blob: 1723f17d9b81404aafd88b74cb6c476037bb3b91 [file] [log] [blame]
// Copyright 2019 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/render/cpdf_rendershading.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <memory>
#include <utility>
#include <vector>
#include "core/fpdfapi/page/cpdf_colorspace.h"
#include "core/fpdfapi/page/cpdf_dib.h"
#include "core/fpdfapi/page/cpdf_function.h"
#include "core/fpdfapi/page/cpdf_meshstream.h"
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_stream.h"
#include "core/fpdfapi/parser/fpdf_parser_utility.h"
#include "core/fpdfapi/render/cpdf_devicebuffer.h"
#include "core/fpdfapi/render/cpdf_renderoptions.h"
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxcrt/fx_system.h"
#include "core/fxge/cfx_defaultrenderdevice.h"
#include "core/fxge/cfx_fillrenderoptions.h"
#include "core/fxge/cfx_pathdata.h"
#include "core/fxge/dib/cfx_dibitmap.h"
#include "core/fxge/dib/fx_dib.h"
#include "third_party/base/span.h"
namespace {
constexpr int kShadingSteps = 256;
uint32_t CountOutputsFromFunctions(
const std::vector<std::unique_ptr<CPDF_Function>>& funcs) {
FX_SAFE_UINT32 total = 0;
for (const auto& func : funcs) {
if (func)
total += func->CountOutputs();
}
return total.ValueOrDefault(0);
}
uint32_t GetValidatedOutputsCount(
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS) {
uint32_t funcs_outputs = CountOutputsFromFunctions(funcs);
return funcs_outputs ? std::max(funcs_outputs, pCS->CountComponents()) : 0;
}
std::array<FX_ARGB, kShadingSteps> GetShadingSteps(
float t_min,
float t_max,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha,
size_t results_count) {
ASSERT(results_count >= CountOutputsFromFunctions(funcs));
ASSERT(results_count >= pCS->CountComponents());
std::array<FX_ARGB, kShadingSteps> shading_steps;
std::vector<float> result_array(results_count);
float diff = t_max - t_min;
for (int i = 0; i < kShadingSteps; ++i) {
float input = diff * i / kShadingSteps + t_min;
int offset = 0;
for (const auto& func : funcs) {
if (func) {
int nresults = 0;
if (func->Call(&input, 1, &result_array[offset], &nresults))
offset += nresults;
}
}
float R = 0.0f;
float G = 0.0f;
float B = 0.0f;
pCS->GetRGB(result_array, &R, &G, &B);
shading_steps[i] = ArgbEncode(alpha, FXSYS_roundf(R * 255),
FXSYS_roundf(G * 255), FXSYS_roundf(B * 255));
}
return shading_steps;
}
void DrawAxialShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Format::kArgb);
const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS);
if (total_results == 0)
return;
const CPDF_Array* pCoords = pDict->GetArrayFor("Coords");
if (!pCoords)
return;
float start_x = pCoords->GetNumberAt(0);
float start_y = pCoords->GetNumberAt(1);
float end_x = pCoords->GetNumberAt(2);
float end_y = pCoords->GetNumberAt(3);
float t_min = 0;
float t_max = 1.0f;
const CPDF_Array* pArray = pDict->GetArrayFor("Domain");
if (pArray) {
t_min = pArray->GetNumberAt(0);
t_max = pArray->GetNumberAt(1);
}
pArray = pDict->GetArrayFor("Extend");
const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false);
const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false);
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
