blob: d56128eebcd33418f9bc9bb538acb498aedceb1b [file] [log] [blame] [edit]
// Copyright 2019 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/render/cpdf_rendershading.h"
#include <math.h>
#include <algorithm>
#include <array>
#include <memory>
#include <utility>
#include <vector>
#include "core/fpdfapi/page/cpdf_colorspace.h"
#include "core/fpdfapi/page/cpdf_dib.h"
#include "core/fpdfapi/page/cpdf_function.h"
#include "core/fpdfapi/page/cpdf_meshstream.h"
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_stream.h"
#include "core/fpdfapi/parser/fpdf_parser_utility.h"
#include "core/fpdfapi/render/cpdf_devicebuffer.h"
#include "core/fpdfapi/render/cpdf_renderoptions.h"
#include "core/fxcrt/check.h"
#include "core/fxcrt/check_op.h"
#include "core/fxcrt/compiler_specific.h"
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxcrt/fx_system.h"
#include "core/fxcrt/numerics/clamped_math.h"
#include "core/fxcrt/span.h"
#include "core/fxcrt/span_util.h"
#include "core/fxcrt/stl_util.h"
#include "core/fxcrt/unowned_ptr.h"
#include "core/fxge/cfx_defaultrenderdevice.h"
#include "core/fxge/cfx_fillrenderoptions.h"
#include "core/fxge/cfx_path.h"
#include "core/fxge/dib/cfx_dibitmap.h"
#include "core/fxge/dib/fx_dib.h"
namespace {
constexpr int kShadingSteps = 256;
uint32_t CountOutputsFromFunctions(
const std::vector<std::unique_ptr<CPDF_Function>>& funcs) {
FX_SAFE_UINT32 total = 0;
for (const auto& func : funcs) {
if (func)
total += func->OutputCount();
}
return total.ValueOrDefault(0);
}
uint32_t GetValidatedOutputsCount(
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS) {
uint32_t funcs_outputs = CountOutputsFromFunctions(funcs);
return funcs_outputs ? std::max(funcs_outputs, pCS->ComponentCount()) : 0;
}
std::array<FX_ARGB, kShadingSteps> GetShadingSteps(
float t_min,
float t_max,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha,
size_t results_count) {
CHECK_GE(results_count, CountOutputsFromFunctions(funcs));
CHECK_GE(results_count, pCS->ComponentCount());
std::array<FX_ARGB, kShadingSteps> shading_steps;
std::vector<float> result_array(results_count);
float diff = t_max - t_min;
for (int i = 0; i < kShadingSteps; ++i) {
float input = diff * i / kShadingSteps + t_min;
pdfium::span<float> result_span = pdfium::make_span(result_array);
for (const auto& func : funcs) {
if (!func)
continue;
std::optional<uint32_t> nresults =
func->Call(pdfium::span_from_ref(input), result_span);
if (nresults.has_value())
result_span = result_span.subspan(nresults.value());
}
auto rgb = pCS->GetRGBOrZerosOnError(result_array);
shading_steps[i] =
ArgbEncode(alpha, FXSYS_roundf(rgb.red * 255),
FXSYS_roundf(rgb.green * 255), FXSYS_roundf(rgb.blue * 255));
}
return shading_steps;
}
void DrawAxialShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb);
const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS);
if (total_results == 0)
return;
RetainPtr<const CPDF_Array> pCoords = pDict->GetArrayFor("Coords");
if (!pCoords)
return;
float start_x = pCoords->GetFloatAt(0);
float start_y = pCoords->GetFloatAt(1);
float end_x = pCoords->GetFloatAt(2);
float end_y = pCoords->GetFloatAt(3);
float t_min = 0;
float t_max = 1.0f;
RetainPtr<const CPDF_Array> pArray = pDict->GetArrayFor("Domain");
if (pArray) {
t_min = pArray->GetFloatAt(0);
t_max = pArray->GetFloatAt(1);
}
pArray = pDict->GetArrayFor("Extend");
const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false);
