blob: 7b2d47687d896cb21f267e3d23cc21426bb0b220 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fxge/agg/fx_agg_driver.h"
#include <math.h>
#include <algorithm>
#include <utility>
#include "build/build_config.h"
#include "core/fxge/cfx_cliprgn.h"
#include "core/fxge/cfx_defaultrenderdevice.h"
#include "core/fxge/cfx_graphstatedata.h"
#include "core/fxge/cfx_path.h"
#include "core/fxge/dib/cfx_dibitmap.h"
#include "core/fxge/dib/cfx_imagerenderer.h"
#include "core/fxge/dib/cfx_imagestretcher.h"
#include "third_party/base/check.h"
#include "third_party/base/check_op.h"
#include "third_party/base/cxx17_backports.h"
#include "third_party/base/notreached.h"
#include "third_party/base/span.h"
// Ignore fallthrough warnings in agg23 headers.
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
#endif
#include "third_party/agg23/agg_clip_liang_barsky.h"
#include "third_party/agg23/agg_conv_dash.h"
#include "third_party/agg23/agg_conv_stroke.h"
#include "third_party/agg23/agg_curves.h"
#include "third_party/agg23/agg_path_storage.h"
#include "third_party/agg23/agg_pixfmt_gray.h"
#include "third_party/agg23/agg_rasterizer_scanline_aa.h"
#include "third_party/agg23/agg_renderer_scanline.h"
#include "third_party/agg23/agg_scanline_u.h"
#if defined(__clang__)
#pragma GCC diagnostic pop
#endif
namespace pdfium {
namespace {
const float kMaxPos = 32000.0f;
CFX_PointF HardClip(const CFX_PointF& pos) {
return CFX_PointF(pdfium::clamp(pos.x, -kMaxPos, kMaxPos),
pdfium::clamp(pos.y, -kMaxPos, kMaxPos));
}
void RgbByteOrderCompositeRect(const RetainPtr<CFX_DIBitmap>& pBitmap,
int left,
int top,
int width,
int height,
FX_ARGB argb) {
int src_alpha = FXARGB_A(argb);
if (src_alpha == 0)
return;
FX_RECT rect(left, top, left + width, top + height);
rect.Intersect(0, 0, pBitmap->GetWidth(), pBitmap->GetHeight());
width = rect.Width();
int src_r = FXARGB_R(argb);
int src_g = FXARGB_G(argb);
int src_b = FXARGB_B(argb);
int Bpp = pBitmap->GetBPP() / 8;
int dib_argb = FXARGB_TOBGRORDERDIB(argb);
uint8_t* pBuffer = pBitmap->GetBuffer();
if (src_alpha == 255) {
for (int row = rect.top; row < rect.bottom; row++) {
uint8_t* dest_scan =
pBuffer + row * pBitmap->GetPitch() + rect.left * Bpp;
if (Bpp == 4) {
std::fill_n(reinterpret_cast<uint32_t*>(dest_scan), width, dib_argb);
} else {
for (int col = 0; col < width; col++) {
*dest_scan++ = src_r;
*dest_scan++ = src_g;
*dest_scan++ = src_b;
}
}
}
return;
}
bool bAlpha = pBitmap->IsAlphaFormat();
for (int row = rect.top; row < rect.bottom; row++) {
uint8_t* dest_scan = pBuffer + row * pBitmap->GetPitch() + rect.left * Bpp;
if (bAlpha) {
for (int col = 0; col < width; col++) {
uint8_t back_alpha = dest_scan[3];
if (back_alpha == 0) {
FXARGB_SETRGBORDERDIB(dest_scan, argb);
dest_scan += 4;
continue;
}
uint8_t dest_alpha =
back_alpha + src_alpha - back_alpha * src_alpha / 255;
dest_scan[3] = dest_alpha;
int alpha_ratio = src_alpha * 255 / dest_alpha;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, src_r, alpha_ratio);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, src_g, alpha_ratio);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, src_b, alpha_ratio);
dest_scan += 2;
}
continue;
}
for (int col = 0; col < width; col++) {
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, src_r, src_alpha);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, src_g, src_alpha);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, src_b, src_alpha);
dest_scan++;
if (Bpp == 4)
dest_scan++;
}
}
}
void RgbByteOrderTransferBitmap(const RetainPtr<CFX_DIBitmap>& pBitmap,
int dest_left,
int dest_top,
int width,
int height,
const RetainPtr<CFX_DIBBase>& pSrcBitmap,
int src_left,
int src_top) {
if (!pBitmap)
return;
if (!pBitmap->GetOverlapRect(dest_left, dest_top, width, height,
pSrcBitmap->GetWidth(), pSrcBitmap->GetHeight(),
src_left, src_top, nullptr)) {
return;
}
int Bpp = pBitmap->GetBPP() / 8;
FXDIB_Format dest_format = pBitmap->GetFormat();
