blob: 76df947a933000954090cd6922d0d8ad23d68c75 [file] [log] [blame]
// Copyright 2016 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#ifndef CORE_FXCRT_STRING_VIEW_TEMPLATE_H_
#define CORE_FXCRT_STRING_VIEW_TEMPLATE_H_
#include <ctype.h>
#include <algorithm>
#include <iterator>
#include <optional>
#include <string>
#include <type_traits>
#include "core/fxcrt/compiler_specific.h"
#include "core/fxcrt/fx_memcpy_wrappers.h"
#include "core/fxcrt/fx_system.h"
#include "core/fxcrt/span.h"
#include "core/fxcrt/span_util.h"
namespace fxcrt {
// An immutable string with caller-provided storage which must outlive the
// string itself. These are not necessarily nul-terminated, so that substring
// extraction (via the Substr(), First(), and Last() methods) is copy-free.
//
// String view arguments should be passed by value, since they are small,
// rather than const-ref, even if they are not modified.
//
// Front() and Back() tolerate empty strings and must return NUL in those
// cases. Substr(), First(), and Last() tolerate out-of-range indices and
// must return an empty string view in those cases. The aim here is allowing
// callers to avoid range-checking first.
template <typename T>
class StringViewTemplate {
public:
using CharType = T;
using UnsignedType = typename std::make_unsigned<CharType>::type;
using const_iterator = const CharType*;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
constexpr StringViewTemplate() noexcept = default;
constexpr StringViewTemplate(const StringViewTemplate& src) noexcept =
default;
// Deliberately implicit to avoid calling on every string literal.
// NOLINTNEXTLINE(runtime/explicit)
StringViewTemplate(const CharType* ptr) noexcept
// SAFETY: from length() function.
: m_Span(UNSAFE_BUFFERS(pdfium::make_span(
reinterpret_cast<const UnsignedType*>(ptr),
ptr ? std::char_traits<CharType>::length(ptr) : 0))) {}
UNSAFE_BUFFER_USAGE
constexpr StringViewTemplate(const CharType* ptr, size_t size) noexcept
// SAFETY: propagated to caller via UNSAFE_BUFFER_USAGE.
: m_Span(UNSAFE_BUFFERS(
pdfium::make_span(reinterpret_cast<const UnsignedType*>(ptr),
size))) {}
template <typename E = typename std::enable_if<
!std::is_same<UnsignedType, CharType>::value>::type>
UNSAFE_BUFFER_USAGE constexpr StringViewTemplate(const UnsignedType* ptr,
size_t size) noexcept
// SAFETY: propagated to caller via UNSAFE_BUFFER_USAGE.
: m_Span(UNSAFE_BUFFERS(pdfium::make_span(ptr, size))) {}
explicit constexpr StringViewTemplate(
const pdfium::span<const CharType>& other) noexcept {
if (!other.empty()) {
m_Span = reinterpret_span<const UnsignedType>(other);
}
}
template <typename E = typename std::enable_if<
!std::is_same<UnsignedType, CharType>::value>::type>
constexpr StringViewTemplate(
const pdfium::span<const UnsignedType>& other) noexcept {
if (!other.empty()) {
m_Span = other;
}
}
// Deliberately implicit to avoid calling on every char literal.
// |ch| must be an lvalue that outlives the StringViewTemplate.
// NOLINTNEXTLINE(runtime/explicit)
constexpr StringViewTemplate(const CharType& ch) noexcept
: m_Span(
reinterpret_span<const UnsignedType>(pdfium::span_from_ref(ch))) {}
StringViewTemplate& operator=(const CharType* src) {
// SAFETY: caller ensures `src` is nul-terminated so `length()` is correct.
m_Span = UNSAFE_BUFFERS(
pdfium::make_span(reinterpret_cast<const UnsignedType*>(src),
src ? std::char_traits<CharType>::length(src) : 0));
return *this;
}
StringViewTemplate& operator=(const StringViewTemplate& src) {
m_Span = src.m_Span;
return *this;
}
const_iterator begin() const {
return reinterpret_cast<const_iterator>(m_Span.begin());
}
const_iterator end() const {
return reinterpret_cast<const_iterator>(m_Span.end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
bool operator==(const StringViewTemplate& other) const {
return std::equal(m_Span.begin(), m_Span.end(), other.m_Span.begin(),
other.m_Span.end());
}
bool operator==(const CharType* ptr) const {
StringViewTemplate other(ptr);
return *this == other;
}
bool operator!=(const CharType* ptr) const { return !(*this == ptr); }
bool operator!=(const StringViewTemplate& other) const {
return !(*this == other);
}
bool IsASCII() const {
for (auto c : *this) {
if (c <= 0 || c > 127) // Questionable signedness of |c|.
return false;
}
return true;
}
bool EqualsASCII(const StringViewTemplate<char>& that) const {
size_t length = GetLength();
if (length != that.GetLength())
return false;
for (size_t i = 0; i < length; ++i) {
auto c = (*this)[i];
if (c <= 0 || c > 127 || c != that[i]) // Questionable signedness of |c|.