float x_span = end_x - start_x;
float y_span = end_y - start_y;
float axis_len_square = (x_span * x_span) + (y_span * y_span);
std::array<FX_ARGB, kShadingSteps> shading_steps =
GetShadingSteps(t_min, t_max, funcs, pCS, alpha, total_results);
int pitch = pBitmap->GetPitch();
CFX_Matrix matrix = mtObject2Bitmap.GetInverse();
for (int row = 0; row < height; row++) {
uint32_t* dib_buf =
reinterpret_cast<uint32_t*>(pBitmap->GetBuffer() + row * pitch);
for (int column = 0; column < width; column++) {
CFX_PointF pos = matrix.Transform(
CFX_PointF(static_cast<float>(column), static_cast<float>(row)));
float scale =
(((pos.x - start_x) * x_span) + ((pos.y - start_y) * y_span)) /
axis_len_square;
int index = static_cast<int32_t>(scale * (kShadingSteps - 1));
if (index < 0) {
if (!bStartExtend)
continue;
index = 0;
} else if (index >= kShadingSteps) {
if (!bEndExtend)
continue;
index = kShadingSteps - 1;
}
dib_buf[column] = shading_steps[index];
}
}
}
void DrawRadialShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Format::kArgb);
const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS);
if (total_results == 0)
return;
const CPDF_Array* pCoords = pDict->GetArrayFor("Coords");
if (!pCoords)
return;
float start_x = pCoords->GetNumberAt(0);
float start_y = pCoords->GetNumberAt(1);
float start_r = pCoords->GetNumberAt(2);
float end_x = pCoords->GetNumberAt(3);
float end_y = pCoords->GetNumberAt(4);
float end_r = pCoords->GetNumberAt(5);
float t_min = 0;
float t_max = 1.0f;
const CPDF_Array* pArray = pDict->GetArrayFor("Domain");
if (pArray) {
t_min = pArray->GetNumberAt(0);
t_max = pArray->GetNumberAt(1);
}
pArray = pDict->GetArrayFor("Extend");
const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false);
const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false);
std::array<FX_ARGB, kShadingSteps> shading_steps =
GetShadingSteps(t_min, t_max, funcs, pCS, alpha, total_results);
const float dx = end_x - start_x;
const float dy = end_y - start_y;
const float dr = end_r - start_r;
const float a = dx * dx + dy * dy - dr * dr;
const bool a_is_float_zero = IsFloatZero(a);
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
int pitch = pBitmap->GetPitch();
bool bDecreasing =
(dr < 0 && static_cast<int>(sqrt(dx * dx + dy * dy)) < -dr);
CFX_Matrix matrix = mtObject2Bitmap.GetInverse();
for (int row = 0; row < height; row++) {
uint32_t* dib_buf =
reinterpret_cast<uint32_t*>(pBitmap->GetBuffer() + row * pitch);
for (int column = 0; column < width; column++) {
CFX_PointF pos = matrix.Transform(
CFX_PointF(static_cast<float>(column), static_cast<float>(row)));
float pos_dx = pos.x - start_x;
float pos_dy = pos.y - start_y;
float b = -2 * (pos_dx * dx + pos_dy * dy + start_r * dr);
float c = pos_dx * pos_dx + pos_dy * pos_dy - start_r * start_r;
float s;
if (IsFloatZero(b)) {
s = sqrt(-c / a);
} else if (a_is_float_zero) {
s = -c / b;
} else {
float b2_4ac = (b * b) - 4 * (a * c);
if (b2_4ac < 0)
continue;
float root = sqrt(b2_4ac);
float s1 = (-b - root) / (2 * a);
float s2 = (-b + root) / (2 * a);
if (a <= 0)
std::swap(s1, s2);
if (bDecreasing)
s = (s1 >= 0 || bStartExtend) ? s1 : s2;
else