FXDIB_Format src_format = pSrcBitmap->GetFormat();
int pitch = pBitmap->GetPitch();
uint8_t* buffer = pBitmap->GetBuffer();
if (dest_format == src_format) {
for (int row = 0; row < height; row++) {
uint8_t* dest_scan = buffer + (dest_top + row) * pitch + dest_left * Bpp;
const uint8_t* src_scan =
pSrcBitmap->GetScanline(src_top + row).subspan(src_left * Bpp).data();
if (Bpp == 4) {
for (int col = 0; col < width; col++) {
FXARGB_SETRGBORDERDIB(dest_scan,
*reinterpret_cast<const uint32_t*>(src_scan));
dest_scan += 4;
src_scan += 4;
}
continue;
}
for (int col = 0; col < width; col++) {
*dest_scan++ = src_scan[2];
*dest_scan++ = src_scan[1];
*dest_scan++ = src_scan[0];
src_scan += 3;
}
}
return;
}
uint8_t* dest_buf = buffer + dest_top * pitch + dest_left * Bpp;
if (dest_format == FXDIB_Format::kRgb) {
DCHECK_EQ(src_format, FXDIB_Format::kRgb32);
for (int row = 0; row < height; row++) {
uint8_t* dest_scan = dest_buf + row * pitch;
const uint8_t* src_scan =
pSrcBitmap->GetScanline(src_top + row).subspan(src_left * 4).data();
for (int col = 0; col < width; col++) {
*dest_scan++ = src_scan[2];
*dest_scan++ = src_scan[1];
*dest_scan++ = src_scan[0];
src_scan += 4;
}
}
return;
}
DCHECK(dest_format == FXDIB_Format::kArgb ||
dest_format == FXDIB_Format::kRgb32);
if (src_format == FXDIB_Format::kRgb) {
for (int row = 0; row < height; row++) {
uint8_t* dest_scan = dest_buf + row * pitch;
const uint8_t* src_scan =
pSrcBitmap->GetScanline(src_top + row).subspan(src_left * 3).data();
for (int col = 0; col < width; col++) {
FXARGB_SETDIB(dest_scan,
ArgbEncode(0xff, src_scan[0], src_scan[1], src_scan[2]));
dest_scan += 4;
src_scan += 3;
}
}
return;
}
if (src_format != FXDIB_Format::kRgb32)
return;
DCHECK_EQ(dest_format, FXDIB_Format::kArgb);
for (int row = 0; row < height; row++) {
uint8_t* dest_scan = dest_buf + row * pitch;
const uint8_t* src_scan =
pSrcBitmap->GetScanline(src_top + row).subspan(src_left * 4).data();
for (int col = 0; col < width; col++) {
FXARGB_SETDIB(dest_scan,
ArgbEncode(0xff, src_scan[0], src_scan[1], src_scan[2]));
src_scan += 4;
dest_scan += 4;
}
}
}
void RasterizeStroke(agg::rasterizer_scanline_aa* rasterizer,
agg::path_storage* path_data,
const CFX_Matrix* pObject2Device,
const CFX_GraphStateData* pGraphState,
float scale,
bool bTextMode) {
agg::line_cap_e cap;
switch (pGraphState->m_LineCap) {
case CFX_GraphStateData::LineCap::kRound:
cap = agg::round_cap;
break;
case CFX_GraphStateData::LineCap::kSquare:
cap = agg::square_cap;
break;
default:
cap = agg::butt_cap;
break;
}
agg::line_join_e join;
switch (pGraphState->m_LineJoin) {
case CFX_GraphStateData::LineJoin::kRound:
join = agg::round_join;
break;
case CFX_GraphStateData::LineJoin::kBevel:
join = agg::bevel_join;
break;
default:
join = agg::miter_join_revert;
break;
}
float width = pGraphState->m_LineWidth * scale;
float unit = 1.0f;
if (pObject2Device) {
unit =
1.0f / ((pObject2Device->GetXUnit() + pObject2Device->GetYUnit()) / 2);
}
width = std::max(width, unit);
if (!pGraphState->m_DashArray.empty()) {
using DashConverter = agg::conv_dash<agg::path_storage>;
DashConverter dash(*path_data);
for (size_t i = 0; i < (pGraphState->m_DashArray.size() + 1) / 2; i++) {
float on = pGraphState->m_DashArray[i * 2];
if (on <= 0.000001f)
on = 0.1f;
float off = i * 2 + 1 == pGraphState->m_DashArray.size()
? on
: pGraphState->m_DashArray[i * 2 + 1];
off = std::max(off, 0.0f);
dash.add_dash(on * scale, off * scale);
}
dash.dash_start(pGraphState->m_DashPhase * scale);
using DashStroke = agg::conv_stroke<DashConverter>;
DashStroke stroke(dash);
stroke.line_join(join);
stroke.line_cap(cap);
stroke.miter_limit(pGraphState->m_MiterLimit);
stroke.width(width);
rasterizer->add_path_transformed(stroke, pObject2Device);
return;
}
agg::conv_stroke<agg::path_storage> stroke(*path_data);
stroke.line_join(join);
stroke.line_cap(cap);
stroke.miter_limit(pGraphState->m_MiterLimit);
stroke.width(width);
rasterizer->add_path_transformed(stroke, pObject2Device);
