},
{"cvr", PSOP_CVR}, {"eq", PSOP_EQ},
{"ne", PSOP_NE}, {"gt", PSOP_GT},
{"ge", PSOP_GE}, {"lt", PSOP_LT},
{"le", PSOP_LE}, {"and", PSOP_AND},
{"or", PSOP_OR}, {"xor", PSOP_XOR},
{"not", PSOP_NOT}, {"bitshift", PSOP_BITSHIFT},
{"true", PSOP_TRUE}, {"false", PSOP_FALSE},
{"if", PSOP_IF}, {"ifelse", PSOP_IFELSE},
{"pop", PSOP_POP}, {"exch", PSOP_EXCH},
{"dup", PSOP_DUP}, {"copy", PSOP_COPY},
{"index", PSOP_INDEX}, {"roll", PSOP_ROLL}};
FX_BOOL CPDF_PSEngine::Parse(const FX_CHAR* str, int size) {
CPDF_SimpleParser parser((uint8_t*)str, size);
CFX_ByteStringC word = parser.GetWord();
if (word != "{") {
return FALSE;
}
return m_MainProc.Parse(&parser);
}
FX_BOOL CPDF_PSProc::Parse(CPDF_SimpleParser* parser) {
while (1) {
CFX_ByteStringC word = parser->GetWord();
if (word.IsEmpty()) {
return FALSE;
}
if (word == "}") {
return TRUE;
}
if (word == "{") {
std::unique_ptr<CPDF_PSProc> proc(new CPDF_PSProc);
std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(std::move(proc)));
m_Operators.push_back(std::move(op));
if (!m_Operators.back()->GetProc()->Parse(parser)) {
return FALSE;
}
} else {
bool found = false;
for (const PDF_PSOpName& op_name : PDF_PSOpNames) {
if (word == CFX_ByteStringC(op_name.name)) {
std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(op_name.op));
m_Operators.push_back(std::move(op));
found = true;
break;
}
}
if (!found) {
std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(FX_atof(word)));
m_Operators.push_back(std::move(op));
}
}
}
}
FX_BOOL CPDF_PSEngine::DoOperator(PDF_PSOP op) {
int i1, i2;
FX_FLOAT d1, d2;
switch (op) {
case PSOP_ADD:
d1 = Pop();
d2 = Pop();
Push(d1 + d2);
break;
case PSOP_SUB:
d2 = Pop();
d1 = Pop();
Push(d1 - d2);
break;
case PSOP_MUL:
d1 = Pop();
d2 = Pop();
Push(d1 * d2);
break;
case PSOP_DIV:
d2 = Pop();
d1 = Pop();
Push(d1 / d2);
break;
case PSOP_IDIV:
i2 = (int)Pop();
i1 = (int)Pop();
Push(i1 / i2);
break;
case PSOP_MOD:
i2 = (int)Pop();
i1 = (int)Pop();
Push(i1 % i2);
break;
case PSOP_NEG:
d1 = Pop();
Push(-d1);
break;
case PSOP_ABS:
d1 = Pop();
Push((FX_FLOAT)FXSYS_fabs(d1));
break;
case PSOP_CEILING:
d1 = Pop();
Push((FX_FLOAT)FXSYS_ceil(d1));
break;
case PSOP_FLOOR:
d1 = Pop();
Push((FX_FLOAT)FXSYS_floor(d1));
break;
case PSOP_ROUND:
d1 = Pop();
Push(FXSYS_round(d1));
break;
case PSOP_TRUNCATE:
i1 = (int)Pop();
Push(i1);
break;
case PSOP_SQRT:
d1 = Pop();
Push((FX_FLOAT)FXSYS_sqrt(d1));
break;
case PSOP_SIN:
d1 = Pop();
Push((FX_FLOAT)FXSYS_sin(d1 * FX_PI / 180.0f));
break;
case PSOP_COS:
d1 = Pop();
Push((FX_FLOAT)FXSYS_cos(d1 * FX_PI / 180.0f));
break;
case PSOP_ATAN:
d2 = Pop();
d1 = Pop();
d1 = (FX_FLOAT)(FXSYS_atan2(d1, d2) * 180.0 / FX_PI);
if (d1 < 0) {