const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false);
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
float x_span = end_x - start_x;
float y_span = end_y - start_y;
float axis_len_square = (x_span * x_span) + (y_span * y_span);
std::array<FX_ARGB, kShadingSteps> shading_steps =
GetShadingSteps(t_min, t_max, funcs, pCS, alpha, total_results);
CFX_Matrix matrix = mtObject2Bitmap.GetInverse();
for (int row = 0; row < height; row++) {
auto dest_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row).first(width);
size_t column_counter = 0;
for (auto& pix : dest_buf) {
const float column = static_cast<float>(column_counter++);
const CFX_PointF pos =
matrix.Transform(CFX_PointF(column, static_cast<float>(row)));
float scale =
(((pos.x - start_x) * x_span) + ((pos.y - start_y) * y_span)) /
axis_len_square;
int index = static_cast<int32_t>(scale * (kShadingSteps - 1));
if (index < 0) {
if (!bStartExtend) {
continue;
}
index = 0;
} else if (index >= kShadingSteps) {
if (!bEndExtend) {
continue;
}
index = kShadingSteps - 1;
}
pix = shading_steps[index];
}
}
}
void DrawRadialShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb);
const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS);
if (total_results == 0)
return;
RetainPtr<const CPDF_Array> pCoords = pDict->GetArrayFor("Coords");
if (!pCoords)
return;
float start_x = pCoords->GetFloatAt(0);
float start_y = pCoords->GetFloatAt(1);
float start_r = pCoords->GetFloatAt(2);
float end_x = pCoords->GetFloatAt(3);
float end_y = pCoords->GetFloatAt(4);
float end_r = pCoords->GetFloatAt(5);
float t_min = 0;
float t_max = 1.0f;
RetainPtr<const CPDF_Array> pArray = pDict->GetArrayFor("Domain");
if (pArray) {
t_min = pArray->GetFloatAt(0);
t_max = pArray->GetFloatAt(1);
}
pArray = pDict->GetArrayFor("Extend");
const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false);
const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false);
std::array<FX_ARGB, kShadingSteps> shading_steps =
GetShadingSteps(t_min, t_max, funcs, pCS, alpha, total_results);
const float dx = end_x - start_x;
const float dy = end_y - start_y;
const float dr = end_r - start_r;
const float a = dx * dx + dy * dy - dr * dr;
const bool a_is_float_zero = FXSYS_IsFloatZero(a);
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
bool bDecreasing = dr < 0 && static_cast<int>(hypotf(dx, dy)) < -dr;
CFX_Matrix matrix = mtObject2Bitmap.GetInverse();
for (int row = 0; row < height; row++) {
auto dest_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row).first(width);
size_t column_counter = 0;
for (auto& pix : dest_buf) {
const float column = static_cast<float>(column_counter++);
const CFX_PointF pos =
matrix.Transform(CFX_PointF(column, static_cast<float>(row)));
float pos_dx = pos.x - start_x;
float pos_dy = pos.y - start_y;
float b = -2 * (pos_dx * dx + pos_dy * dy + start_r * dr);
float c = pos_dx * pos_dx + pos_dy * pos_dy - start_r * start_r;
float s;
if (FXSYS_IsFloatZero(b)) {
s = sqrt(-c / a);
} else if (a_is_float_zero) {
s = -c / b;
} else {
float b2_4ac = (b * b) - 4 * (a * c);
if (b2_4ac < 0) {
continue;
}
float root = sqrt(b2_4ac);
float s1 = (-b - root) / (2 * a);
float s2 = (-b + root) / (2 * a);
if (a <= 0)
std::swap(s1, s2);
if (bDecreasing) {
s = (s1 >= 0 || bStartExtend) ? s1 : s2;
} else {
s = (s2 <= 1.0f || bEndExtend) ? s2 : s1;
}
if (start_r + s * dr < 0) {
continue;
}
}