}
agg::filling_rule_e GetAlternateOrWindingFillType(
const CFX_FillRenderOptions& fill_options) {
return fill_options.fill_type == CFX_FillRenderOptions::FillType::kWinding
? agg::fill_non_zero
: agg::fill_even_odd;
}
RetainPtr<CFX_DIBitmap> GetClipMaskFromRegion(const CFX_ClipRgn* r) {
return (r && r->GetType() == CFX_ClipRgn::kMaskF) ? r->GetMask() : nullptr;
}
FX_RECT GetClipBoxFromRegion(const RetainPtr<CFX_DIBitmap>& device,
const CFX_ClipRgn* region) {
if (region)
return region->GetBox();
return FX_RECT(0, 0, device->GetWidth(), device->GetHeight());
}
class CFX_Renderer {
public:
CFX_Renderer(const RetainPtr<CFX_DIBitmap>& pDevice,
const RetainPtr<CFX_DIBitmap>& pBackdropDevice,
const CFX_ClipRgn* pClipRgn,
uint32_t color,
bool bFullCover,
bool bRgbByteOrder);
// Needed for agg caller
void prepare(unsigned) {}
template <class Scanline>
void render(const Scanline& sl);
private:
using CompositeSpanFunc = void (CFX_Renderer::*)(uint8_t*,
int,
int,
int,
uint8_t*,
int,
int,
uint8_t*,
uint8_t*);
void CompositeSpan(uint8_t* dest_scan,
uint8_t* backdrop_scan,
int Bpp,
bool bDestAlpha,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan);
void CompositeSpan1bpp(uint8_t* dest_scan,
int Bpp,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan,
uint8_t* dest_extra_alpha_scan);
void CompositeSpanGray(uint8_t* dest_scan,
int Bpp,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan,
uint8_t* dest_extra_alpha_scan);
void CompositeSpanARGB(uint8_t* dest_scan,
int Bpp,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan,
uint8_t* dest_extra_alpha_scan);
void CompositeSpanRGB(uint8_t* dest_scan,
int Bpp,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan,
uint8_t* dest_extra_alpha_scan);
void CompositeSpan1bppHelper(uint8_t* dest_scan,
int col_start,
int col_end,
const uint8_t* cover_scan,
const uint8_t* clip_scan,
int span_left);
static CompositeSpanFunc GetCompositeSpanFunc(
const RetainPtr<CFX_DIBitmap>& device) {
if (device->GetBPP() == 1)
return &CFX_Renderer::CompositeSpan1bpp;
if (device->GetBPP() == 8)
return &CFX_Renderer::CompositeSpanGray;
if (device->GetFormat() == FXDIB_Format::kArgb)
return &CFX_Renderer::CompositeSpanARGB;
return &CFX_Renderer::CompositeSpanRGB;
}
inline int GetSrcAlpha(const uint8_t* clip_scan, int col) const {
return clip_scan ? m_Alpha * clip_scan[col] / 255 : m_Alpha;
}
inline int GetSourceAlpha(const uint8_t* cover_scan,
const uint8_t* clip_scan,
int col) const {
return clip_scan ? m_Alpha * cover_scan[col] * clip_scan[col] / 255 / 255
: m_Alpha * cover_scan[col] / 255;
}
inline int GetColStart(int span_left, int clip_left) const {
return span_left < clip_left ? clip_left - span_left : 0;
}
inline int GetColEnd(int span_left, int span_len, int clip_right) const {
return span_left + span_len < clip_right ? span_len
: clip_right - span_left;
}
int m_Alpha;
int m_Red;
int m_Green;
int m_Blue;
int m_Gray;
const uint32_t m_Color;
const bool m_bFullCover;
const bool m_bRgbByteOrder;
const FX_RECT m_ClipBox;
RetainPtr<CFX_DIBitmap> const m_pBackdropDevice;
RetainPtr<CFX_DIBitmap> const m_pClipMask;
RetainPtr<CFX_DIBitmap> const m_pDevice;
UnownedPtr<const CFX_ClipRgn> m_pClipRgn;
const CompositeSpanFunc m_CompositeSpanFunc;
};
void CFX_Renderer::CompositeSpan(uint8_t* dest_scan,
uint8_t* backdrop_scan,
int Bpp,
bool bDestAlpha,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan) {
int col_start = GetColStart(span_left, clip_left);
int col_end = GetColEnd(span_left, span_len, clip_right);
if (Bpp) {
dest_scan += col_start * Bpp;
backdrop_scan += col_start * Bpp;
} else {
dest_scan += col_start / 8;
backdrop_scan += col_start / 8;
}
if (m_bRgbByteOrder) {
if (Bpp == 4 && bDestAlpha) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = GetSrcAlpha(clip_scan, col);
uint8_t dest_alpha =
backdrop_scan[3] + src_alpha - backdrop_scan[3] * src_alpha / 255;
dest_scan[3] = dest_alpha;
int alpha_ratio = src_alpha * 255 / dest_alpha;
