| // Copyright 2019 The PDFium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "core/fpdfapi/edit/cpdf_contentstream_write_utils.h" |
| |
| #include <cassert> |
| #include <cfloat> |
| #include <climits> |
| #include <cmath> |
| #include <ostream> |
| |
| #include "core/fxcrt/compiler_specific.h" |
| #include "core/fxcrt/span.h" |
| |
| namespace { |
| |
| constexpr unsigned kMaximumSkFloatToDecimalLength = 49; |
| |
| // Return pow(10.0, e), optimized for common cases. |
| double pow10(int e) { |
| switch (e) { |
| case 0: |
| return 1.0; // common cases |
| case 1: |
| return 10.0; |
| case 2: |
| return 100.0; |
| case 3: |
| return 1e+03; |
| case 4: |
| return 1e+04; |
| case 5: |
| return 1e+05; |
| case 6: |
| return 1e+06; |
| case 7: |
| return 1e+07; |
| case 8: |
| return 1e+08; |
| case 9: |
| return 1e+09; |
| case 10: |
| return 1e+10; |
| case 11: |
| return 1e+11; |
| case 12: |
| return 1e+12; |
| case 13: |
| return 1e+13; |
| case 14: |
| return 1e+14; |
| case 15: |
| return 1e+15; |
| default: |
| if (e > 15) { |
| double value = 1e+15; |
| while (e-- > 15) { |
| value *= 10.0; |
| } |
| return value; |
| } else { |
| assert(e < 0); |
| double value = 1.0; |
| while (e++ < 0) { |
| value /= 10.0; |
| } |
| return value; |
| } |
| } |
| } |
| |
| // SkFloatToDecimal |
| // |
| // Convert a float into a decimal string. |
| // |
| // The resulting string will be in the form `[-]?([0-9]*\.)?[0-9]+` (It does |
| // not use scientific notation.) and `sscanf(output, "%f", &x)` will return |
| // the original value if the value is finite. This function accepts all |
| // possible input values. |
| // |
| // INFINITY and -INFINITY are rounded to FLT_MAX and -FLT_MAX. |
| // |
| // NAN values are converted to 0. |
| // |
| // This function will always add a terminating '\0' to the output. |
| // |
| // @param value Any floating-point number |
| // @param output The buffer to write the string into. Must be non-null. |
| // |
| // @return strlen(output) |
| // |
| // Write a string into output, including a terminating '\0' (for |
| // unit testing). Return strlen(output) (for SkWStream::write) The |
| // resulting string will be in the form /[-]?([0-9]*.)?[0-9]+/ and |
| // sscanf(output, "%f", &x) will return the original value iff the |
| // value is finite. This function accepts all possible input values. |
| // |
| // Motivation: "PDF does not support [numbers] in exponential format |
| // (such as 6.02e23)." Otherwise, this function would rely on a |
| // sprintf-type function from the standard library. |
| unsigned SkFloatToDecimal( |
| float value, |
| pdfium::span<char, kMaximumSkFloatToDecimalLength> output) { |
| // The longest result is -FLT_MIN. |
| // We serialize it as "-.0000000000000000000000000000000000000117549435" |
| // which has 48 characters plus a terminating '\0'. |
| static_assert(kMaximumSkFloatToDecimalLength == 49, ""); |
| |
| // 3 = '-', '.', and '\0' characters. |
| // 9 = number of significant digits |
| // abs(FLT_MIN_10_EXP) = number of zeros in FLT_MIN |
| static_assert(kMaximumSkFloatToDecimalLength == 3 + 9 - FLT_MIN_10_EXP, ""); |
| |
| // section C.1 of the PDF 1.4 spec (http://goo.gl/0SCswJ) says that |
| // most PDF rasterizers will use fixed-point scalars that lack the |
| // dynamic range of floats. Even if this is the case, I want to |
| // serialize these (uncommon) very small and very large scalar |
| // values with enough precision to allow a floating-point |
| // rasterizer to read them in with perfect accuracy. |
| // Experimentally, rasterizers such as pdfium do seem to benefit |
| // from this. Rasterizers that rely on fixed-point scalars should |
| // gracefully ignore these values that they can not parse. |
| char* output_ptr = output.data(); |
| |
| // last(1) leaves space for '\0'. |
| const char* const end = output.last(1u).data(); |
| |
| // This function is written to accept any possible input value, |
| // including non-finite values such as INF and NAN. In that case, |