int index = static_cast<int32_t>(s * (kShadingSteps - 1));
if (index < 0) {
if (!bStartExtend) {
continue;
}
index = 0;
} else if (index >= kShadingSteps) {
if (!bEndExtend) {
continue;
}
index = kShadingSteps - 1;
}
pix = shading_steps[index];
}
}
}
void DrawFuncShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* pDict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb);
const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS);
if (total_results == 0)
return;
RetainPtr<const CPDF_Array> pDomain = pDict->GetArrayFor("Domain");
float xmin = 0.0f;
float ymin = 0.0f;
float xmax = 1.0f;
float ymax = 1.0f;
if (pDomain) {
xmin = pDomain->GetFloatAt(0);
xmax = pDomain->GetFloatAt(1);
ymin = pDomain->GetFloatAt(2);
ymax = pDomain->GetFloatAt(3);
}
CFX_Matrix mtDomain2Target = pDict->GetMatrixFor("Matrix");
CFX_Matrix matrix =
mtObject2Bitmap.GetInverse() * mtDomain2Target.GetInverse();
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
CHECK_GE(total_results, CountOutputsFromFunctions(funcs));
CHECK_GE(total_results, pCS->ComponentCount());
std::vector<float> result_array(total_results);
for (int row = 0; row < height; ++row) {
auto dib_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row);
for (int column = 0; column < width; column++) {
CFX_PointF pos = matrix.Transform(
CFX_PointF(static_cast<float>(column), static_cast<float>(row)));
if (pos.x < xmin || pos.x > xmax || pos.y < ymin || pos.y > ymax)
continue;
float input[2] = {pos.x, pos.y};
pdfium::span<float> result_span = pdfium::make_span(result_array);
for (const auto& func : funcs) {
if (!func)
continue;
std::optional<uint32_t> nresults = func->Call(input, result_span);
if (nresults.has_value())
result_span = result_span.subspan(nresults.value());
}
auto rgb = pCS->GetRGBOrZerosOnError(result_array);
dib_buf[column] = ArgbEncode(alpha, static_cast<int32_t>(rgb.red * 255),
static_cast<int32_t>(rgb.green * 255),
static_cast<int32_t>(rgb.blue * 255));
}
}
}
bool GetScanlineIntersect(int y,
const CFX_PointF& first,
const CFX_PointF& second,
float* x) {
if (first.y == second.y)
return false;
if (first.y < second.y) {
if (y < first.y || y > second.y)
return false;
} else if (y < second.y || y > first.y) {
return false;
}
*x = first.x + ((second.x - first.x) * (y - first.y) / (second.y - first.y));
return true;
}
void DrawGouraud(const RetainPtr<CFX_DIBitmap>& pBitmap,
int alpha,
pdfium::span<CPDF_MeshVertex, 3> triangle) {
float min_y = triangle[0].position.y;
float max_y = triangle[0].position.y;
for (int i = 1; i < 3; i++) {
min_y = std::min(min_y, triangle[i].position.y);
max_y = std::max(max_y, triangle[i].position.y);
}
if (min_y == max_y)
return;
int min_yi = std::max(static_cast<int>(floorf(min_y)), 0);
int max_yi = static_cast<int>(ceilf(max_y));
if (max_yi >= pBitmap->GetHeight())
max_yi = pBitmap->GetHeight() - 1;
for (int y = min_yi; y <= max_yi; y++) {
int nIntersects = 0;
std::array<float, 3> inter_x;
std::array<float, 3> r;
std::array<float, 3> g;
std::array<float, 3> b;
for (int i = 0; i < 3; i++) {
const CPDF_MeshVertex& vertex1 = triangle[i];
const CPDF_MeshVertex& vertex2 = triangle[(i + 1) % 3];
const CFX_PointF& position1 = vertex1.position;
const CFX_PointF& position2 = vertex2.position;
bool bIntersect =
GetScanlineIntersect(y, position1, position2, &inter_x[nIntersects]);
if (!bIntersect)
continue;
float y_dist = (y - position1.y) / (position2.y - position1.y);
r[nIntersects] =