if (m_bFullCover) {
*dest_scan++ =
FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Red, alpha_ratio);
*dest_scan++ =
FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Green, alpha_ratio);
*dest_scan++ =
FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Blue, alpha_ratio);
dest_scan++;
backdrop_scan++;
} else {
int r = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Red, alpha_ratio);
int g = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Green, alpha_ratio);
int b = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Blue, alpha_ratio);
backdrop_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, r, cover_scan[col]);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, g, cover_scan[col]);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, b, cover_scan[col]);
dest_scan += 2;
}
}
return;
}
if (Bpp == 3 || Bpp == 4) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = GetSrcAlpha(clip_scan, col);
int r = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Red, src_alpha);
int g = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Green, src_alpha);
int b = FXDIB_ALPHA_MERGE(*backdrop_scan, m_Blue, src_alpha);
backdrop_scan += Bpp - 2;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, r, cover_scan[col]);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, g, cover_scan[col]);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, b, cover_scan[col]);
dest_scan += Bpp - 2;
}
}
return;
}
if (Bpp == 4 && bDestAlpha) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = GetSrcAlpha(clip_scan, col);
int src_alpha_covered = src_alpha * cover_scan[col] / 255;
if (src_alpha_covered == 0) {
dest_scan += 4;
continue;
}
if (cover_scan[col] == 255) {
dest_scan[3] = src_alpha_covered;
*dest_scan++ = m_Blue;
*dest_scan++ = m_Green;
*dest_scan = m_Red;
dest_scan += 2;
continue;
}
if (dest_scan[3] == 0) {
dest_scan[3] = src_alpha_covered;
*dest_scan++ = m_Blue;
*dest_scan++ = m_Green;
*dest_scan = m_Red;
dest_scan += 2;
continue;
}
uint8_t cover = cover_scan[col];
dest_scan[3] = FXDIB_ALPHA_MERGE(dest_scan[3], src_alpha, cover);
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Blue, cover);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Green, cover);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Red, cover);
dest_scan += 2;
}
return;
}
if (Bpp == 3 || Bpp == 4) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = GetSrcAlpha(clip_scan, col);
if (m_bFullCover) {
*dest_scan++ = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Blue, src_alpha);
*dest_scan++ = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Green, src_alpha);
*dest_scan = FXDIB_ALPHA_MERGE(*backdrop_scan, m_Red, src_alpha);
dest_scan += Bpp - 2;
backdrop_scan += Bpp - 2;
continue;
}
int b = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Blue, src_alpha);
int g = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Green, src_alpha);
int r = FXDIB_ALPHA_MERGE(*backdrop_scan, m_Red, src_alpha);
backdrop_scan += Bpp - 2;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, b, cover_scan[col]);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, g, cover_scan[col]);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, r, cover_scan[col]);
dest_scan += Bpp - 2;
}
return;
}
if (Bpp == 1) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = GetSrcAlpha(clip_scan, col);
if (m_bFullCover) {
*dest_scan = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Gray, src_alpha);
continue;
}
int gray = FXDIB_ALPHA_MERGE(*backdrop_scan++, m_Gray, src_alpha);
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, gray, cover_scan[col]);
dest_scan++;
}
return;
}
CompositeSpan1bppHelper(dest_scan, col_start, col_end, cover_scan, clip_scan,
span_left);
}
void CFX_Renderer::CompositeSpan1bpp(uint8_t* dest_scan,
int Bpp,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan,
uint8_t* dest_extra_alpha_scan) {
DCHECK(!m_bRgbByteOrder);
int col_start = GetColStart(span_left, clip_left);
