blob: 72ca15ec25e31988c0e18b009b2b306e7a117100 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/parser/cpdf_crypto_handler.h"
#include <time.h>
#include <algorithm>
#include <stack>
#include <utility>
#include "constants/form_fields.h"
#include "core/fdrm/fx_crypt.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_number.h"
#include "core/fpdfapi/parser/cpdf_object_walker.h"
#include "core/fpdfapi/parser/cpdf_parser.h"
#include "core/fpdfapi/parser/cpdf_security_handler.h"
#include "core/fpdfapi/parser/cpdf_simple_parser.h"
#include "core/fpdfapi/parser/cpdf_stream.h"
#include "core/fpdfapi/parser/cpdf_stream_acc.h"
#include "core/fpdfapi/parser/cpdf_string.h"
namespace {
constexpr char kContentsKey[] = "Contents";
constexpr char kTypeKey[] = "Type";
} // namespace
// static
bool CPDF_CryptoHandler::IsSignatureDictionary(
const CPDF_Dictionary* dictionary) {
if (!dictionary)
return false;
const CPDF_Object* type_obj = dictionary->GetDirectObjectFor(kTypeKey);
if (!type_obj)
type_obj = dictionary->GetDirectObjectFor(pdfium::form_fields::kFT);
return type_obj && type_obj->GetString() == pdfium::form_fields::kSig;
}
void CPDF_CryptoHandler::CryptBlock(bool bEncrypt,
uint32_t objnum,
uint32_t gennum,
pdfium::span<const uint8_t> source,
uint8_t* dest_buf,
uint32_t& dest_size) {
if (m_Cipher == FXCIPHER_NONE) {
memcpy(dest_buf, source.data(), source.size());
return;
}
uint8_t realkey[16];
int realkeylen = 16;
if (m_Cipher != FXCIPHER_AES || m_KeyLen != 32) {
uint8_t key1[32];
PopulateKey(objnum, gennum, key1);
if (m_Cipher == FXCIPHER_AES) {
memcpy(key1 + m_KeyLen + 5, "sAlT", 4);
}
CRYPT_MD5Generate(
key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey);
realkeylen = m_KeyLen + 5;
if (realkeylen > 16) {
realkeylen = 16;
}
}
if (m_Cipher == FXCIPHER_AES) {
CRYPT_AESSetKey(m_pAESContext.get(),
m_KeyLen == 32 ? m_EncryptKey : realkey, m_KeyLen,
bEncrypt);
if (bEncrypt) {
uint8_t iv[16];
for (int i = 0; i < 16; i++) {
iv[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(m_pAESContext.get(), iv);
memcpy(dest_buf, iv, 16);
int nblocks = source.size() / 16;
CRYPT_AESEncrypt(m_pAESContext.get(), dest_buf + 16, source.data(),
nblocks * 16);
uint8_t padding[16];
memcpy(padding, source.data() + nblocks * 16, source.size() % 16);
memset(padding + source.size() % 16, 16 - source.size() % 16,
16 - source.size() % 16);
CRYPT_AESEncrypt(m_pAESContext.get(), dest_buf + nblocks * 16 + 16,
padding, 16);
dest_size = 32 + nblocks * 16;
} else {
CRYPT_AESSetIV(m_pAESContext.get(), source.data());
CRYPT_AESDecrypt(m_pAESContext.get(), dest_buf, source.data() + 16,
source.size() - 16);
dest_size = source.size() - 16;
dest_size -= dest_buf[dest_size - 1];
}
} else {
ASSERT(dest_size == source.size());
if (dest_buf != source.data()) {
memcpy(dest_buf, source.data(), source.size());
}
CRYPT_ArcFourCryptBlock(dest_buf, dest_size, realkey, realkeylen);
}
}
struct AESCryptContext {
bool m_bIV;
uint32_t m_BlockOffset;
CRYPT_aes_context m_Context;
uint8_t m_Block[16];
};
void* CPDF_CryptoHandler::CryptStart(uint32_t objnum,
uint32_t gennum,
bool bEncrypt) {
if (m_Cipher == FXCIPHER_NONE) {
return this;
}
if (m_Cipher == FXCIPHER_AES && m_KeyLen == 32) {
AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1);
pContext->m_bIV = true;
pContext->m_BlockOffset = 0;
CRYPT_AESSetKey(&pContext->m_Context, m_EncryptKey, 32, bEncrypt);
if (bEncrypt) {
for (int i = 0; i < 16; i++) {
pContext->m_Block[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block);
}
return pContext;
}
uint8_t key1[48];
PopulateKey(objnum, gennum, key1);
if (m_Cipher == FXCIPHER_AES) {
memcpy(key1 + m_KeyLen + 5, "sAlT", 4);
}
uint8_t realkey[16];
CRYPT_MD5Generate(
key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey);
int realkeylen = m_KeyLen + 5;
if (realkeylen > 16) {
realkeylen = 16;
}
if (m_Cipher == FXCIPHER_AES) {
AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1);
pContext->m_bIV = true;
pContext->m_BlockOffset = 0;
CRYPT_AESSetKey(&pContext->m_Context, realkey, 16, bEncrypt);
if (bEncrypt) {
for (int i = 0; i < 16; i++) {
pContext->m_Block[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block);
