blob: 1fd6e0ec637966be9a492fbb1e6e7baf5947e082 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/parser/fpdf_parser_decode.h"
#include <limits.h>
#include <algorithm>
#include <sstream>
#include <utility>
#include <vector>
#include "constants/stream_dict_common.h"
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/fpdf_parser_utility.h"
#include "core/fxcodec/fax/faxmodule.h"
#include "core/fxcodec/flate/flatemodule.h"
#include "core/fxcodec/fx_codec.h"
#include "core/fxcodec/scanlinedecoder.h"
#include "core/fxcrt/fx_extension.h"
#include "core/fxcrt/fx_safe_types.h"
#include "third_party/base/check.h"
#include "third_party/base/stl_util.h"
namespace {
const uint32_t kMaxStreamSize = 20 * 1024 * 1024;
uint16_t GetUnicodeFromBigEndianBytes(const uint8_t* bytes) {
return bytes[0] << 8 | bytes[1];
}
uint16_t GetUnicodeFromLittleEndianBytes(const uint8_t* bytes) {
return bytes[1] << 8 | bytes[0];
}
bool CheckFlateDecodeParams(int Colors, int BitsPerComponent, int Columns) {
if (Colors < 0 || BitsPerComponent < 0 || Columns < 0)
return false;
FX_SAFE_INT32 check = Columns;
check *= Colors;
check *= BitsPerComponent;
if (!check.IsValid())
return false;
return check.ValueOrDie() <= INT_MAX - 7;
}
uint8_t GetA85Result(uint32_t res, size_t i) {
return static_cast<uint8_t>(res >> (3 - i) * 8);
}
} // namespace
const uint16_t PDFDocEncoding[256] = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008,
0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, 0x02d8, 0x02c7, 0x02c6,
0x02d9, 0x02dd, 0x02db, 0x02da, 0x02dc, 0x0020, 0x0021, 0x0022, 0x0023,
0x0024, 0x0025, 0x0026, 0x0027, 0x0028, 0x0029, 0x002a, 0x002b, 0x002c,
0x002d, 0x002e, 0x002f, 0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035,
0x0036, 0x0037, 0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e,
0x003f, 0x0040, 0x0041, 0x0042, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047,
0x0048, 0x0049, 0x004a, 0x004b, 0x004c, 0x004d, 0x004e, 0x004f, 0x0050,
0x0051, 0x0052, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059,
0x005a, 0x005b, 0x005c, 0x005d, 0x005e, 0x005f, 0x0060, 0x0061, 0x0062,
0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b,
0x006c, 0x006d, 0x006e, 0x006f, 0x0070, 0x0071, 0x0072, 0x0073, 0x0074,
0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007a, 0x007b, 0x007c, 0x007d,
0x007e, 0x0000, 0x2022, 0x2020, 0x2021, 0x2026, 0x2014, 0x2013, 0x0192,
0x2044, 0x2039, 0x203a, 0x2212, 0x2030, 0x201e, 0x201c, 0x201d, 0x2018,
0x2019, 0x201a, 0x2122, 0xfb01, 0xfb02, 0x0141, 0x0152, 0x0160, 0x0178,
0x017d, 0x0131, 0x0142, 0x0153, 0x0161, 0x017e, 0x0000, 0x20ac, 0x00a1,
0x00a2, 0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7, 0x00a8, 0x00a9, 0x00aa,
0x00ab, 0x00ac, 0x0000, 0x00ae, 0x00af, 0x00b0, 0x00b1, 0x00b2, 0x00b3,
0x00b4, 0x00b5, 0x00b6, 0x00b7, 0x00b8, 0x00b9, 0x00ba, 0x00bb, 0x00bc,
0x00bd, 0x00be, 0x00bf, 0x00c0, 0x00c1, 0x00c2, 0x00c3, 0x00c4, 0x00c5,
0x00c6, 0x00c7, 0x00c8, 0x00c9, 0x00ca, 0x00cb, 0x00cc, 0x00cd, 0x00ce,
0x00cf, 0x00d0, 0x00d1, 0x00d2, 0x00d3, 0x00d4, 0x00d5, 0x00d6, 0x00d7,
0x00d8, 0x00d9, 0x00da, 0x00db, 0x00dc, 0x00dd, 0x00de, 0x00df, 0x00e0,
0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7, 0x00e8, 0x00e9,
0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef, 0x00f0, 0x00f1, 0x00f2,
0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00f7, 0x00f8, 0x00f9, 0x00fa, 0x00fb,
0x00fc, 0x00fd, 0x00fe, 0x00ff};
bool ValidateDecoderPipeline(const CPDF_Array* pDecoders) {
size_t count = pDecoders->size();
if (count == 0)
return true;
for (size_t i = 0; i < count; ++i) {
if (!pDecoders->GetObjectAt(i)->IsName())
return false;
}
if (count == 1)
return true;
// TODO(thestig): Consolidate all the places that use these filter names.