s = (s2 <= 1.0f || bEndExtend) ? s2 : s1;
if (start_r + s * dr < 0)
continue;
}
int index = static_cast<int32_t>(s * (kShadingSteps - 1));
if (index < 0) {
if (!bStartExtend)
continue;
index = 0;
} else if (index >= kShadingSteps) {
if (!bEndExtend)
continue;
index = kShadingSteps - 1;
}
dib_buf[column] = shading_steps[index];
}
}
}
void DrawFuncShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Format::kArgb);
const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS);
if (total_results == 0)
return;
const CPDF_Array* pDomain = pDict->GetArrayFor("Domain");
float xmin = 0.0f;
float ymin = 0.0f;
float xmax = 1.0f;
float ymax = 1.0f;
if (pDomain) {
xmin = pDomain->GetNumberAt(0);
xmax = pDomain->GetNumberAt(1);
ymin = pDomain->GetNumberAt(2);
ymax = pDomain->GetNumberAt(3);
}
CFX_Matrix mtDomain2Target = pDict->GetMatrixFor("Matrix");
CFX_Matrix matrix =
mtObject2Bitmap.GetInverse() * mtDomain2Target.GetInverse();
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
int pitch = pBitmap->GetPitch();
ASSERT(total_results >= CountOutputsFromFunctions(funcs));
ASSERT(total_results >= pCS->CountComponents());
std::vector<float> result_array(total_results);
for (int row = 0; row < height; ++row) {
uint32_t* dib_buf = (uint32_t*)(pBitmap->GetBuffer() + row * pitch);
for (int column = 0; column < width; column++) {
CFX_PointF pos = matrix.Transform(
CFX_PointF(static_cast<float>(column), static_cast<float>(row)));
if (pos.x < xmin || pos.x > xmax || pos.y < ymin || pos.y > ymax)
continue;
float input[] = {pos.x, pos.y};
int offset = 0;
for (const auto& func : funcs) {
if (func) {
int nresults;
if (func->Call(input, 2, &result_array[offset], &nresults))
offset += nresults;
}
}
float R = 0.0f;
float G = 0.0f;
float B = 0.0f;
pCS->GetRGB(result_array, &R, &G, &B);
dib_buf[column] = ArgbEncode(alpha, static_cast<int32_t>(R * 255),
static_cast<int32_t>(G * 255),
static_cast<int32_t>(B * 255));
}
}
}
bool GetScanlineIntersect(int y,
const CFX_PointF& first,
const CFX_PointF& second,
float* x) {
if (first.y == second.y)
return false;
if (first.y < second.y) {
if (y < first.y || y > second.y)
return false;
} else if (y < second.y || y > first.y) {
return false;
}
*x = first.x + ((second.x - first.x) * (y - first.y) / (second.y - first.y));
return true;
}
void DrawGouraud(const RetainPtr<CFX_DIBitmap>& pBitmap,
int alpha,
CPDF_MeshVertex triangle[3]) {
float min_y = triangle[0].position.y;
float max_y = triangle[0].position.y;
for (int i = 1; i < 3; i++) {
min_y = std::min(min_y, triangle[i].position.y);
max_y = std::max(max_y, triangle[i].position.y);
}
if (min_y == max_y)
return;
int min_yi = std::max(static_cast<int>(floorf(min_y)), 0);
int max_yi = static_cast<int>(ceilf(max_y));
if (max_yi >= pBitmap->GetHeight())
max_yi = pBitmap->GetHeight() - 1;
for (int y = min_yi; y <= max_yi; y++) {
int nIntersects = 0;
float inter_x[3];
float r[3];
float g[3];
float b[3];
for (int i = 0; i < 3; i++) {
CPDF_MeshVertex& vertex1 = triangle[i];
CPDF_MeshVertex& vertex2 = triangle[(i + 1) % 3];
CFX_PointF& position1 = vertex1.position;
CFX_PointF& position2 = vertex2.position;
bool bIntersect =
GetScanlineIntersect(y, position1, position2, &inter_x[nIntersects]);