int col_end = GetColEnd(span_left, span_len, clip_right);
dest_scan += col_start / 8;
CompositeSpan1bppHelper(dest_scan, col_start, col_end, cover_scan, clip_scan,
span_left);
}
void CFX_Renderer::CompositeSpanGray(uint8_t* dest_scan,
int Bpp,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan,
uint8_t* dest_extra_alpha_scan) {
DCHECK(!m_bRgbByteOrder);
int col_start = GetColStart(span_left, clip_left);
int col_end = GetColEnd(span_left, span_len, clip_right);
dest_scan += col_start;
if (dest_extra_alpha_scan) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = m_bFullCover ? GetSrcAlpha(clip_scan, col)
: GetSourceAlpha(cover_scan, clip_scan, col);
if (src_alpha) {
if (src_alpha == 255) {
*dest_scan = m_Gray;
*dest_extra_alpha_scan = m_Alpha;
} else {
uint8_t dest_alpha = (*dest_extra_alpha_scan) + src_alpha -
(*dest_extra_alpha_scan) * src_alpha / 255;
*dest_extra_alpha_scan++ = dest_alpha;
int alpha_ratio = src_alpha * 255 / dest_alpha;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Gray, alpha_ratio);
dest_scan++;
continue;
}
}
dest_extra_alpha_scan++;
dest_scan++;
}
return;
}
for (int col = col_start; col < col_end; col++) {
int src_alpha = GetSourceAlpha(cover_scan, clip_scan, col);
if (src_alpha) {
if (src_alpha == 255)
*dest_scan = m_Gray;
else
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Gray, src_alpha);
}
dest_scan++;
}
}
void CFX_Renderer::CompositeSpanARGB(uint8_t* dest_scan,
int Bpp,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan,
uint8_t* dest_extra_alpha_scan) {
int col_start = GetColStart(span_left, clip_left);
int col_end = GetColEnd(span_left, span_len, clip_right);
dest_scan += col_start * Bpp;
if (m_bRgbByteOrder) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = m_bFullCover ? GetSrcAlpha(clip_scan, col)
: GetSourceAlpha(cover_scan, clip_scan, col);
if (src_alpha) {
if (src_alpha == 255) {
*(reinterpret_cast<uint32_t*>(dest_scan)) = m_Color;
} else {
uint8_t dest_alpha =
dest_scan[3] + src_alpha - dest_scan[3] * src_alpha / 255;
dest_scan[3] = dest_alpha;
int alpha_ratio = src_alpha * 255 / dest_alpha;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Red, alpha_ratio);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Green, alpha_ratio);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Blue, alpha_ratio);
dest_scan += 2;
continue;
}
}
dest_scan += 4;
}
return;
}
for (int col = col_start; col < col_end; col++) {
int src_alpha = m_bFullCover ? GetSrcAlpha(clip_scan, col)
: GetSourceAlpha(cover_scan, clip_scan, col);
if (src_alpha) {
if (src_alpha == 255) {
*(reinterpret_cast<uint32_t*>(dest_scan)) = m_Color;
} else {
if (dest_scan[3] == 0) {
dest_scan[3] = src_alpha;
*dest_scan++ = m_Blue;
*dest_scan++ = m_Green;
*dest_scan = m_Red;
dest_scan += 2;
continue;
}
uint8_t dest_alpha =
dest_scan[3] + src_alpha - dest_scan[3] * src_alpha / 255;
dest_scan[3] = dest_alpha;
int alpha_ratio = src_alpha * 255 / dest_alpha;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Blue, alpha_ratio);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Green, alpha_ratio);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Red, alpha_ratio);
dest_scan += 2;
continue;
}
}
dest_scan += Bpp;
}
}
void CFX_Renderer::CompositeSpanRGB(uint8_t* dest_scan,
int Bpp,
int span_left,
int span_len,
uint8_t* cover_scan,
int clip_left,
int clip_right,
uint8_t* clip_scan,
uint8_t* dest_extra_alpha_scan) {
int col_start = GetColStart(span_left, clip_left);
int col_end = GetColEnd(span_left, span_len, clip_right);
dest_scan += col_start * Bpp;
if (m_bRgbByteOrder) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = GetSourceAlpha(cover_scan, clip_scan, col);
if (src_alpha) {
if (src_alpha == 255) {
if (Bpp == 4) {
*(uint32_t*)dest_scan = m_Color;
} else if (Bpp == 3) {
*dest_scan++ = m_Red;
*dest_scan++ = m_Green;
*dest_scan++ = m_Blue;
continue;
}
} else {