vertex1.rgb.red + ((vertex2.rgb.red - vertex1.rgb.red) * y_dist);
g[nIntersects] = vertex1.rgb.green +
((vertex2.rgb.green - vertex1.rgb.green) * y_dist);
b[nIntersects] =
vertex1.rgb.blue + ((vertex2.rgb.blue - vertex1.rgb.blue) * y_dist);
nIntersects++;
}
if (nIntersects != 2)
continue;
int min_x;
int max_x;
int start_index;
int end_index;
if (inter_x[0] < inter_x[1]) {
min_x = static_cast<int>(floorf(inter_x[0]));
max_x = static_cast<int>(ceilf(inter_x[1]));
start_index = 0;
end_index = 1;
} else {
min_x = static_cast<int>(floorf(inter_x[1]));
max_x = static_cast<int>(ceilf(inter_x[0]));
start_index = 1;
end_index = 0;
}
int start_x = std::clamp(min_x, 0, pBitmap->GetWidth());
int end_x = std::clamp(max_x, 0, pBitmap->GetWidth());
const int range_x = pdfium::ClampSub(max_x, min_x);
float r_unit = (r[end_index] - r[start_index]) / range_x;
float g_unit = (g[end_index] - g[start_index]) / range_x;
float b_unit = (b[end_index] - b[start_index]) / range_x;
const int diff_x = pdfium::ClampSub(start_x, min_x);
float r_result = r[start_index] + diff_x * r_unit;
float g_result = g[start_index] + diff_x * g_unit;
float b_result = b[start_index] + diff_x * b_unit;
pdfium::span<uint8_t> dib_span =
pBitmap->GetWritableScanline(y).subspan(start_x * 4);
for (int x = start_x; x < end_x; x++) {
r_result += r_unit;
g_result += g_unit;
b_result += b_unit;
UNSAFE_TODO(FXARGB_SetDIB(
dib_span.data(), ArgbEncode(alpha, static_cast<int>(r_result * 255),
static_cast<int>(g_result * 255),
static_cast<int>(b_result * 255))));
dib_span = dib_span.subspan(4);
}
}
}
void DrawFreeGouraudShading(
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
RetainPtr<const CPDF_Stream> pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
RetainPtr<CPDF_ColorSpace> pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb);
CPDF_MeshStream stream(kFreeFormGouraudTriangleMeshShading, funcs,
std::move(pShadingStream), std::move(pCS));
if (!stream.Load())
return;
std::array<CPDF_MeshVertex, 3> triangle;
while (!stream.IsEOF()) {
CPDF_MeshVertex vertex;
uint32_t flag;
if (!stream.ReadVertex(mtObject2Bitmap, &vertex, &flag))
return;
if (flag == 0) {
triangle[0] = vertex;
for (int i = 1; i < 3; ++i) {
uint32_t dummy_flag;
if (!stream.ReadVertex(mtObject2Bitmap, &triangle[i], &dummy_flag))
return;
}
} else {
if (flag == 1)
triangle[0] = triangle[1];
triangle[1] = triangle[2];
triangle[2] = vertex;
}
DrawGouraud(pBitmap, alpha, triangle);
}
}
void DrawLatticeGouraudShading(
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
RetainPtr<const CPDF_Stream> pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
RetainPtr<CPDF_ColorSpace> pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb);
int row_verts = pShadingStream->GetDict()->GetIntegerFor("VerticesPerRow");
if (row_verts < 2)
return;
CPDF_MeshStream stream(kLatticeFormGouraudTriangleMeshShading, funcs,
std::move(pShadingStream), std::move(pCS));
if (!stream.Load())
return;
std::array<std::vector<CPDF_MeshVertex>, 2> vertices;
vertices[0] = stream.ReadVertexRow(mtObject2Bitmap, row_verts);
if (vertices[0].empty())
return;
int last_index = 0;
while (true) {
vertices[1 - last_index] = stream.ReadVertexRow(mtObject2Bitmap, row_verts);
if (vertices[1 - last_index].empty())
return;
CPDF_MeshVertex triangle[3];
for (int i = 1; i < row_verts; ++i) {
triangle[0] = vertices[last_index][i];
triangle[1] = vertices[1 - last_index][i - 1];
triangle[2] = vertices[last_index][i - 1];