if (!bIntersect)
continue;
float y_dist = (y - position1.y) / (position2.y - position1.y);
r[nIntersects] = vertex1.r + ((vertex2.r - vertex1.r) * y_dist);
g[nIntersects] = vertex1.g + ((vertex2.g - vertex1.g) * y_dist);
b[nIntersects] = vertex1.b + ((vertex2.b - vertex1.b) * y_dist);
nIntersects++;
}
if (nIntersects != 2)
continue;
int min_x;
int max_x;
int start_index;
int end_index;
if (inter_x[0] < inter_x[1]) {
min_x = static_cast<int>(floorf(inter_x[0]));
max_x = static_cast<int>(ceilf(inter_x[1]));
start_index = 0;
end_index = 1;
} else {
min_x = static_cast<int>(floorf(inter_x[1]));
max_x = static_cast<int>(ceilf(inter_x[0]));
start_index = 1;
end_index = 0;
}
int start_x = std::max(min_x, 0);
int end_x = std::min(max_x, pBitmap->GetWidth());
uint8_t* dib_buf =
pBitmap->GetBuffer() + y * pBitmap->GetPitch() + start_x * 4;
float r_unit = (r[end_index] - r[start_index]) / (max_x - min_x);
float g_unit = (g[end_index] - g[start_index]) / (max_x - min_x);
float b_unit = (b[end_index] - b[start_index]) / (max_x - min_x);
float r_result = r[start_index] + (start_x - min_x) * r_unit;
float g_result = g[start_index] + (start_x - min_x) * g_unit;
float b_result = b[start_index] + (start_x - min_x) * b_unit;
for (int x = start_x; x < end_x; x++) {
r_result += r_unit;
g_result += g_unit;
b_result += b_unit;
FXARGB_SETDIB(dib_buf, ArgbEncode(alpha, static_cast<int>(r_result * 255),
static_cast<int>(g_result * 255),
static_cast<int>(b_result * 255)));
dib_buf += 4;
}
}
}
void DrawFreeGouraudShading(
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Stream* pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Format::kArgb);
CPDF_MeshStream stream(kFreeFormGouraudTriangleMeshShading, funcs,
pShadingStream, pCS);
if (!stream.Load())
return;
CPDF_MeshVertex triangle[3];
while (!stream.BitStream()->IsEOF()) {
CPDF_MeshVertex vertex;
uint32_t flag;
if (!stream.ReadVertex(mtObject2Bitmap, &vertex, &flag))
return;
if (flag == 0) {
triangle[0] = vertex;
for (int i = 1; i < 3; ++i) {
uint32_t dummy_flag;
if (!stream.ReadVertex(mtObject2Bitmap, &triangle[i], &dummy_flag))
return;
}
} else {
if (flag == 1)
triangle[0] = triangle[1];
triangle[1] = triangle[2];
triangle[2] = vertex;
}
DrawGouraud(pBitmap, alpha, triangle);
}
}
void DrawLatticeGouraudShading(
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Stream* pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Format::kArgb);
int row_verts = pShadingStream->GetDict()->GetIntegerFor("VerticesPerRow");
if (row_verts < 2)
return;
CPDF_MeshStream stream(kLatticeFormGouraudTriangleMeshShading, funcs,
pShadingStream, pCS);
if (!stream.Load())
return;
std::vector<CPDF_MeshVertex> vertices[2];
vertices[0] = stream.ReadVertexRow(mtObject2Bitmap, row_verts);
if (vertices[0].empty())
return;
int last_index = 0;
while (1) {
vertices[1 - last_index] = stream.ReadVertexRow(mtObject2Bitmap, row_verts);
if (vertices[1 - last_index].empty())
return;
CPDF_MeshVertex triangle[3];
for (int i = 1; i < row_verts; ++i) {
triangle[0] = vertices[last_index][i];
triangle[1] = vertices[1 - last_index][i - 1];
triangle[2] = vertices[last_index][i - 1];