static const char kValidDecoders[][16] = {
"FlateDecode", "Fl", "LZWDecode", "LZW", "ASCII85Decode", "A85",
"ASCIIHexDecode", "AHx", "RunLengthDecode", "RL"};
for (size_t i = 0; i < count - 1; ++i) {
if (!pdfium::Contains(kValidDecoders, pDecoders->GetStringAt(i)))
return false;
}
return true;
}
uint32_t A85Decode(pdfium::span<const uint8_t> src_span,
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
uint32_t* dest_size) {
*dest_size = 0;
if (src_span.empty()) {
dest_buf->reset();
return 0;
}
// Count legal characters and zeros.
uint32_t zcount = 0;
uint32_t pos = 0;
while (pos < src_span.size()) {
uint8_t ch = src_span[pos];
if (ch == 'z') {
zcount++;
} else if ((ch < '!' || ch > 'u') && !PDFCharIsLineEnding(ch) &&
ch != ' ' && ch != '\t') {
break;
}
pos++;
}
// No content to decode.
if (pos == 0)
return 0;
// Count the space needed to contain non-zero characters. The encoding ratio
// of Ascii85 is 4:5.
uint32_t space_for_non_zeroes = (pos - zcount) / 5 * 4 + 4;
FX_SAFE_UINT32 size = zcount;
size *= 4;
size += space_for_non_zeroes;
if (!size.IsValid())
return FX_INVALID_OFFSET;
dest_buf->reset(FX_Alloc(uint8_t, size.ValueOrDie()));
uint8_t* dest_buf_ptr = dest_buf->get();
size_t state = 0;
uint32_t res = 0;
pos = 0;
while (pos < src_span.size()) {
uint8_t ch = src_span[pos++];
if (PDFCharIsLineEnding(ch) || ch == ' ' || ch == '\t')
continue;
if (ch == 'z') {
memset(dest_buf_ptr + *dest_size, 0, 4);
state = 0;
res = 0;
*dest_size += 4;
continue;
}
// Check for the end or illegal character.
if (ch < '!' || ch > 'u')
break;
res = res * 85 + ch - 33;
if (state < 4) {
++state;
continue;
}
for (size_t i = 0; i < 4; ++i) {
dest_buf_ptr[(*dest_size)++] = GetA85Result(res, i);
}
state = 0;
res = 0;
}
// Handle partial group.
if (state) {
for (size_t i = state; i < 5; ++i)
res = res * 85 + 84;
for (size_t i = 0; i < state - 1; ++i)
dest_buf_ptr[(*dest_size)++] = GetA85Result(res, i);
}
if (pos < src_span.size() && src_span[pos] == '>')
++pos;
return pos;
}
uint32_t HexDecode(pdfium::span<const uint8_t> src_span,
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
uint32_t* dest_size) {
*dest_size = 0;
if (src_span.empty()) {
dest_buf->reset();
return 0;
}
uint32_t i = 0;
// Find the end of data.