d1 += 360;
}
Push(d1);
break;
case PSOP_EXP:
d2 = Pop();
d1 = Pop();
Push((FX_FLOAT)FXSYS_pow(d1, d2));
break;
case PSOP_LN:
d1 = Pop();
Push((FX_FLOAT)FXSYS_log(d1));
break;
case PSOP_LOG:
d1 = Pop();
Push((FX_FLOAT)FXSYS_log10(d1));
break;
case PSOP_CVI:
i1 = (int)Pop();
Push(i1);
break;
case PSOP_CVR:
break;
case PSOP_EQ:
d2 = Pop();
d1 = Pop();
Push((int)(d1 == d2));
break;
case PSOP_NE:
d2 = Pop();
d1 = Pop();
Push((int)(d1 != d2));
break;
case PSOP_GT:
d2 = Pop();
d1 = Pop();
Push((int)(d1 > d2));
break;
case PSOP_GE:
d2 = Pop();
d1 = Pop();
Push((int)(d1 >= d2));
break;
case PSOP_LT:
d2 = Pop();
d1 = Pop();
Push((int)(d1 < d2));
break;
case PSOP_LE:
d2 = Pop();
d1 = Pop();
Push((int)(d1 <= d2));
break;
case PSOP_AND:
i1 = (int)Pop();
i2 = (int)Pop();
Push(i1 & i2);
break;
case PSOP_OR:
i1 = (int)Pop();
i2 = (int)Pop();
Push(i1 | i2);
break;
case PSOP_XOR:
i1 = (int)Pop();
i2 = (int)Pop();
Push(i1 ^ i2);
break;
case PSOP_NOT:
i1 = (int)Pop();
Push((int)!i1);
break;
case PSOP_BITSHIFT: {
int shift = (int)Pop();
int i = (int)Pop();
if (shift > 0) {
Push(i << shift);
} else {
Push(i >> -shift);
}
break;
}
case PSOP_TRUE:
Push(1);
break;
case PSOP_FALSE:
Push(0);
break;
case PSOP_POP:
Pop();
break;
case PSOP_EXCH:
d2 = Pop();
d1 = Pop();
Push(d2);
Push(d1);
break;
case PSOP_DUP:
d1 = Pop();
Push(d1);
Push(d1);
break;
case PSOP_COPY: {
int n = static_cast<int>(Pop());
if (n < 0 || m_StackCount + n > PSENGINE_STACKSIZE ||
n > static_cast<int>(m_StackCount))
break;
for (int i = 0; i < n; i++)
m_Stack[m_StackCount + i] = m_Stack[m_StackCount + i - n];
m_StackCount += n;
break;
}
case PSOP_INDEX: {
int n = static_cast<int>(Pop());
if (n < 0 || n >= static_cast<int>(m_StackCount))
break;
Push(m_Stack[m_StackCount - n - 1]);
break;
}
case PSOP_ROLL: {
int j = static_cast<int>(Pop());
int n = static_cast<int>(Pop());
if (m_StackCount == 0)
break;
if (n < 0 || n > static_cast<int>(m_StackCount))
break;
if (j < 0) {
for (int i = 0; i < -j; i++) {
FX_FLOAT first = m_Stack[m_StackCount - n];
for (int ii = 0; ii < n - 1; ii++)
m_Stack[m_StackCount - n + ii] = m_Stack[m_StackCount - n + ii + 1];
m_Stack[m_StackCount - 1] = first;
}
} else {
for (int i = 0; i < j; i++) {
FX_FLOAT last = m_Stack[m_StackCount - 1];
int ii;
for (ii = 0; ii < n - 1; ii++)
m_Stack[m_StackCount - ii - 1] = m_Stack[m_StackCount - ii - 2];
m_Stack[m_StackCount - ii - 1] = last;
}
}
break;
}
default:
break;
}
return TRUE;
}
// See PDF Reference 1.7, page 170, table 3.36.
bool IsValidBitsPerSample(uint32_t x) {
switch (x) {
case 1:
case 2:
case 4:
case 8:
case 12:
case 16:
case 24:
case 32:
return true;
default:
return false;
}
}
// See PDF Reference 1.7, page 170.