DrawGouraud(pBitmap, alpha, triangle);
triangle[2] = vertices[1 - last_index][i];
DrawGouraud(pBitmap, alpha, triangle);
}
last_index = 1 - last_index;
}
}
struct Coon_BezierCoeff {
float a, b, c, d;
void FromPoints(float p0, float p1, float p2, float p3) {
a = -p0 + 3 * p1 - 3 * p2 + p3;
b = 3 * p0 - 6 * p1 + 3 * p2;
c = -3 * p0 + 3 * p1;
d = p0;
}
Coon_BezierCoeff first_half() {
Coon_BezierCoeff result;
result.a = a / 8;
result.b = b / 4;
result.c = c / 2;
result.d = d;
return result;
}
Coon_BezierCoeff second_half() {
Coon_BezierCoeff result;
result.a = a / 8;
result.b = 3 * a / 8 + b / 4;
result.c = 3 * a / 8 + b / 2 + c / 2;
result.d = a / 8 + b / 4 + c / 2 + d;
return result;
}
void GetPoints(float p[4]) {
p[0] = d;
p[1] = c / 3 + p[0];
p[2] = b / 3 - p[0] + 2 * p[1];
p[3] = a + p[0] - 3 * p[1] + 3 * p[2];
}
void BezierInterpol(Coon_BezierCoeff& C1,
Coon_BezierCoeff& C2,
Coon_BezierCoeff& D1,
Coon_BezierCoeff& D2) {
a = (D1.a + D2.a) / 2;
b = (D1.b + D2.b) / 2;
c = (D1.c + D2.c) / 2 - (C1.a / 8 + C1.b / 4 + C1.c / 2) +
(C2.a / 8 + C2.b / 4) + (-C1.d + D2.d) / 2 - (C2.a + C2.b) / 2;
d = C1.a / 8 + C1.b / 4 + C1.c / 2 + C1.d;
}
float Distance() {
float dis = a + b + c;
return dis < 0 ? -dis : dis;
}
};
struct Coon_Bezier {
Coon_BezierCoeff x, y;
void FromPoints(float x0,
float y0,
float x1,
float y1,
float x2,
float y2,
float x3,
float y3) {
x.FromPoints(x0, x1, x2, x3);
y.FromPoints(y0, y1, y2, y3);
}
Coon_Bezier first_half() {
Coon_Bezier result;
result.x = x.first_half();
result.y = y.first_half();
return result;
}
Coon_Bezier second_half() {
Coon_Bezier result;
result.x = x.second_half();
result.y = y.second_half();
return result;
}
void BezierInterpol(Coon_Bezier& C1,
Coon_Bezier& C2,
Coon_Bezier& D1,
Coon_Bezier& D2) {
x.BezierInterpol(C1.x, C2.x, D1.x, D2.x);
y.BezierInterpol(C1.y, C2.y, D1.y, D2.y);
}
void GetPoints(pdfium::span<FX_PATHPOINT> path_points) {
constexpr size_t kPointsCount = 4;
float points_x[kPointsCount];
float points_y[kPointsCount];
x.GetPoints(points_x);
y.GetPoints(points_y);
for (size_t i = 0; i < kPointsCount; ++i)
path_points[i].m_Point = {points_x[i], points_y[i]};
}
void GetPointsReverse(pdfium::span<FX_PATHPOINT> path_points) {
constexpr size_t kPointsCount = 4;
float points_x[kPointsCount];
float points_y[kPointsCount];
x.GetPoints(points_x);
y.GetPoints(points_y);
for (size_t i = 0; i < kPointsCount; ++i) {
size_t reverse_index = kPointsCount - i - 1;
path_points[i].m_Point = {points_x[reverse_index],
points_y[reverse_index]};
}
}
float Distance() { return x.Distance() + y.Distance(); }
};
int Interpolate(int p1, int p2, int delta1, int delta2, bool* overflow) {
FX_SAFE_INT32 p = p2;
p -= p1;
p *= delta1;
p /= delta2;
p += p1;
if (!p.IsValid())
*overflow = true;
return p.ValueOrDefault(0);
}
int BiInterpolImpl(int c0,
int c1,
int c2,
int c3,
int x,
int y,
int x_scale,
int y_scale,
bool* overflow) {
int x1 = Interpolate(c0, c3, x, x_scale, overflow);
int x2 = Interpolate(c1, c2, x, x_scale, overflow);
return Interpolate(x1, x2, y, y_scale, overflow);
}
struct Coon_Color {
Coon_Color() { memset(comp, 0, sizeof(int) * 3); }
// Returns true if successful, false if overflow detected.