DrawGouraud(pBitmap, alpha, triangle);
triangle[2] = vertices[1 - last_index][i];
DrawGouraud(pBitmap, alpha, triangle);
}
last_index = 1 - last_index;
}
}
struct CoonBezierCoeff {
void InitFromPoints(float p0, float p1, float p2, float p3) {
a = -p0 + 3 * p1 - 3 * p2 + p3;
b = 3 * p0 - 6 * p1 + 3 * p2;
c = -3 * p0 + 3 * p1;
d = p0;
}
void InitFromBezierInterpolation(const CoonBezierCoeff& C1,
const CoonBezierCoeff& C2,
const CoonBezierCoeff& D1,
const CoonBezierCoeff& D2) {
a = (D1.a + D2.a) / 2;
b = (D1.b + D2.b) / 2;
c = (D1.c + D2.c) / 2 - (C1.a / 8 + C1.b / 4 + C1.c / 2) +
(C2.a / 8 + C2.b / 4) + (-C1.d + D2.d) / 2 - (C2.a + C2.b) / 2;
d = C1.a / 8 + C1.b / 4 + C1.c / 2 + C1.d;
}
CoonBezierCoeff first_half() const {
CoonBezierCoeff result;
result.a = a / 8;
result.b = b / 4;
result.c = c / 2;
result.d = d;
return result;
}
CoonBezierCoeff second_half() const {
CoonBezierCoeff result;
result.a = a / 8;
result.b = 3 * a / 8 + b / 4;
result.c = 3 * a / 8 + b / 2 + c / 2;
result.d = a / 8 + b / 4 + c / 2 + d;
return result;
}
void GetPoints(pdfium::span<float, 4> p) const {
p[0] = d;
p[1] = c / 3 + p[0];
p[2] = b / 3 - p[0] + 2 * p[1];
p[3] = a + p[0] - 3 * p[1] + 3 * p[2];
}
float Distance() const {
float dis = a + b + c;
return dis < 0 ? -dis : dis;
}
float a;
float b;
float c;
float d;
};
struct CoonBezier {
void InitFromPoints(float x0,
float y0,
float x1,
float y1,
float x2,
float y2,
float x3,
float y3) {
x.InitFromPoints(x0, x1, x2, x3);
y.InitFromPoints(y0, y1, y2, y3);
}
void InitFromBezierInterpolation(const CoonBezier& C1,
const CoonBezier& C2,
const CoonBezier& D1,
const CoonBezier& D2) {
x.InitFromBezierInterpolation(C1.x, C2.x, D1.x, D2.x);
y.InitFromBezierInterpolation(C1.y, C2.y, D1.y, D2.y);
}
CoonBezier first_half() const {
CoonBezier result;
result.x = x.first_half();
result.y = y.first_half();
return result;
}
CoonBezier second_half() const {
CoonBezier result;
result.x = x.second_half();
result.y = y.second_half();
return result;
}
void GetPoints(pdfium::span<CFX_Path::Point> path_points) const {
constexpr size_t kPointsCount = 4;
std::array<float, kPointsCount> points_x;
std::array<float, kPointsCount> points_y;
x.GetPoints(points_x);
y.GetPoints(points_y);
for (size_t i = 0; i < kPointsCount; ++i)
path_points[i].m_Point = {points_x[i], points_y[i]};
}
void GetPointsReverse(pdfium::span<CFX_Path::Point> path_points) const {
constexpr size_t kPointsCount = 4;
std::array<float, kPointsCount> points_x;
std::array<float, kPointsCount> points_y;
x.GetPoints(points_x);
y.GetPoints(points_y);
for (size_t i = 0; i < kPointsCount; ++i) {
size_t reverse_index = kPointsCount - i - 1;
path_points[i].m_Point = {points_x[reverse_index],
points_y[reverse_index]};
}
}
float Distance() const { return x.Distance() + y.Distance(); }
CoonBezierCoeff x;
CoonBezierCoeff y;
};
int Interpolate(int p1, int p2, int delta1, int delta2, bool* overflow) {
FX_SAFE_INT32 p = p2;
p -= p1;
p *= delta1;
p /= delta2;
p += p1;
if (!p.IsValid())
*overflow = true;
return p.ValueOrDefault(0);
}
int BiInterpolImpl(int c0,
int c1,
int c2,
int c3,
int x,
int y,
int x_scale,
int y_scale,
bool* overflow) {
int x1 = Interpolate(c0, c3, x, x_scale, overflow);
int x2 = Interpolate(c1, c2, x, x_scale, overflow);
return Interpolate(x1, x2, y, y_scale, overflow);
}
struct CoonColor {
CoonColor() = default;
// Returns true if successful, false if overflow detected.