FX_FLOAT PDF_Interpolate(FX_FLOAT x,
FX_FLOAT xmin,
FX_FLOAT xmax,
FX_FLOAT ymin,
FX_FLOAT ymax) {
FX_FLOAT divisor = xmax - xmin;
return ymin + (divisor ? (x - xmin) * (ymax - ymin) / divisor : 0);
}
class CPDF_PSFunc : public CPDF_Function {
public:
CPDF_PSFunc() : CPDF_Function(Type::kType4PostScript) {}
~CPDF_PSFunc() override {}
// CPDF_Function
FX_BOOL v_Init(CPDF_Object* pObj) override;
FX_BOOL v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const override;
private:
CPDF_PSEngine m_PS;
};
FX_BOOL CPDF_PSFunc::v_Init(CPDF_Object* pObj) {
CPDF_StreamAcc acc;
acc.LoadAllData(pObj->AsStream(), FALSE);
return m_PS.Parse(reinterpret_cast<const FX_CHAR*>(acc.GetData()),
acc.GetSize());
}
FX_BOOL CPDF_PSFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
CPDF_PSEngine& PS = const_cast<CPDF_PSEngine&>(m_PS);
PS.Reset();
for (uint32_t i = 0; i < m_nInputs; i++)
PS.Push(inputs[i]);
PS.Execute();
if (PS.GetStackSize() < m_nOutputs)
return FALSE;
for (uint32_t i = 0; i < m_nOutputs; i++)
results[m_nOutputs - i - 1] = PS.Pop();
return TRUE;
}
} // namespace
CPDF_SampledFunc::CPDF_SampledFunc() : CPDF_Function(Type::kType0Sampled) {}
CPDF_SampledFunc::~CPDF_SampledFunc() {}
FX_BOOL CPDF_SampledFunc::v_Init(CPDF_Object* pObj) {
CPDF_Stream* pStream = pObj->AsStream();
if (!pStream)
return false;
CPDF_Dictionary* pDict = pStream->GetDict();
CPDF_Array* pSize = pDict->GetArrayBy("Size");
CPDF_Array* pEncode = pDict->GetArrayBy("Encode");
CPDF_Array* pDecode = pDict->GetArrayBy("Decode");
m_nBitsPerSample = pDict->GetIntegerBy("BitsPerSample");
if (!IsValidBitsPerSample(m_nBitsPerSample))
return FALSE;
m_SampleMax = 0xffffffff >> (32 - m_nBitsPerSample);
m_pSampleStream.reset(new CPDF_StreamAcc);
m_pSampleStream->LoadAllData(pStream, FALSE);
FX_SAFE_UINT32 nTotalSampleBits = 1;
m_EncodeInfo.resize(m_nInputs);
for (uint32_t i = 0; i < m_nInputs; i++) {
m_EncodeInfo[i].sizes = pSize ? pSize->GetIntegerAt(i) : 0;
if (!pSize && i == 0)
m_EncodeInfo[i].sizes = pDict->GetIntegerBy("Size");
nTotalSampleBits *= m_EncodeInfo[i].sizes;
if (pEncode) {
m_EncodeInfo[i].encode_min = pEncode->GetFloatAt(i * 2);
m_EncodeInfo[i].encode_max = pEncode->GetFloatAt(i * 2 + 1);
} else {
m_EncodeInfo[i].encode_min = 0;
m_EncodeInfo[i].encode_max =
m_EncodeInfo[i].sizes == 1 ? 1 : (FX_FLOAT)m_EncodeInfo[i].sizes - 1;
}
}
nTotalSampleBits *= m_nBitsPerSample;
nTotalSampleBits *= m_nOutputs;
FX_SAFE_UINT32 nTotalSampleBytes = nTotalSampleBits;
nTotalSampleBytes += 7;
nTotalSampleBytes /= 8;
if (!nTotalSampleBytes.IsValid() || nTotalSampleBytes.ValueOrDie() == 0 ||
nTotalSampleBytes.ValueOrDie() > m_pSampleStream->GetSize()) {
return FALSE;
}
m_DecodeInfo.resize(m_nOutputs);
for (uint32_t i = 0; i < m_nOutputs; i++) {
if (pDecode) {
m_DecodeInfo[i].decode_min = pDecode->GetFloatAt(2 * i);
m_DecodeInfo[i].decode_max = pDecode->GetFloatAt(2 * i + 1);
} else {