bool BiInterpol(Coon_Color colors[4],
int x,
int y,
int x_scale,
int y_scale) {
bool overflow = false;
for (int i = 0; i < 3; i++) {
comp[i] = BiInterpolImpl(colors[0].comp[i], colors[1].comp[i],
colors[2].comp[i], colors[3].comp[i], x, y,
x_scale, y_scale, &overflow);
}
return !overflow;
}
int Distance(Coon_Color& o) {
return std::max({abs(comp[0] - o.comp[0]), abs(comp[1] - o.comp[1]),
abs(comp[2] - o.comp[2])});
}
int comp[3];
};
#define COONCOLOR_THRESHOLD 4
struct CPDF_PatchDrawer {
void Draw(int x_scale,
int y_scale,
int left,
int bottom,
Coon_Bezier C1,
Coon_Bezier C2,
Coon_Bezier D1,
Coon_Bezier D2) {
bool bSmall = C1.Distance() < 2 && C2.Distance() < 2 && D1.Distance() < 2 &&
D2.Distance() < 2;
Coon_Color div_colors[4];
int d_bottom = 0;
int d_left = 0;
int d_top = 0;
int d_right = 0;
if (!div_colors[0].BiInterpol(patch_colors, left, bottom, x_scale,
y_scale)) {
return;
}
if (!bSmall) {
if (!div_colors[1].BiInterpol(patch_colors, left, bottom + 1, x_scale,
y_scale)) {
return;
}
if (!div_colors[2].BiInterpol(patch_colors, left + 1, bottom + 1, x_scale,
y_scale)) {
return;
}
if (!div_colors[3].BiInterpol(patch_colors, left + 1, bottom, x_scale,
y_scale)) {
return;
}
d_bottom = div_colors[3].Distance(div_colors[0]);
d_left = div_colors[1].Distance(div_colors[0]);
d_top = div_colors[1].Distance(div_colors[2]);
d_right = div_colors[2].Distance(div_colors[3]);
}
if (bSmall ||
(d_bottom < COONCOLOR_THRESHOLD && d_left < COONCOLOR_THRESHOLD &&
d_top < COONCOLOR_THRESHOLD && d_right < COONCOLOR_THRESHOLD)) {
pdfium::span<FX_PATHPOINT> points = path.GetPoints();
C1.GetPoints(points.subspan(0, 4));
D2.GetPoints(points.subspan(3, 4));
C2.GetPointsReverse(points.subspan(6, 4));
D1.GetPointsReverse(points.subspan(9, 4));
CFX_FillRenderOptions fill_options(
CFX_FillRenderOptions::WindingOptions());
fill_options.full_cover = true;
if (bNoPathSmooth)
fill_options.aliased_path = true;
pDevice->DrawPath(
&path, nullptr, nullptr,
ArgbEncode(alpha, div_colors[0].comp[0], div_colors[0].comp[1],
div_colors[0].comp[2]),
0, fill_options);
} else {
if (d_bottom < COONCOLOR_THRESHOLD && d_top < COONCOLOR_THRESHOLD) {
Coon_Bezier m1;
m1.BezierInterpol(D1, D2, C1, C2);
y_scale *= 2;
bottom *= 2;
Draw(x_scale, y_scale, left, bottom, C1, m1, D1.first_half(),
D2.first_half());
Draw(x_scale, y_scale, left, bottom + 1, m1, C2, D1.second_half(),
D2.second_half());
} else if (d_left < COONCOLOR_THRESHOLD &&
d_right < COONCOLOR_THRESHOLD) {
Coon_Bezier m2;
m2.BezierInterpol(C1, C2, D1, D2);
x_scale *= 2;
left *= 2;
Draw(x_scale, y_scale, left, bottom, C1.first_half(), C2.first_half(),
D1, m2);
Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(),
C2.second_half(), m2, D2);
} else {
Coon_Bezier m1, m2;
m1.BezierInterpol(D1, D2, C1, C2);
m2.BezierInterpol(C1, C2, D1, D2);
Coon_Bezier m1f = m1.first_half();
Coon_Bezier m1s = m1.second_half();
Coon_Bezier m2f = m2.first_half();
Coon_Bezier m2s = m2.second_half();
x_scale *= 2;
y_scale *= 2;
left *= 2;
bottom *= 2;
Draw(x_scale, y_scale, left, bottom, C1.first_half(), m1f,