return false;
}
return true;
}
bool EqualsASCIINoCase(const StringViewTemplate<char>& that) const {
size_t length = GetLength();
if (length != that.GetLength())
return false;
for (size_t i = 0; i < length; ++i) {
auto c = (*this)[i];
if (c <= 0 || c > 127 || tolower(c) != tolower(that[i]))
return false;
}
return true;
}
uint32_t GetID() const {
if (m_Span.empty())
return 0;
uint32_t strid = 0;
size_t size = std::min(static_cast<size_t>(4), m_Span.size());
for (size_t i = 0; i < size; i++)
strid = strid * 256 + m_Span[i];
return strid << ((4 - size) * 8);
}
pdfium::span<const UnsignedType> unsigned_span() const { return m_Span; }
pdfium::span<const CharType> span() const {
return reinterpret_span<const CharType>(m_Span);
}
const UnsignedType* unterminated_unsigned_str() const {
return m_Span.data();
}
const CharType* unterminated_c_str() const {
return reinterpret_cast<const CharType*>(m_Span.data());
}
size_t GetLength() const { return m_Span.size(); }
bool IsEmpty() const { return m_Span.empty(); }
bool IsValidIndex(size_t index) const { return index < m_Span.size(); }
bool IsValidLength(size_t length) const { return length <= m_Span.size(); }
// CHECK() if index is out of range (via span's operator[]).
const UnsignedType& operator[](const size_t index) const {
return m_Span[index];
}
// CHECK() if index is out of range (via span's operator[]).
CharType CharAt(const size_t index) const {
return static_cast<CharType>(m_Span[index]);
}
// Unlike std::string_view::front(), this is always safe and returns a
// NUL char when the string is empty.
UnsignedType Front() const { return !m_Span.empty() ? m_Span.front() : 0; }
// Unlike std::string_view::back(), this is always safe and returns a
// NUL char when the string is empty.
UnsignedType Back() const { return !m_Span.empty() ? m_Span.back() : 0; }
std::optional<size_t> Find(CharType ch) const {
const auto* found =
reinterpret_cast<const UnsignedType*>(std::char_traits<CharType>::find(
reinterpret_cast<const CharType*>(m_Span.data()), m_Span.size(),
ch));
return found ? std::optional<size_t>(found - m_Span.data()) : std::nullopt;
}
bool Contains(CharType ch) const { return Find(ch).has_value(); }
StringViewTemplate Substr(size_t offset) const {
// Unsigned underflow is well-defined and out-of-range is handled by
// Substr().
return Substr(offset, GetLength() - offset);
}
StringViewTemplate Substr(size_t first, size_t count) const {
if (!m_Span.data())
return StringViewTemplate();
if (!IsValidIndex(first))
return StringViewTemplate();
if (count == 0 || !IsValidLength(count))
return StringViewTemplate();
if (!IsValidIndex(first + count - 1))
return StringViewTemplate();
// SAFETY: performance-sensitive, checks above equivalent to subspan()'s.
return UNSAFE_BUFFERS(StringViewTemplate(m_Span.data() + first, count));
}
StringViewTemplate First(size_t count) const {
return Substr(0, count);
}
StringViewTemplate Last(size_t count) const {
// Unsigned underflow is well-defined and out-of-range is handled by
// Substr().
return Substr(GetLength() - count, count);
}
StringViewTemplate TrimmedRight(CharType ch) const {
if (IsEmpty())
return StringViewTemplate();
size_t pos = GetLength();
while (pos && CharAt(pos - 1) == ch)
pos--;
if (pos == 0)
return StringViewTemplate();
return StringViewTemplate(m_Span.data(), pos);
}
bool operator<(const StringViewTemplate& that) const {
const size_t common_size = std::min(m_Span.size(), that.m_Span.size());
int result =
common_size ? std::char_traits<CharType>::compare(
reinterpret_cast<const CharType*>(m_Span.data()),
reinterpret_cast<const CharType*>(that.m_Span.data()),
common_size)
: 0;
return result < 0 || (result == 0 && m_Span.size() < that.m_Span.size());
}
bool operator>(const StringViewTemplate& that) const {
const size_t common_size = std::min(m_Span.size(), that.m_Span.size());
int result =
common_size ? std::char_traits<CharType>::compare(
reinterpret_cast<const CharType*>(m_Span.data()),
reinterpret_cast<const CharType*>(that.m_Span.data()),
common_size)
: 0;
return result > 0 || (result == 0 && m_Span.size() > that.m_Span.size());
}
protected:
// This is not a raw_span<> because StringViewTemplates must be passed by
// value without introducing BackupRefPtr churn. Also, repeated re-assignment
// of substrings of a StringViewTemplate to itself must avoid the same issue.
pdfium::span<const UnsignedType> m_Span;
private:
void* operator new(size_t) throw() { return nullptr; }
};
template <typename T>
inline bool operator==(const T* lhs, const StringViewTemplate<T>& rhs) {
return rhs == lhs;
}
template <typename T>
inline bool operator!=(const T* lhs, const StringViewTemplate<T>& rhs) {
return rhs != lhs;
}
template <typename T>
inline bool operator<(const T* lhs, const StringViewTemplate<T>& rhs) {
return rhs > lhs;
}
extern template class StringViewTemplate<char>;
extern template class StringViewTemplate<wchar_t>;
using ByteStringView = StringViewTemplate<char>;
using WideStringView = StringViewTemplate<wchar_t>;
} // namespace fxcrt
using ByteStringView = fxcrt::ByteStringView;
using WideStringView = fxcrt::WideStringView;
#endif // CORE_FXCRT_STRING_VIEW_TEMPLATE_H_