while (i < src_span.size() && src_span[i] != '>')
++i;
dest_buf->reset(FX_Alloc(uint8_t, i / 2 + 1));
uint8_t* dest_buf_ptr = dest_buf->get();
bool bFirst = true;
for (i = 0; i < src_span.size(); ++i) {
uint8_t ch = src_span[i];
if (PDFCharIsLineEnding(ch) || ch == ' ' || ch == '\t')
continue;
if (ch == '>') {
++i;
break;
}
if (!std::isxdigit(ch))
continue;
int digit = FXSYS_HexCharToInt(ch);
if (bFirst)
dest_buf_ptr[*dest_size] = digit * 16;
else
dest_buf_ptr[(*dest_size)++] += digit;
bFirst = !bFirst;
}
if (!bFirst)
++(*dest_size);
return i;
}
uint32_t RunLengthDecode(pdfium::span<const uint8_t> src_span,
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
uint32_t* dest_size) {
size_t i = 0;
*dest_size = 0;
while (i < src_span.size()) {
if (src_span[i] == 128)
break;
uint32_t old = *dest_size;
if (src_span[i] < 128) {
*dest_size += src_span[i] + 1;
if (*dest_size < old)
return FX_INVALID_OFFSET;
i += src_span[i] + 2;
} else {
*dest_size += 257 - src_span[i];
if (*dest_size < old)
return FX_INVALID_OFFSET;
i += 2;
}
}
if (*dest_size >= kMaxStreamSize)
return FX_INVALID_OFFSET;
dest_buf->reset(FX_Alloc(uint8_t, *dest_size));
pdfium::span<uint8_t> dest_span(dest_buf->get(), *dest_size);
i = 0;
int dest_count = 0;
while (i < src_span.size()) {
if (src_span[i] == 128)
break;
if (src_span[i] < 128) {
uint32_t copy_len = src_span[i] + 1;
uint32_t buf_left = src_span.size() - i - 1;
if (buf_left < copy_len) {
uint32_t delta = copy_len - buf_left;
copy_len = buf_left;
memset(&dest_span[dest_count + copy_len], '\0', delta);
}
auto copy_span = src_span.subspan(i + 1, copy_len);
memcpy(&dest_span[dest_count], copy_span.data(), copy_span.size());
dest_count += src_span[i] + 1;
i += src_span[i] + 2;
} else {
int fill = 0;
if (i < src_span.size() - 1)
fill = src_span[i + 1];
memset(&dest_span[dest_count], fill, 257 - src_span[i]);
dest_count += 257 - src_span[i];
i += 2;
}
}
return std::min(i + 1, src_span.size());
}
std::unique_ptr<ScanlineDecoder> CreateFaxDecoder(
pdfium::span<const uint8_t> src_span,
int width,
int height,
const CPDF_Dictionary* pParams) {
int K = 0;
bool EndOfLine = false;
bool ByteAlign = false;
bool BlackIs1 = false;
int Columns = 1728;
int Rows = 0;
if (pParams) {
K = pParams->GetIntegerFor("K");
EndOfLine = !!pParams->GetIntegerFor("EndOfLine");
ByteAlign = !!pParams->GetIntegerFor("EncodedByteAlign");
BlackIs1 = !!pParams->GetIntegerFor("BlackIs1");
Columns = pParams->GetIntegerFor("Columns", 1728);
Rows = pParams->GetIntegerFor("Rows");
if (Rows > USHRT_MAX)
Rows = 0;
}
return FaxModule::CreateDecoder(src_span, width, height, K, EndOfLine,
ByteAlign, BlackIs1, Columns, Rows);
}
std::unique_ptr<ScanlineDecoder> CreateFlateDecoder(
pdfium::span<const uint8_t> src_span,
int width,
int height,
int nComps,
int bpc,
const CPDF_Dictionary* pParams) {
int predictor = 0;
int Colors = 0;
int BitsPerComponent = 0;
int Columns = 0;
if (pParams) {
predictor = pParams->GetIntegerFor("Predictor");
Colors = pParams->GetIntegerFor("Colors", 1);
BitsPerComponent = pParams->GetIntegerFor("BitsPerComponent", 8);
Columns = pParams->GetIntegerFor("Columns", 1);
if (!CheckFlateDecodeParams(Colors, BitsPerComponent, Columns))
return nullptr;
}
return FlateModule::CreateDecoder(src_span, width, height, nComps, bpc,
predictor, Colors, BitsPerComponent,
Columns);
}
uint32_t FlateOrLZWDecode(bool bLZW,
pdfium::span<const uint8_t> src_span,
const CPDF_Dictionary* pParams,
uint32_t estimated_size,
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