D1.first_half(), m2f);
Draw(x_scale, y_scale, left, bottom + 1, m1f, C2.first_half(),
D1.second_half(), m2s);
Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(), m1s, m2f,
D2.first_half());
Draw(x_scale, y_scale, left + 1, bottom + 1, m1s, C2.second_half(), m2s,
D2.second_half());
}
}
}
int max_delta;
CFX_PathData path;
CFX_RenderDevice* pDevice;
int bNoPathSmooth;
int alpha;
Coon_Color patch_colors[4];
};
void DrawCoonPatchMeshes(
ShadingType type,
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Stream* pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
bool bNoPathSmooth,
int alpha) {
ASSERT(pBitmap->GetFormat() == FXDIB_Format::kArgb);
ASSERT(type == kCoonsPatchMeshShading ||
type == kTensorProductPatchMeshShading);
CFX_DefaultRenderDevice device;
device.Attach(pBitmap, false, nullptr, false);
CPDF_MeshStream stream(type, funcs, pShadingStream, pCS);
if (!stream.Load())
return;
CPDF_PatchDrawer patch;
patch.alpha = alpha;
patch.pDevice = &device;
patch.bNoPathSmooth = bNoPathSmooth;
for (int i = 0; i < 13; i++) {
patch.path.AppendPoint(CFX_PointF(),
i == 0 ? FXPT_TYPE::MoveTo : FXPT_TYPE::BezierTo);
}
CFX_PointF coords[16];
int point_count = type == kTensorProductPatchMeshShading ? 16 : 12;
while (!stream.BitStream()->IsEOF()) {
if (!stream.CanReadFlag())
break;
uint32_t flag = stream.ReadFlag();
int iStartPoint = 0, iStartColor = 0, i = 0;
if (flag) {
iStartPoint = 4;
iStartColor = 2;
CFX_PointF tempCoords[4];
for (i = 0; i < 4; i++) {
tempCoords[i] = coords[(flag * 3 + i) % 12];
}
memcpy(coords, tempCoords, sizeof(tempCoords));
Coon_Color tempColors[2];
tempColors[0] = patch.patch_colors[flag];
tempColors[1] = patch.patch_colors[(flag + 1) % 4];
memcpy(patch.patch_colors, tempColors, sizeof(Coon_Color) * 2);
}
for (i = iStartPoint; i < point_count; i++) {
if (!stream.CanReadCoords())
break;
coords[i] = mtObject2Bitmap.Transform(stream.ReadCoords());
}
for (i = iStartColor; i < 4; i++) {
if (!stream.CanReadColor())
break;
float r;
float g;
float b;
std::tie(r, g, b) = stream.ReadColor();
patch.patch_colors[i].comp[0] = static_cast<int32_t>(r * 255);
patch.patch_colors[i].comp[1] = static_cast<int32_t>(g * 255);
patch.patch_colors[i].comp[2] = static_cast<int32_t>(b * 255);
}
CFX_FloatRect bbox = CFX_FloatRect::GetBBox(coords, point_count);
if (bbox.right <= 0 || bbox.left >= (float)pBitmap->GetWidth() ||
bbox.top <= 0 || bbox.bottom >= (float)pBitmap->GetHeight()) {
continue;
}
Coon_Bezier C1, C2, D1, D2;
C1.FromPoints(coords[0].x, coords[0].y, coords[11].x, coords[11].y,
coords[10].x, coords[10].y, coords[9].x, coords[9].y);
C2.FromPoints(coords[3].x, coords[3].y, coords[4].x, coords[4].y,
coords[5].x, coords[5].y, coords[6].x, coords[6].y);
D1.FromPoints(coords[0].x, coords[0].y, coords[1].x, coords[1].y,
coords[2].x, coords[2].y, coords[3].x, coords[3].y);
D2.FromPoints(coords[9].x, coords[9].y, coords[8].x, coords[8].y,
coords[7].x, coords[7].y, coords[6].x, coords[6].y);
patch.Draw(1, 1, 0, 0, C1, C2, D1, D2);
}
}
} // namespace
// static