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Red, src_alpha);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Green, src_alpha);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Blue, src_alpha);
dest_scan += Bpp - 2;
continue;
}
}
dest_scan += Bpp;
}
return;
}
if (Bpp == 3 && dest_extra_alpha_scan) {
for (int col = col_start; col < col_end; col++) {
int src_alpha = m_bFullCover ? GetSrcAlpha(clip_scan, col)
: GetSourceAlpha(cover_scan, clip_scan, col);
if (src_alpha) {
if (src_alpha == 255) {
*dest_scan++ = static_cast<uint8_t>(m_Blue);
*dest_scan++ = static_cast<uint8_t>(m_Green);
*dest_scan++ = static_cast<uint8_t>(m_Red);
*dest_extra_alpha_scan++ = static_cast<uint8_t>(m_Alpha);
continue;
}
uint8_t dest_alpha = (*dest_extra_alpha_scan) + src_alpha -
(*dest_extra_alpha_scan) * src_alpha / 255;
*dest_extra_alpha_scan++ = dest_alpha;
int alpha_ratio = src_alpha * 255 / dest_alpha;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Blue, alpha_ratio);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Green, alpha_ratio);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Red, alpha_ratio);
dest_scan++;
continue;
}
dest_extra_alpha_scan++;
dest_scan += Bpp;
}
return;
}
for (int col = col_start; col < col_end; col++) {
int src_alpha = m_bFullCover ? GetSrcAlpha(clip_scan, col)
: GetSourceAlpha(cover_scan, clip_scan, col);
if (src_alpha) {
if (src_alpha == 255) {
if (Bpp == 4) {
*(uint32_t*)dest_scan = m_Color;
} else if (Bpp == 3) {
*dest_scan++ = m_Blue;
*dest_scan++ = m_Green;
*dest_scan++ = m_Red;
continue;
}
} else {
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Blue, src_alpha);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Green, src_alpha);
dest_scan++;
*dest_scan = FXDIB_ALPHA_MERGE(*dest_scan, m_Red, src_alpha);
dest_scan += Bpp - 2;
continue;
}
}
dest_scan += Bpp;
}
}
CFX_Renderer::CFX_Renderer(const RetainPtr<CFX_DIBitmap>& pDevice,
const RetainPtr<CFX_DIBitmap>& pBackdropDevice,
const CFX_ClipRgn* pClipRgn,
uint32_t color,
bool bFullCover,
bool bRgbByteOrder)
: m_Alpha(FXARGB_A(color)),
m_Color(bRgbByteOrder ? FXARGB_TOBGRORDERDIB(color) : color),
m_bFullCover(bFullCover),
m_bRgbByteOrder(bRgbByteOrder),
m_ClipBox(GetClipBoxFromRegion(pDevice, pClipRgn)),
m_pBackdropDevice(pBackdropDevice),
m_pClipMask(GetClipMaskFromRegion(pClipRgn)),
m_pDevice(pDevice),
m_pClipRgn(pClipRgn),
m_CompositeSpanFunc(GetCompositeSpanFunc(m_pDevice)) {
if (m_pDevice->GetBPP() == 8) {
DCHECK(!m_bRgbByteOrder);
if (m_pDevice->IsMaskFormat())
m_Gray = 255;
else
m_Gray = FXRGB2GRAY(FXARGB_R(color), FXARGB_G(color), FXARGB_B(color));
return;
}
std::tie(m_Alpha, m_Red, m_Green, m_Blue) = ArgbDecode(color);
}
template <class Scanline>
void CFX_Renderer::render(const Scanline& sl) {
int y = sl.y();
if (y < m_ClipBox.top || y >= m_ClipBox.bottom)
return;
uint8_t* dest_scan = m_pDevice->GetBuffer() + m_pDevice->GetPitch() * y;
uint8_t* dest_scan_extra_alpha = nullptr;
RetainPtr<CFX_DIBitmap> pAlphaMask = m_pDevice->GetAlphaMask();
if (pAlphaMask) {
dest_scan_extra_alpha =
pAlphaMask->GetBuffer() + pAlphaMask->GetPitch() * y;
}
uint8_t* backdrop_scan = nullptr;
if (m_pBackdropDevice) {
backdrop_scan =
m_pBackdropDevice->GetBuffer() + m_pBackdropDevice->GetPitch() * y;
}
int Bpp = m_pDevice->GetBPP() / 8;
bool bDestAlpha = m_pDevice->IsAlphaFormat() || m_pDevice->IsMaskFormat();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
while (1) {
if (span->len <= 0)
break;
int x = span->x;
uint8_t* dest_pos = nullptr;
uint8_t* dest_extra_alpha_pos = nullptr;
uint8_t* backdrop_pos = nullptr;
if (Bpp) {
backdrop_pos = backdrop_scan ? backdrop_scan + x * Bpp : nullptr;
dest_pos = dest_scan + x * Bpp;
dest_extra_alpha_pos =
dest_scan_extra_alpha ? dest_scan_extra_alpha + x : nullptr;
} else {
dest_pos = dest_scan + x / 8;
backdrop_pos = backdrop_scan ? backdrop_scan + x / 8 : nullptr;
}
uint8_t* clip_pos = nullptr;
if (m_pClipMask) {
clip_pos = m_pClipMask->GetBuffer() +
(y - m_ClipBox.top) * m_pClipMask->GetPitch() + x -
m_ClipBox.left;