uint32_t* dest_size) {
int predictor = 0;
int Colors = 0;
int BitsPerComponent = 0;
int Columns = 0;
bool bEarlyChange = true;
if (pParams) {
predictor = pParams->GetIntegerFor("Predictor");
bEarlyChange = !!pParams->GetIntegerFor("EarlyChange", 1);
Colors = pParams->GetIntegerFor("Colors", 1);
BitsPerComponent = pParams->GetIntegerFor("BitsPerComponent", 8);
Columns = pParams->GetIntegerFor("Columns", 1);
if (!CheckFlateDecodeParams(Colors, BitsPerComponent, Columns))
return FX_INVALID_OFFSET;
}
return FlateModule::FlateOrLZWDecode(bLZW, src_span, bEarlyChange, predictor,
Colors, BitsPerComponent, Columns,
estimated_size, dest_buf, dest_size);
}
Optional<DecoderArray> GetDecoderArray(const CPDF_Dictionary* pDict) {
const CPDF_Object* pFilter = pDict->GetDirectObjectFor("Filter");
if (!pFilter)
return DecoderArray();
if (!pFilter->IsArray() && !pFilter->IsName())
return pdfium::nullopt;
const CPDF_Object* pParams =
pDict->GetDirectObjectFor(pdfium::stream::kDecodeParms);
DecoderArray decoder_array;
if (const CPDF_Array* pDecoders = pFilter->AsArray()) {
if (!ValidateDecoderPipeline(pDecoders))
return pdfium::nullopt;
const CPDF_Array* pParamsArray = ToArray(pParams);
for (size_t i = 0; i < pDecoders->size(); ++i) {
decoder_array.push_back(
{pDecoders->GetStringAt(i),
pParamsArray ? pParamsArray->GetDictAt(i) : nullptr});
}
} else {
DCHECK(pFilter->IsName());
decoder_array.push_back(
{pFilter->GetString(), pParams ? pParams->GetDict() : nullptr});
}
return decoder_array;
}
bool PDF_DataDecode(
pdfium::span<const uint8_t> src_span,
uint32_t last_estimated_size,
bool bImageAcc,
const std::vector<std::pair<ByteString, const CPDF_Object*>>& decoder_array,
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
uint32_t* dest_size,
ByteString* ImageEncoding,
RetainPtr<const CPDF_Dictionary>* pImageParams) {
std::unique_ptr<uint8_t, FxFreeDeleter> result;
// May be changed to point to |result| in the for-loop below. So put it below
// |result| and let it get destroyed first.
pdfium::span<const uint8_t> last_span = src_span;
size_t nSize = decoder_array.size();
for (size_t i = 0; i < nSize; ++i) {
int estimated_size = i == nSize - 1 ? last_estimated_size : 0;
ByteString decoder = decoder_array[i].first;
const CPDF_Dictionary* pParam = ToDictionary(decoder_array[i].second);
std::unique_ptr<uint8_t, FxFreeDeleter> new_buf;
uint32_t new_size = 0xFFFFFFFF;
uint32_t offset = FX_INVALID_OFFSET;
if (decoder == "Crypt")
continue;
if (decoder == "FlateDecode" || decoder == "Fl") {
if (bImageAcc && i == nSize - 1) {
*ImageEncoding = "FlateDecode";
*dest_buf = std::move(result);
*dest_size = last_span.size();
pImageParams->Reset(pParam);
return true;
}
offset = FlateOrLZWDecode(false, last_span, pParam, estimated_size,
&new_buf, &new_size);
} else if (decoder == "LZWDecode" || decoder == "LZW") {
offset = FlateOrLZWDecode(true, last_span, pParam, estimated_size,
&new_buf, &new_size);
} else if (decoder == "ASCII85Decode" || decoder == "A85") {
offset = A85Decode(last_span, &new_buf, &new_size);
} else if (decoder == "ASCIIHexDecode" || decoder == "AHx") {
offset = HexDecode(last_span, &new_buf, &new_size);
} else if (decoder == "RunLengthDecode" || decoder == "RL") {
if (bImageAcc && i == nSize - 1) {
*ImageEncoding = "RunLengthDecode";
*dest_buf = std::move(result);
*dest_size = last_span.size();
pImageParams->Reset(pParam);
return true;
}
offset = RunLengthDecode(last_span, &new_buf, &new_size);
} else {
// If we get here, assume it's an image decoder.