m_DecodeInfo[i].decode_min = m_pRanges[i * 2];
m_DecodeInfo[i].decode_max = m_pRanges[i * 2 + 1];
}
}
return TRUE;
}
FX_BOOL CPDF_SampledFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
int pos = 0;
CFX_FixedBufGrow<FX_FLOAT, 16> encoded_input_buf(m_nInputs);
FX_FLOAT* encoded_input = encoded_input_buf;
CFX_FixedBufGrow<uint32_t, 32> int_buf(m_nInputs * 2);
uint32_t* index = int_buf;
uint32_t* blocksize = index + m_nInputs;
for (uint32_t i = 0; i < m_nInputs; i++) {
if (i == 0)
blocksize[i] = 1;
else
blocksize[i] = blocksize[i - 1] * m_EncodeInfo[i - 1].sizes;
encoded_input[i] =
PDF_Interpolate(inputs[i], m_pDomains[i * 2], m_pDomains[i * 2 + 1],
m_EncodeInfo[i].encode_min, m_EncodeInfo[i].encode_max);
index[i] = std::min((uint32_t)std::max(0.f, encoded_input[i]),
m_EncodeInfo[i].sizes - 1);
pos += index[i] * blocksize[i];
}
FX_SAFE_INT32 bits_to_output = m_nOutputs;
bits_to_output *= m_nBitsPerSample;
if (!bits_to_output.IsValid())
return FALSE;
FX_SAFE_INT32 bitpos = pos;
bitpos *= bits_to_output.ValueOrDie();
if (!bitpos.IsValid())
return FALSE;
FX_SAFE_INT32 range_check = bitpos;
range_check += bits_to_output.ValueOrDie();
if (!range_check.IsValid())
return FALSE;
const uint8_t* pSampleData = m_pSampleStream->GetData();
if (!pSampleData)
return FALSE;
for (uint32_t j = 0; j < m_nOutputs; j++) {
uint32_t sample =
GetBits32(pSampleData, bitpos.ValueOrDie() + j * m_nBitsPerSample,
m_nBitsPerSample);
FX_FLOAT encoded = (FX_FLOAT)sample;
for (uint32_t i = 0; i < m_nInputs; i++) {
if (index[i] == m_EncodeInfo[i].sizes - 1) {
if (index[i] == 0)
encoded = encoded_input[i] * (FX_FLOAT)sample;
} else {
FX_SAFE_INT32 bitpos2 = blocksize[i];
bitpos2 += pos;
bitpos2 *= m_nOutputs;
bitpos2 += j;
bitpos2 *= m_nBitsPerSample;
if (!bitpos2.IsValid())
return FALSE;
uint32_t sample1 =
GetBits32(pSampleData, bitpos2.ValueOrDie(), m_nBitsPerSample);
encoded += (encoded_input[i] - index[i]) *
((FX_FLOAT)sample1 - (FX_FLOAT)sample);
}
}
results[j] =
PDF_Interpolate(encoded, 0, (FX_FLOAT)m_SampleMax,
m_DecodeInfo[j].decode_min, m_DecodeInfo[j].decode_max);
}
return TRUE;
}
CPDF_ExpIntFunc::CPDF_ExpIntFunc()
: CPDF_Function(Type::kType2ExpotentialInterpolation),
m_pBeginValues(nullptr),
m_pEndValues(nullptr) {}
CPDF_ExpIntFunc::~CPDF_ExpIntFunc() {
FX_Free(m_pBeginValues);
FX_Free(m_pEndValues);
}
FX_BOOL CPDF_ExpIntFunc::v_Init(CPDF_Object* pObj) {
CPDF_Dictionary* pDict = pObj->GetDict();
if (!pDict) {
return FALSE;
}
CPDF_Array* pArray0 = pDict->GetArrayBy("C0");
if (m_nOutputs == 0) {
m_nOutputs = 1;
if (pArray0) {
m_nOutputs = pArray0->GetCount();
}
}
CPDF_Array* pArray1 = pDict->GetArrayBy("C1");
m_pBeginValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
m_pEndValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
for (uint32_t i = 0; i < m_nOutputs; i++) {
m_pBeginValues[i] = pArray0 ? pArray0->GetFloatAt(i) : 0.0f;
m_pEndValues[i] = pArray1 ? pArray1->GetFloatAt(i) : 1.0f;