}
return pContext;
}
CRYPT_rc4_context* pContext = FX_Alloc(CRYPT_rc4_context, 1);
CRYPT_ArcFourSetup(pContext, realkey, realkeylen);
return pContext;
}
bool CPDF_CryptoHandler::CryptStream(void* context,
pdfium::span<const uint8_t> source,
CFX_BinaryBuf& dest_buf,
bool bEncrypt) {
if (!context)
return false;
if (m_Cipher == FXCIPHER_NONE) {
dest_buf.AppendBlock(source.data(), source.size());
return true;
}
if (m_Cipher == FXCIPHER_RC4) {
int old_size = dest_buf.GetSize();
dest_buf.AppendBlock(source.data(), source.size());
CRYPT_ArcFourCrypt(static_cast<CRYPT_rc4_context*>(context),
dest_buf.GetBuffer() + old_size, source.size());
return true;
}
AESCryptContext* pContext = static_cast<AESCryptContext*>(context);
if (pContext->m_bIV && bEncrypt) {
dest_buf.AppendBlock(pContext->m_Block, 16);
pContext->m_bIV = false;
}
uint32_t src_off = 0;
uint32_t src_left = source.size();
while (1) {
uint32_t copy_size = 16 - pContext->m_BlockOffset;
if (copy_size > src_left) {
copy_size = src_left;
}
memcpy(pContext->m_Block + pContext->m_BlockOffset, source.data() + src_off,
copy_size);
src_off += copy_size;
src_left -= copy_size;
pContext->m_BlockOffset += copy_size;
if (pContext->m_BlockOffset == 16) {
if (!bEncrypt && pContext->m_bIV) {
CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block);
pContext->m_bIV = false;
pContext->m_BlockOffset = 0;
} else if (src_off < source.size()) {
uint8_t block_buf[16];
if (bEncrypt) {
CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block,
16);
} else {
CRYPT_AESDecrypt(&pContext->m_Context, block_buf, pContext->m_Block,
16);
}
dest_buf.AppendBlock(block_buf, 16);
pContext->m_BlockOffset = 0;
}
}
if (!src_left) {
break;
}
}
return true;
}
bool CPDF_CryptoHandler::CryptFinish(void* context,
CFX_BinaryBuf& dest_buf,
bool bEncrypt) {
if (!context) {
return false;
}
if (m_Cipher == FXCIPHER_NONE) {
return true;
}
if (m_Cipher == FXCIPHER_RC4) {
FX_Free(context);
return true;
}
auto* pContext = static_cast<AESCryptContext*>(context);
if (bEncrypt) {
uint8_t block_buf[16];
if (pContext->m_BlockOffset == 16) {
CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16);
dest_buf.AppendBlock(block_buf, 16);
pContext->m_BlockOffset = 0;
}
memset(pContext->m_Block + pContext->m_BlockOffset,
(uint8_t)(16 - pContext->m_BlockOffset),
16 - pContext->m_BlockOffset);
CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16);
dest_buf.AppendBlock(block_buf, 16);
} else if (pContext->m_BlockOffset == 16) {
uint8_t block_buf[16];
CRYPT_AESDecrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16);
if (block_buf[15] <= 16) {
dest_buf.AppendBlock(block_buf, 16 - block_buf[15]);
}
}
FX_Free(pContext);
return true;
}
ByteString CPDF_CryptoHandler::Decrypt(uint32_t objnum,
uint32_t gennum,
const ByteString& str) {
CFX_BinaryBuf dest_buf;
void* context = DecryptStart(objnum, gennum);
DecryptStream(context, str.AsRawSpan(), dest_buf);
DecryptFinish(context, dest_buf);
return ByteString(dest_buf.GetBuffer(), dest_buf.GetSize());
}
void* CPDF_CryptoHandler::DecryptStart(uint32_t objnum, uint32_t gennum) {
return CryptStart(objnum, gennum, false);
}
uint32_t CPDF_CryptoHandler::DecryptGetSize(uint32_t src_size) {
return m_Cipher == FXCIPHER_AES ? src_size - 16 : src_size;
}
bool CPDF_CryptoHandler::IsCipherAES() const {
return m_Cipher == FXCIPHER_AES;
}
bool CPDF_CryptoHandler::DecryptObjectTree(RetainPtr<CPDF_Object> object) {
if (!object)
return false;
struct MayBeSignature {
const CPDF_Dictionary* parent;
CPDF_Object* contents;
};
std::stack<MayBeSignature> may_be_sign_dictionaries;
const uint32_t obj_num = object->GetObjNum();
const uint32_t gen_num = object->GetGenNum();
CPDF_Object* object_to_decrypt = object.Get();
while (object_to_decrypt) {
CPDF_NonConstObjectWalker walker(object_to_decrypt);
object_to_decrypt = nullptr;
while (CPDF_Object* child = walker.GetNext()) {
const CPDF_Dictionary* parent_dict =
walker.GetParent() ? walker.GetParent()->GetDict() : nullptr;
if (walker.dictionary_key() == kContentsKey &&
(parent_dict->KeyExist(kTypeKey) ||
parent_dict->KeyExist(pdfium::form_fields::kFT))) {
// This object may be contents of signature dictionary.