if (decoder == "DCT")
decoder = "DCTDecode";
else if (decoder == "CCF")
decoder = "CCITTFaxDecode";
*ImageEncoding = std::move(decoder);
pImageParams->Reset(pParam);
*dest_buf = std::move(result);
*dest_size = last_span.size();
return true;
}
if (offset == FX_INVALID_OFFSET)
return false;
last_span = {new_buf.get(), new_size};
result = std::move(new_buf);
}
ImageEncoding->clear();
*pImageParams = nullptr;
*dest_buf = std::move(result);
*dest_size = last_span.size();
return true;
}
WideString PDF_DecodeText(pdfium::span<const uint8_t> span) {
int dest_pos = 0;
WideString result;
if (span.size() >= 2 && ((span[0] == 0xfe && span[1] == 0xff) ||
(span[0] == 0xff && span[1] == 0xfe))) {
size_t max_chars = (span.size() - 2) / 2;
if (!max_chars)
return result;
pdfium::span<wchar_t> dest_buf = result.GetBuffer(max_chars);
uint16_t (*GetUnicodeFromBytes)(const uint8_t*) =
span[0] == 0xfe ? GetUnicodeFromBigEndianBytes
: GetUnicodeFromLittleEndianBytes;
const uint8_t* unicode_str = &span[2];
for (size_t i = 0; i < max_chars * 2; i += 2) {
uint16_t unicode = GetUnicodeFromBytes(unicode_str + i);
// 0x001B is a begin/end marker for language metadata region that
// should not be in the decoded text.
if (unicode == 0x001B) {
i += 2;
for (; i < max_chars * 2; i += 2) {
unicode = GetUnicodeFromBytes(unicode_str + i);
if (unicode == 0x001B) {
i += 2;
if (i < max_chars * 2)
unicode = GetUnicodeFromBytes(unicode_str + i);
break;
}
}
if (i >= max_chars * 2)
break;
}
dest_buf[dest_pos++] = unicode;
}
} else {
pdfium::span<wchar_t> dest_buf = result.GetBuffer(span.size());
for (size_t i = 0; i < span.size(); ++i)
dest_buf[i] = PDFDocEncoding[span[i]];
dest_pos = span.size();
}
result.ReleaseBuffer(dest_pos);
return result;
}
ByteString PDF_EncodeText(const WideString& str) {
size_t i = 0;
size_t len = str.GetLength();
ByteString result;
{
pdfium::span<char> dest_buf = result.GetBuffer(len);
for (i = 0; i < len; ++i) {
int code;
for (code = 0; code < 256; ++code) {
if (PDFDocEncoding[code] == str[i])
break;
}
if (code == 256)
break;
dest_buf[i] = code;
}
}
result.ReleaseBuffer(i);
if (i == len)
return result;
if (len > INT_MAX / 2 - 1) {
result.ReleaseBuffer(0);
return result;
}
size_t dest_index = 0;
size_t encLen = len * 2 + 2;
{
pdfium::span<uint8_t> dest_buf =
pdfium::as_writable_bytes(result.GetBuffer(encLen));
dest_buf[dest_index++] = 0xfe;
dest_buf[dest_index++] = 0xff;
for (size_t j = 0; j < len; ++j) {
dest_buf[dest_index++] = str[j] >> 8;
dest_buf[dest_index++] = static_cast<uint8_t>(str[j]);
}
}
result.ReleaseBuffer(encLen);
return result;
}
ByteString PDF_EncodeString(const ByteString& src, bool bHex) {
std::ostringstream result;
int srclen = src.GetLength();
if (bHex) {
result << '<';
for (int i = 0; i < srclen; ++i) {
char buf[2];
FXSYS_IntToTwoHexChars(src[i], buf);
result << buf[0];
result << buf[1];
}
result << '>';
return ByteString(result);
}
result << '(';
for (int i = 0; i < srclen; ++i) {
uint8_t ch = src[i];
if (ch == 0x0a) {
result << "\\n";
continue;
}
if (ch == 0x0d) {
result << "\\r";
continue;
}
if (ch == ')' || ch == '\\' || ch == '(')
result << '\\';
result << static_cast<char>(ch);
}
result << ')';
return ByteString(result);
}
bool FlateEncode(pdfium::span<const uint8_t> src_span,
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
uint32_t* dest_size) {
return FlateModule::Encode(src_span.data(), src_span.size(), dest_buf,
dest_size);
}
uint32_t FlateDecode(pdfium::span<const uint8_t> src_span,
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
uint32_t* dest_size) {
return FlateModule::FlateOrLZWDecode(false, src_span, false, 0, 0, 0, 0, 0,
dest_buf, dest_size);
}