bool BiInterpol(pdfium::span<CoonColor, 4> colors,
int x,
int y,
int x_scale,
int y_scale) {
bool overflow = false;
for (int i = 0; i < 3; i++) {
comp[i] = BiInterpolImpl(colors[0].comp[i], colors[1].comp[i],
colors[2].comp[i], colors[3].comp[i], x, y,
x_scale, y_scale, &overflow);
}
return !overflow;
}
int Distance(const CoonColor& o) const {
return std::max({abs(comp[0] - o.comp[0]), abs(comp[1] - o.comp[1]),
abs(comp[2] - o.comp[2])});
}
std::array<int, 3> comp = {};
};
struct PatchDrawer {
static constexpr int kCoonColorThreshold = 4;
void Draw(int x_scale,
int y_scale,
int left,
int bottom,
CoonBezier C1,
CoonBezier C2,
CoonBezier D1,
CoonBezier D2) {
bool bSmall = C1.Distance() < 2 && C2.Distance() < 2 && D1.Distance() < 2 &&
D2.Distance() < 2;
CoonColor div_colors[4];
int d_bottom = 0;
int d_left = 0;
int d_top = 0;
int d_right = 0;
if (!div_colors[0].BiInterpol(patch_colors, left, bottom, x_scale,
y_scale)) {
return;
}
if (!bSmall) {
if (!div_colors[1].BiInterpol(patch_colors, left, bottom + 1, x_scale,
y_scale)) {
return;
}
if (!div_colors[2].BiInterpol(patch_colors, left + 1, bottom + 1, x_scale,
y_scale)) {
return;
}
if (!div_colors[3].BiInterpol(patch_colors, left + 1, bottom, x_scale,
y_scale)) {
return;
}
d_bottom = div_colors[3].Distance(div_colors[0]);
d_left = div_colors[1].Distance(div_colors[0]);
d_top = div_colors[1].Distance(div_colors[2]);
d_right = div_colors[2].Distance(div_colors[3]);
}
if (bSmall ||
(d_bottom < kCoonColorThreshold && d_left < kCoonColorThreshold &&
d_top < kCoonColorThreshold && d_right < kCoonColorThreshold)) {
pdfium::span<CFX_Path::Point> points = path.GetPoints();
C1.GetPoints(points.subspan(0, 4));
D2.GetPoints(points.subspan(3, 4));
C2.GetPointsReverse(points.subspan(6, 4));
D1.GetPointsReverse(points.subspan(9, 4));
CFX_FillRenderOptions fill_options(
CFX_FillRenderOptions::WindingOptions());
fill_options.full_cover = true;
if (bNoPathSmooth) {
fill_options.aliased_path = true;
}
pDevice->DrawPath(
path, nullptr, nullptr,
ArgbEncode(alpha, div_colors[0].comp[0], div_colors[0].comp[1],
div_colors[0].comp[2]),
0, fill_options);
} else {
if (d_bottom < kCoonColorThreshold && d_top < kCoonColorThreshold) {
CoonBezier m1;
m1.InitFromBezierInterpolation(D1, D2, C1, C2);
y_scale *= 2;
bottom *= 2;
Draw(x_scale, y_scale, left, bottom, C1, m1, D1.first_half(),
D2.first_half());
Draw(x_scale, y_scale, left, bottom + 1, m1, C2, D1.second_half(),
D2.second_half());
} else if (d_left < kCoonColorThreshold &&
d_right < kCoonColorThreshold) {
CoonBezier m2;
m2.InitFromBezierInterpolation(C1, C2, D1, D2);
x_scale *= 2;
left *= 2;
Draw(x_scale, y_scale, left, bottom, C1.first_half(), C2.first_half(),
D1, m2);
Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(),
C2.second_half(), m2, D2);
} else {
CoonBezier m1;
CoonBezier m2;
m1.InitFromBezierInterpolation(D1, D2, C1, C2);
m2.InitFromBezierInterpolation(C1, C2, D1, D2);
CoonBezier m1f = m1.first_half();
CoonBezier m1s = m1.second_half();
CoonBezier m2f = m2.first_half();
CoonBezier m2s = m2.second_half();
x_scale *= 2;
y_scale *= 2;
left *= 2;
bottom *= 2;
Draw(x_scale, y_scale, left, bottom, C1.first_half(), m1f,
D1.first_half(), m2f);