}
if (backdrop_pos) {
CompositeSpan(dest_pos, backdrop_pos, Bpp, bDestAlpha, x, span->len,
span->covers, m_ClipBox.left, m_ClipBox.right, clip_pos);
} else {
(this->*m_CompositeSpanFunc)(dest_pos, Bpp, x, span->len, span->covers,
m_ClipBox.left, m_ClipBox.right, clip_pos,
dest_extra_alpha_pos);
}
if (--num_spans == 0)
break;
++span;
}
}
void CFX_Renderer::CompositeSpan1bppHelper(uint8_t* dest_scan,
int col_start,
int col_end,
const uint8_t* cover_scan,
const uint8_t* clip_scan,
int span_left) {
int index = 0;
if (m_pDevice->HasPalette()) {
for (int i = 0; i < 2; i++) {
if (m_pDevice->GetPaletteSpan()[i] == m_Color)
index = i;
}
} else {
index = (static_cast<uint8_t>(m_Color) == 0xff) ? 1 : 0;
}
uint8_t* dest_scan1 = dest_scan;
for (int col = col_start; col < col_end; col++) {
int src_alpha = GetSourceAlpha(cover_scan, clip_scan, col);
if (src_alpha) {
if (!index)
*dest_scan1 &= ~(1 << (7 - (col + span_left) % 8));
else
*dest_scan1 |= 1 << (7 - (col + span_left) % 8);
}
dest_scan1 = dest_scan + (span_left % 8 + col - col_start + 1) / 8;
}
}
template <class BaseRenderer>
class RendererScanLineAaOffset {
public:
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
RendererScanLineAaOffset(base_ren_type& ren, unsigned left, unsigned top)
: m_ren(&ren), m_left(left), m_top(top) {}
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
void prepare(unsigned) {}
template <class Scanline>
void render(const Scanline& sl) {
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
while (1) {
int x = span->x;
if (span->len > 0) {
m_ren->blend_solid_hspan(x - m_left, y - m_top, (unsigned)span->len,
m_color, span->covers);
} else {
m_ren->blend_hline(x - m_left, y - m_top, (unsigned)(x - span->len - 1),
m_color, *(span->covers));
}
if (--num_spans == 0)
break;
++span;
}
}
private:
base_ren_type* m_ren;
color_type m_color;
unsigned m_left;
unsigned m_top;
};
agg::path_storage BuildAggPath(const CFX_Path& path,
const CFX_Matrix* pObject2Device) {
agg::path_storage agg_path;
pdfium::span<const CFX_Path::Point> points = path.GetPoints();
for (size_t i = 0; i < points.size(); ++i) {
CFX_PointF pos = points[i].m_Point;
if (pObject2Device)
pos = pObject2Device->Transform(pos);
pos = HardClip(pos);
CFX_Path::Point::Type point_type = points[i].m_Type;
if (point_type == CFX_Path::Point::Type::kMove) {
agg_path.move_to(pos.x, pos.y);
} else if (point_type == CFX_Path::Point::Type::kLine) {
if (i > 0 && points[i - 1].IsTypeAndOpen(CFX_Path::Point::Type::kMove) &&
(i == points.size() - 1 ||
points[i + 1].IsTypeAndOpen(CFX_Path::Point::Type::kMove)) &&
points[i].m_Point == points[i - 1].m_Point) {
pos.x += 1;
}
agg_path.line_to(pos.x, pos.y);
} else if (point_type == CFX_Path::Point::Type::kBezier) {
if (i > 0 && i + 2 < points.size()) {
CFX_PointF pos0 = points[i - 1].m_Point;
CFX_PointF pos2 = points[i + 1].m_Point;
CFX_PointF pos3 = points[i + 2].m_Point;
if (pObject2Device) {
pos0 = pObject2Device->Transform(pos0);
pos2 = pObject2Device->Transform(pos2);
pos3 = pObject2Device->Transform(pos3);
}
pos0 = HardClip(pos0);
pos2 = HardClip(pos2);
pos3 = HardClip(pos3);
agg::curve4 curve(pos0.x, pos0.y, pos.x, pos.y, pos2.x, pos2.y, pos3.x,
pos3.y);
i += 2;
agg_path.add_path_curve(curve);
}
}
if (points[i].m_CloseFigure)
agg_path.end_poly();
}
return agg_path;
}
} // namespace
CFX_AggDeviceDriver::CFX_AggDeviceDriver(
const RetainPtr<CFX_DIBitmap>& pBitmap,
bool bRgbByteOrder,
const RetainPtr<CFX_DIBitmap>& pBackdropBitmap,
bool bGroupKnockout)
: m_pBitmap(pBitmap),
m_bRgbByteOrder(bRgbByteOrder),
m_bGroupKnockout(bGroupKnockout),
m_pBackdropBitmap(pBackdropBitmap) {
DCHECK(m_pBitmap);
InitPlatform();
}
CFX_AggDeviceDriver::~CFX_AggDeviceDriver() {
DestroyPlatform();
}
#if !defined(OS_APPLE)
void CFX_AggDeviceDriver::InitPlatform() {}
void CFX_AggDeviceDriver::DestroyPlatform() {}
bool CFX_AggDeviceDriver::DrawDeviceText(int nChars,
const TextCharPos* pCharPos,
CFX_Font* pFont,
const CFX_Matrix& mtObject2Device,