// But now values of 'Type' and 'FT' of dictionary keys are encrypted,
// and we can not check this.
// Temporary skip it, to prevent signature corruption.
// It will be decrypted on next interations, if this is not contents of
// signature dictionary.
may_be_sign_dictionaries.push(MayBeSignature({parent_dict, child}));
walker.SkipWalkIntoCurrentObject();
continue;
}
// Strings decryption.
if (child->IsString()) {
// TODO(art-snake): Move decryption into the CPDF_String class.
CPDF_String* str = child->AsString();
str->SetString(Decrypt(obj_num, gen_num, str->GetString()));
}
// Stream decryption.
if (child->IsStream()) {
// TODO(art-snake): Move decryption into the CPDF_Stream class.
CPDF_Stream* stream = child->AsStream();
auto stream_access = pdfium::MakeRetain<CPDF_StreamAcc>(stream);
stream_access->LoadAllDataRaw();
if (IsCipherAES() && stream_access->GetSize() < 16) {
stream->SetData({});
continue;
}
CFX_BinaryBuf decrypted_buf;
decrypted_buf.EstimateSize(DecryptGetSize(stream_access->GetSize()));
void* context = DecryptStart(obj_num, gen_num);
bool decrypt_result =
DecryptStream(context,
pdfium::make_span(stream_access->GetData(),
stream_access->GetSize()),
decrypted_buf);
decrypt_result &= DecryptFinish(context, decrypted_buf);
if (decrypt_result) {
const uint32_t decrypted_size = decrypted_buf.GetSize();
stream->TakeData(decrypted_buf.DetachBuffer(), decrypted_size);
} else {
// Decryption failed, set the stream to empty
stream->SetData({});
}
}
}
// Signature dictionaries check.
while (!may_be_sign_dictionaries.empty()) {
auto dict_and_contents = std::move(may_be_sign_dictionaries.top());
may_be_sign_dictionaries.pop();
if (!IsSignatureDictionary(dict_and_contents.parent)) {
// This is not signature dictionary. Do decrypt its contents.
object_to_decrypt = dict_and_contents.contents;
break;
}
}
}
return true;
}
bool CPDF_CryptoHandler::DecryptStream(void* context,
pdfium::span<const uint8_t> source,
CFX_BinaryBuf& dest_buf) {
return CryptStream(context, source, dest_buf, false);
}
bool CPDF_CryptoHandler::DecryptFinish(void* context, CFX_BinaryBuf& dest_buf) {
return CryptFinish(context, dest_buf, false);
}
size_t CPDF_CryptoHandler::EncryptGetSize(
pdfium::span<const uint8_t> source) const {
return m_Cipher == FXCIPHER_AES ? source.size() + 32 : source.size();
}
bool CPDF_CryptoHandler::EncryptContent(uint32_t objnum,
uint32_t gennum,
pdfium::span<const uint8_t> source,
uint8_t* dest_buf,
uint32_t& dest_size) {
CryptBlock(true, objnum, gennum, source, dest_buf, dest_size);
return true;
}
CPDF_CryptoHandler::CPDF_CryptoHandler(int cipher,
const uint8_t* key,
int keylen)
: m_KeyLen(std::min(keylen, 32)), m_Cipher(cipher) {
ASSERT(cipher != FXCIPHER_AES || keylen == 16 || keylen == 24 ||
keylen == 32);
ASSERT(cipher != FXCIPHER_AES2 || keylen == 32);
ASSERT(cipher != FXCIPHER_RC4 || (keylen >= 5 && keylen <= 16));
if (m_Cipher != FXCIPHER_NONE)
memcpy(m_EncryptKey, key, m_KeyLen);
if (m_Cipher == FXCIPHER_AES)
m_pAESContext.reset(FX_Alloc(CRYPT_aes_context, 1));
}
CPDF_CryptoHandler::~CPDF_CryptoHandler() {}
void CPDF_CryptoHandler::PopulateKey(uint32_t objnum,
uint32_t gennum,
uint8_t* key) {
memcpy(key, m_EncryptKey, m_KeyLen);
key[m_KeyLen + 0] = (uint8_t)objnum;
key[m_KeyLen + 1] = (uint8_t)(objnum >> 8);
key[m_KeyLen + 2] = (uint8_t)(objnum >> 16);
key[m_KeyLen + 3] = (uint8_t)gennum;
key[m_KeyLen + 4] = (uint8_t)(gennum >> 8);
}