Draw(x_scale, y_scale, left, bottom + 1, m1f, C2.first_half(),
D1.second_half(), m2s);
Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(), m1s, m2f,
D2.first_half());
Draw(x_scale, y_scale, left + 1, bottom + 1, m1s, C2.second_half(), m2s,
D2.second_half());
}
}
}
int max_delta;
CFX_Path path;
UnownedPtr<CFX_RenderDevice> pDevice;
bool bNoPathSmooth;
int alpha;
std::array<CoonColor, 4> patch_colors;
};
void DrawCoonPatchMeshes(
ShadingType type,
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
RetainPtr<const CPDF_Stream> pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
RetainPtr<CPDF_ColorSpace> pCS,
bool bNoPathSmooth,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kArgb);
DCHECK(type == kCoonsPatchMeshShading ||
type == kTensorProductPatchMeshShading);
CFX_DefaultRenderDevice device;
device.Attach(pBitmap);
CPDF_MeshStream stream(type, funcs, std::move(pShadingStream),
std::move(pCS));
if (!stream.Load())
return;
PatchDrawer patch;
patch.alpha = alpha;
patch.pDevice = &device;
patch.bNoPathSmooth = bNoPathSmooth;
for (int i = 0; i < 13; i++) {
patch.path.AppendPoint(CFX_PointF(), i == 0
? CFX_Path::Point::Type::kMove
: CFX_Path::Point::Type::kBezier);
}
std::array<CFX_PointF, 16> coords;
int point_count = type == kTensorProductPatchMeshShading ? 16 : 12;
while (!stream.IsEOF()) {
if (!stream.CanReadFlag())
break;
uint32_t flag = stream.ReadFlag();
int iStartPoint = 0;
int iStartColor = 0;
int i = 0;
if (flag) {
iStartPoint = 4;
iStartColor = 2;
std::array<CFX_PointF, 4> tempCoords;
for (i = 0; i < 4; i++) {
tempCoords[i] = coords[(flag * 3 + i) % 12];
}
fxcrt::Copy(tempCoords, coords);
std::array<CoonColor, 2> tempColors = {{
patch.patch_colors[flag],
patch.patch_colors[(flag + 1) % 4],
}};
fxcrt::Copy(tempColors, patch.patch_colors);
}
for (i = iStartPoint; i < point_count; i++) {
if (!stream.CanReadCoords())
break;
coords[i] = mtObject2Bitmap.Transform(stream.ReadCoords());
}
for (i = iStartColor; i < 4; i++) {
if (!stream.CanReadColor())
break;
FX_RGB_STRUCT<float> rgb = stream.ReadColor();
patch.patch_colors[i].comp[0] = static_cast<int32_t>(rgb.red * 255);
patch.patch_colors[i].comp[1] = static_cast<int32_t>(rgb.green * 255);
patch.patch_colors[i].comp[2] = static_cast<int32_t>(rgb.blue * 255);
}
CFX_FloatRect bbox =
CFX_FloatRect::GetBBox(pdfium::make_span(coords).first(point_count));
if (bbox.right <= 0 || bbox.left >= (float)pBitmap->GetWidth() ||
bbox.top <= 0 || bbox.bottom >= (float)pBitmap->GetHeight()) {
continue;
}
CoonBezier C1;
CoonBezier C2;
CoonBezier D1;
CoonBezier D2;
C1.InitFromPoints(coords[0].x, coords[0].y, coords[11].x, coords[11].y,
coords[10].x, coords[10].y, coords[9].x, coords[9].y);
C2.InitFromPoints(coords[3].x, coords[3].y, coords[4].x, coords[4].y,
coords[5].x, coords[5].y, coords[6].x, coords[6].y);
D1.InitFromPoints(coords[0].x, coords[0].y, coords[1].x, coords[1].y,
coords[2].x, coords[2].y, coords[3].x, coords[3].y);
D2.InitFromPoints(coords[9].x, coords[9].y, coords[8].x, coords[8].y,
coords[7].x, coords[7].y, coords[6].x, coords[6].y);
patch.Draw(1, 1, 0, 0, C1, C2, D1, D2);
}
}
} // namespace
// static
void CPDF_RenderShading::Draw(CFX_RenderDevice* pDevice,