}
m_Exponent = pDict->GetFloatBy("N");
m_nOrigOutputs = m_nOutputs;
if (m_nOutputs && m_nInputs > INT_MAX / m_nOutputs) {
return FALSE;
}
m_nOutputs *= m_nInputs;
return TRUE;
}
FX_BOOL CPDF_ExpIntFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
for (uint32_t i = 0; i < m_nInputs; i++)
for (uint32_t j = 0; j < m_nOrigOutputs; j++) {
results[i * m_nOrigOutputs + j] =
m_pBeginValues[j] +
(FX_FLOAT)FXSYS_pow(inputs[i], m_Exponent) *
(m_pEndValues[j] - m_pBeginValues[j]);
}
return TRUE;
}
CPDF_StitchFunc::CPDF_StitchFunc()
: CPDF_Function(Type::kType3Stitching),
m_pBounds(nullptr),
m_pEncode(nullptr) {}
CPDF_StitchFunc::~CPDF_StitchFunc() {
FX_Free(m_pBounds);
FX_Free(m_pEncode);
}
FX_BOOL CPDF_StitchFunc::v_Init(CPDF_Object* pObj) {
CPDF_Dictionary* pDict = pObj->GetDict();
if (!pDict) {
return FALSE;
}
if (m_nInputs != kRequiredNumInputs) {
return FALSE;
}
CPDF_Array* pArray = pDict->GetArrayBy("Functions");
if (!pArray) {
return FALSE;
}
uint32_t nSubs = pArray->GetCount();
if (nSubs == 0)
return FALSE;
m_nOutputs = 0;
for (uint32_t i = 0; i < nSubs; i++) {
CPDF_Object* pSub = pArray->GetDirectObjectAt(i);
if (pSub == pObj)
return FALSE;
std::unique_ptr<CPDF_Function> pFunc(CPDF_Function::Load(pSub));
if (!pFunc)
return FALSE;
// Check that the input dimensionality is 1, and that all output
// dimensionalities are the same.
if (pFunc->CountInputs() != kRequiredNumInputs)
return FALSE;
if (pFunc->CountOutputs() != m_nOutputs) {
if (m_nOutputs)
return FALSE;
m_nOutputs = pFunc->CountOutputs();
}
m_pSubFunctions.push_back(std::move(pFunc));
}
m_pBounds = FX_Alloc(FX_FLOAT, nSubs + 1);
m_pBounds[0] = m_pDomains[0];
pArray = pDict->GetArrayBy("Bounds");
if (!pArray)
return FALSE;
for (uint32_t i = 0; i < nSubs - 1; i++)
m_pBounds[i + 1] = pArray->GetFloatAt(i);
m_pBounds[nSubs] = m_pDomains[1];
m_pEncode = FX_Alloc2D(FX_FLOAT, nSubs, 2);
pArray = pDict->GetArrayBy("Encode");
if (!pArray)
return FALSE;
for (uint32_t i = 0; i < nSubs * 2; i++)
m_pEncode[i] = pArray->GetFloatAt(i);
return TRUE;
}
FX_BOOL CPDF_StitchFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* outputs) const {
FX_FLOAT input = inputs[0];
size_t i;
for (i = 0; i < m_pSubFunctions.size() - 1; i++) {
if (input < m_pBounds[i + 1])
break;
}
input = PDF_Interpolate(input, m_pBounds[i], m_pBounds[i + 1],
m_pEncode[i * 2], m_pEncode[i * 2 + 1]);
int nresults;
m_pSubFunctions[i]->Call(&input, kRequiredNumInputs, outputs, nresults);
return TRUE;
}
// static
std::unique_ptr<CPDF_Function> CPDF_Function::Load(CPDF_Object* pFuncObj) {
std::unique_ptr<CPDF_Function> pFunc;
if (!pFuncObj)
return pFunc;
int iType = -1;
if (CPDF_Stream* pStream = pFuncObj->AsStream())
iType = pStream->GetDict()->GetIntegerBy("FunctionType");
else if (CPDF_Dictionary* pDict = pFuncObj->AsDictionary())
iType = pDict->GetIntegerBy("FunctionType");
Type type = IntegerToFunctionType(iType);
if (type == Type::kType0Sampled)