| // we ignore value-correctness and output a syntacticly-valid |
| // number. |
| if (value == INFINITY) { |
| value = FLT_MAX; // nearest finite float. |
| } |
| if (value == -INFINITY) { |
| value = -FLT_MAX; // nearest finite float. |
| } |
| UNSAFE_TODO({ |
| if (!std::isfinite(value) || value == 0.0f) { |
| // NAN is unsupported in PDF. Always output a valid number. |
| // Also catch zero here, as a special case. |
| *output_ptr++ = '0'; |
| *output_ptr = '\0'; |
| return static_cast<unsigned>(output_ptr - output.data()); |
| } |
| if (value < 0.0) { |
| *output_ptr++ = '-'; |
| value = -value; |
| } |
| assert(value >= 0.0f); |
| |
| int binaryExponent; |
| (void)std::frexp(value, &binaryExponent); |
| static const double kLog2 = 0.3010299956639812; // log10(2.0); |
| int decimalExponent = static_cast<int>(std::floor(kLog2 * binaryExponent)); |
| int decimalShift = decimalExponent - 8; |
| double power = pow10(-decimalShift); |
| assert(value * power <= (double)INT_MAX); |
| int d = static_cast<int>(value * power + 0.5); |
| // assert(value == (float)(d * pow(10.0, decimalShift))); |
| assert(d <= 999999999); |
| if (d > 167772159) { // floor(pow(10,1+log10(1<<24))) |
| // need one fewer decimal digits for 24-bit precision. |
| decimalShift = decimalExponent - 7; |
| // assert(power * 0.1 = pow10(-decimalShift)); |
| // recalculate to get rounding right. |
| d = static_cast<int>(value * (power * 0.1) + 0.5); |
| assert(d <= 99999999); |
| } |
| while (d % 10 == 0) { |
| d /= 10; |
| ++decimalShift; |
| } |
| assert(d > 0); |
| // assert(value == (float)(d * pow(10.0, decimalShift))); |
| unsigned char buffer[9]; // decimal value buffer. |
| int bufferIndex = 0; |
| do { |
| buffer[bufferIndex++] = d % 10; |
| d /= 10; |
| } while (d != 0); |
| assert(bufferIndex <= (int)sizeof(buffer) && bufferIndex > 0); |
| if (decimalShift >= 0) { |
| do { |
| --bufferIndex; |
| *output_ptr++ = '0' + buffer[bufferIndex]; |
| } while (bufferIndex); |
| for (int i = 0; i < decimalShift; ++i) { |
| *output_ptr++ = '0'; |
| } |
| } else { |
| int placesBeforeDecimal = bufferIndex + decimalShift; |
| if (placesBeforeDecimal > 0) { |
| while (placesBeforeDecimal-- > 0) { |
| --bufferIndex; |
| *output_ptr++ = '0' + buffer[bufferIndex]; |
| } |
| *output_ptr++ = '.'; |
| } else { |
| *output_ptr++ = '.'; |
| int placesAfterDecimal = -placesBeforeDecimal; |
| while (placesAfterDecimal-- > 0) { |
| *output_ptr++ = '0'; |
| } |
| } |
| while (bufferIndex > 0) { |
| --bufferIndex; |
| *output_ptr++ = '0' + buffer[bufferIndex]; |
| if (output_ptr == end) { |
| break; // denormalized: don't need extra precision. |
| // Note: denormalized numbers will not have the same number |
| // of significantDigits, but do not need them to round-trip. |
| } |
| } |
| } |
| assert(output_ptr <= end); |
| *output_ptr = '\0'; |
| return static_cast<unsigned>(output_ptr - output.data()); |
| }); |
| } |
| |
| } // namespace |
| |
| std::ostream& WriteFloat(std::ostream& stream, float value) { |
| char buffer[kMaximumSkFloatToDecimalLength]; |
| unsigned size = SkFloatToDecimal(value, buffer); |
| stream.write(buffer, size); |
| return stream; |
| } |
| |
| std::ostream& WriteMatrix(std::ostream& stream, const CFX_Matrix& matrix) { |
| WriteFloat(stream, matrix.a) << " "; |
| WriteFloat(stream, matrix.b) << " "; |
| WriteFloat(stream, matrix.c) << " "; |
| WriteFloat(stream, matrix.d) << " "; |
| WriteFloat(stream, matrix.e) << " "; |
| WriteFloat(stream, matrix.f); |
| return stream; |
| } |
| |
| std::ostream& WritePoint(std::ostream& stream, const CFX_PointF& point) { |
| WriteFloat(stream, point.x) << " "; |
| WriteFloat(stream, point.y); |
| return stream; |
| } |
| |
| std::ostream& WriteRect(std::ostream& stream, const CFX_FloatRect& rect) { |
| WriteFloat(stream, rect.left) << " "; |
| WriteFloat(stream, rect.bottom) << " "; |
| WriteFloat(stream, rect.Width()) << " "; |
| WriteFloat(stream, rect.Height()); |
| return stream; |
| } |