CPDF_RenderContext* pContext,
const CPDF_PageObject* pCurObj,
const CPDF_ShadingPattern* pPattern,
const CFX_Matrix& mtMatrix,
const FX_RECT& clip_rect,
int alpha,
const CPDF_RenderOptions& options) {
RetainPtr<CPDF_ColorSpace> pColorSpace = pPattern->GetCS();
if (!pColorSpace)
return;
FX_ARGB background = 0;
RetainPtr<const CPDF_Dictionary> pDict =
pPattern->GetShadingObject()->GetDict();
if (!pPattern->IsShadingObject() && pDict->KeyExist("Background")) {
RetainPtr<const CPDF_Array> pBackColor = pDict->GetArrayFor("Background");
if (pBackColor && pBackColor->size() >= pColorSpace->ComponentCount()) {
std::vector<float> comps = ReadArrayElementsToVector(
pBackColor.Get(), pColorSpace->ComponentCount());
auto rgb = pColorSpace->GetRGBOrZerosOnError(comps);
background = ArgbEncode(255, static_cast<int32_t>(rgb.red * 255),
static_cast<int32_t>(rgb.green * 255),
static_cast<int32_t>(rgb.blue * 255));
}
}
FX_RECT clip_rect_bbox = clip_rect;
if (pDict->KeyExist("BBox")) {
clip_rect_bbox.Intersect(
mtMatrix.TransformRect(pDict->GetRectFor("BBox")).GetOuterRect());
}
#if defined(PDF_USE_SKIA)
if ((pDevice->GetDeviceCaps(FXDC_RENDER_CAPS) & FXRC_SHADING) &&
pDevice->DrawShading(*pPattern, mtMatrix, clip_rect_bbox, alpha)) {
return;
}
#endif // defined(PDF_USE_SKIA)
CPDF_DeviceBuffer buffer(pContext, pDevice, clip_rect_bbox, pCurObj, 150);
RetainPtr<CFX_DIBitmap> pBitmap = buffer.Initialize();
if (!pBitmap) {
return;
}
if (background != 0) {
pBitmap->Clear(background);
}
const CFX_Matrix final_matrix = mtMatrix * buffer.GetMatrix();
const auto& funcs = pPattern->GetFuncs();
switch (pPattern->GetShadingType()) {
case kInvalidShading:
case kMaxShading:
return;
case kFunctionBasedShading:
DrawFuncShading(pBitmap, final_matrix, pDict.Get(), funcs, pColorSpace,
alpha);
break;
case kAxialShading:
DrawAxialShading(pBitmap, final_matrix, pDict.Get(), funcs, pColorSpace,
alpha);
break;
case kRadialShading:
DrawRadialShading(pBitmap, final_matrix, pDict.Get(), funcs, pColorSpace,
alpha);
break;
case kFreeFormGouraudTriangleMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
RetainPtr<const CPDF_Stream> pStream =
ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawFreeGouraudShading(pBitmap, final_matrix, std::move(pStream), funcs,
pColorSpace, alpha);
}
break;
}
case kLatticeFormGouraudTriangleMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
RetainPtr<const CPDF_Stream> pStream =
ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawLatticeGouraudShading(pBitmap, final_matrix, std::move(pStream),
funcs, pColorSpace, alpha);
}
break;
}
case kCoonsPatchMeshShading:
case kTensorProductPatchMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
RetainPtr<const CPDF_Stream> pStream =
ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawCoonPatchMeshes(pPattern->GetShadingType(), pBitmap, final_matrix,
std::move(pStream), funcs, pColorSpace,
options.GetOptions().bNoPathSmooth, alpha);
}
break;
}
}
if (options.ColorModeIs(CPDF_RenderOptions::kAlpha)) {
pBitmap->SetRedFromAlpha();
} else if (options.ColorModeIs(CPDF_RenderOptions::kGray)) {
pBitmap->ConvertColorScale(0, 0xffffff);
}
buffer.OutputToDevice();
}