pFunc.reset(new CPDF_SampledFunc());
else if (type == Type::kType2ExpotentialInterpolation)
pFunc.reset(new CPDF_ExpIntFunc());
else if (type == Type::kType3Stitching)
pFunc.reset(new CPDF_StitchFunc());
else if (type == Type::kType4PostScript)
pFunc.reset(new CPDF_PSFunc());
if (!pFunc || !pFunc->Init(pFuncObj))
return std::unique_ptr<CPDF_Function>();
return pFunc;
}
// static
CPDF_Function::Type CPDF_Function::IntegerToFunctionType(int iType) {
switch (iType) {
case 0:
case 2:
case 3:
case 4:
return static_cast<Type>(iType);
default:
return Type::kTypeInvalid;
}
}
CPDF_Function::CPDF_Function(Type type)
: m_pDomains(nullptr), m_pRanges(nullptr), m_Type(type) {}
CPDF_Function::~CPDF_Function() {
FX_Free(m_pDomains);
FX_Free(m_pRanges);
}
FX_BOOL CPDF_Function::Init(CPDF_Object* pObj) {
CPDF_Stream* pStream = pObj->AsStream();
CPDF_Dictionary* pDict = pStream ? pStream->GetDict() : pObj->AsDictionary();
CPDF_Array* pDomains = pDict->GetArrayBy("Domain");
if (!pDomains)
return FALSE;
m_nInputs = pDomains->GetCount() / 2;
if (m_nInputs == 0)
return FALSE;
m_pDomains = FX_Alloc2D(FX_FLOAT, m_nInputs, 2);
for (uint32_t i = 0; i < m_nInputs * 2; i++) {
m_pDomains[i] = pDomains->GetFloatAt(i);
}
CPDF_Array* pRanges = pDict->GetArrayBy("Range");
m_nOutputs = 0;
if (pRanges) {
m_nOutputs = pRanges->GetCount() / 2;
m_pRanges = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
for (uint32_t i = 0; i < m_nOutputs * 2; i++)
m_pRanges[i] = pRanges->GetFloatAt(i);
}
uint32_t old_outputs = m_nOutputs;
if (!v_Init(pObj))
return FALSE;
if (m_pRanges && m_nOutputs > old_outputs) {
m_pRanges = FX_Realloc(FX_FLOAT, m_pRanges, m_nOutputs * 2);
if (m_pRanges) {
FXSYS_memset(m_pRanges + (old_outputs * 2), 0,
sizeof(FX_FLOAT) * (m_nOutputs - old_outputs) * 2);
}
}
return TRUE;
}
FX_BOOL CPDF_Function::Call(FX_FLOAT* inputs,
uint32_t ninputs,
FX_FLOAT* results,
int& nresults) const {
if (m_nInputs != ninputs) {
return FALSE;
}
nresults = m_nOutputs;
for (uint32_t i = 0; i < m_nInputs; i++) {
if (inputs[i] < m_pDomains[i * 2])
inputs[i] = m_pDomains[i * 2];
else if (inputs[i] > m_pDomains[i * 2 + 1])
inputs[i] = m_pDomains[i * 2] + 1;
}
v_Call(inputs, results);
if (m_pRanges) {
for (uint32_t i = 0; i < m_nOutputs; i++) {
if (results[i] < m_pRanges[i * 2])
results[i] = m_pRanges[i * 2];
else if (results[i] > m_pRanges[i * 2 + 1])
results[i] = m_pRanges[i * 2 + 1];
}
}
return TRUE;
}
const CPDF_SampledFunc* CPDF_Function::ToSampledFunc() const {
return m_Type == Type::kType0Sampled
? static_cast<const CPDF_SampledFunc*>(this)
: nullptr;
}
const CPDF_ExpIntFunc* CPDF_Function::ToExpIntFunc() const {
return m_Type == Type::kType2ExpotentialInterpolation
? static_cast<const CPDF_ExpIntFunc*>(this)
: nullptr;
}
const CPDF_StitchFunc* CPDF_Function::ToStitchFunc() const {
return m_Type == Type::kType3Stitching
? static_cast<const CPDF_StitchFunc*>(this)
: nullptr;
}