void CPDF_RenderShading::Draw(CFX_RenderDevice* pDevice,
CPDF_RenderContext* pContext,
const CPDF_PageObject* pCurObj,
const CPDF_ShadingPattern* pPattern,
const CFX_Matrix& mtMatrix,
const FX_RECT& clip_rect,
int alpha,
const CPDF_RenderOptions& options) {
const auto& funcs = pPattern->GetFuncs();
const CPDF_Dictionary* pDict = pPattern->GetShadingObject()->GetDict();
RetainPtr<CPDF_ColorSpace> pColorSpace = pPattern->GetCS();
if (!pColorSpace)
return;
FX_ARGB background = 0;
if (!pPattern->IsShadingObject() && pDict->KeyExist("Background")) {
const CPDF_Array* pBackColor = pDict->GetArrayFor("Background");
if (pBackColor && pBackColor->size() >= pColorSpace->CountComponents()) {
std::vector<float> comps =
ReadArrayElementsToVector(pBackColor, pColorSpace->CountComponents());
float R = 0.0f;
float G = 0.0f;
float B = 0.0f;
pColorSpace->GetRGB(comps, &R, &G, &B);
background = ArgbEncode(255, static_cast<int32_t>(R * 255),
static_cast<int32_t>(G * 255),
static_cast<int32_t>(B * 255));
}
}
FX_RECT clip_rect_bbox = clip_rect;
if (pDict->KeyExist("BBox")) {
clip_rect_bbox.Intersect(
mtMatrix.TransformRect(pDict->GetRectFor("BBox")).GetOuterRect());
}
bool bAlphaMode = options.ColorModeIs(CPDF_RenderOptions::kAlpha);
if (pDevice->GetDeviceCaps(FXDC_RENDER_CAPS) & FXRC_SHADING &&
pDevice->GetDeviceDriver()->DrawShading(
pPattern, &mtMatrix, clip_rect_bbox, alpha, bAlphaMode)) {
return;
}
CPDF_DeviceBuffer buffer(pContext, pDevice, clip_rect_bbox, pCurObj, 150);
if (!buffer.Initialize())
return;
CFX_Matrix FinalMatrix = mtMatrix * buffer.GetMatrix();
RetainPtr<CFX_DIBitmap> pBitmap = buffer.GetBitmap();
if (!pBitmap->GetBuffer())
return;
pBitmap->Clear(background);
switch (pPattern->GetShadingType()) {
case kInvalidShading:
case kMaxShading:
return;
case kFunctionBasedShading:
DrawFuncShading(pBitmap, FinalMatrix, pDict, funcs, pColorSpace, alpha);
break;
case kAxialShading:
DrawAxialShading(pBitmap, FinalMatrix, pDict, funcs, pColorSpace, alpha);
break;
case kRadialShading:
DrawRadialShading(pBitmap, FinalMatrix, pDict, funcs, pColorSpace, alpha);
break;
case kFreeFormGouraudTriangleMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
const CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawFreeGouraudShading(pBitmap, FinalMatrix, pStream, funcs,
pColorSpace, alpha);
}
break;
}
case kLatticeFormGouraudTriangleMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
const CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawLatticeGouraudShading(pBitmap, FinalMatrix, pStream, funcs,
pColorSpace, alpha);
}
break;
}
case kCoonsPatchMeshShading:
case kTensorProductPatchMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
const CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawCoonPatchMeshes(pPattern->GetShadingType(), pBitmap, FinalMatrix,
pStream, funcs, pColorSpace,
options.GetOptions().bNoPathSmooth, alpha);
}
break;
}
}
if (bAlphaMode)
pBitmap->SetRedFromBitmap(pBitmap);
if (options.ColorModeIs(CPDF_RenderOptions::kGray))
pBitmap->ConvertColorScale(0, 0xffffff);
buffer.OutputToDevice();
}