float font_size,
uint32_t color,
const CFX_TextRenderOptions& options) {
return false;
}
#endif // !defined(OS_APPLE)
DeviceType CFX_AggDeviceDriver::GetDeviceType() const {
return DeviceType::kDisplay;
}
int CFX_AggDeviceDriver::GetDeviceCaps(int caps_id) const {
switch (caps_id) {
case FXDC_PIXEL_WIDTH:
return m_pBitmap->GetWidth();
case FXDC_PIXEL_HEIGHT:
return m_pBitmap->GetHeight();
case FXDC_BITS_PIXEL:
return m_pBitmap->GetBPP();
case FXDC_HORZ_SIZE:
case FXDC_VERT_SIZE:
return 0;
case FXDC_RENDER_CAPS: {
int flags = FXRC_GET_BITS | FXRC_ALPHA_PATH | FXRC_ALPHA_IMAGE |
FXRC_BLEND_MODE | FXRC_SOFT_CLIP;
if (m_pBitmap->IsAlphaFormat()) {
flags |= FXRC_ALPHA_OUTPUT;
} else if (m_pBitmap->IsMaskFormat()) {
if (m_pBitmap->GetBPP() == 1)
flags |= FXRC_BITMASK_OUTPUT;
else
flags |= FXRC_BYTEMASK_OUTPUT;
}
return flags;
}
default:
NOTREACHED();
return 0;
}
}
void CFX_AggDeviceDriver::SaveState() {
std::unique_ptr<CFX_ClipRgn> pClip;
if (m_pClipRgn)
pClip = std::make_unique<CFX_ClipRgn>(*m_pClipRgn);
m_StateStack.push_back(std::move(pClip));
}
void CFX_AggDeviceDriver::RestoreState(bool bKeepSaved) {
m_pClipRgn.reset();
if (m_StateStack.empty())
return;
if (bKeepSaved) {
if (m_StateStack.back())
m_pClipRgn = std::make_unique<CFX_ClipRgn>(*m_StateStack.back());
} else {
m_pClipRgn = std::move(m_StateStack.back());
m_StateStack.pop_back();
}
}
void CFX_AggDeviceDriver::SetClipMask(agg::rasterizer_scanline_aa& rasterizer) {
FX_RECT path_rect(rasterizer.min_x(), rasterizer.min_y(),
rasterizer.max_x() + 1, rasterizer.max_y() + 1);
path_rect.Intersect(m_pClipRgn->GetBox());
auto pThisLayer = pdfium::MakeRetain<CFX_DIBitmap>();
pThisLayer->Create(path_rect.Width(), path_rect.Height(),
FXDIB_Format::k8bppMask);
pThisLayer->Clear(0);
agg::rendering_buffer raw_buf(pThisLayer->GetBuffer(), pThisLayer->GetWidth(),
pThisLayer->GetHeight(),
pThisLayer->GetPitch());
agg::pixfmt_gray8 pixel_buf(raw_buf);
agg::renderer_base<agg::pixfmt_gray8> base_buf(pixel_buf);
RendererScanLineAaOffset<agg::renderer_base<agg::pixfmt_gray8>> final_render(
base_buf, path_rect.left, path_rect.top);
final_render.color(agg::gray8(255));
agg::scanline_u8 scanline;
agg::render_scanlines(rasterizer, scanline, final_render,
m_FillOptions.aliased_path);
m_pClipRgn->IntersectMaskF(path_rect.left, path_rect.top, pThisLayer);
}
bool CFX_AggDeviceDriver::SetClip_PathFill(
const CFX_Path& path,
const CFX_Matrix* pObject2Device,
const CFX_FillRenderOptions& fill_options) {
DCHECK(fill_options.fill_type != CFX_FillRenderOptions::FillType::kNoFill);
m_FillOptions = fill_options;
if (!m_pClipRgn) {
m_pClipRgn = std::make_unique<CFX_ClipRgn>(
GetDeviceCaps(FXDC_PIXEL_WIDTH), GetDeviceCaps(FXDC_PIXEL_HEIGHT));
}
absl::optional<CFX_FloatRect> maybe_rectf = path.GetRect(pObject2Device);
if (maybe_rectf.has_value()) {
CFX_FloatRect& rectf = maybe_rectf.value();
rectf.Intersect(
CFX_FloatRect(0, 0, static_cast<float>(GetDeviceCaps(FXDC_PIXEL_WIDTH)),
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_HEIGHT))));
FX_RECT rect = rectf.GetOuterRect();
m_pClipRgn->IntersectRect(rect);
return true;
}
agg::path_storage path_data = BuildAggPath(path, pObject2Device);
path_data.end_poly();
agg::rasterizer_scanline_aa rasterizer;
rasterizer.clip_box(0.0f, 0.0f,
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_WIDTH)),
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_HEIGHT)));
rasterizer.add_path(path_data);
rasterizer.filling_rule(GetAlternateOrWindingFillType(fill_options));
SetClipMask(rasterizer);
return true;
}
bool CFX_AggDeviceDriver::SetClip_PathStroke(
const CFX_Path& path,
const CFX_Matrix* pObject2Device,
const CFX_GraphStateData* pGraphState) {
if (!m_pClipRgn) {
m_pClipRgn = std::make_unique<CFX_ClipRgn>(
GetDeviceCaps(FXDC_PIXEL_WIDTH), GetDeviceCaps(FXDC_PIXEL_HEIGHT));
}
agg::path_storage path_data = BuildAggPath(path, nullptr);
agg::rasterizer_scanline_aa rasterizer;
rasterizer.clip_box(0.0f, 0.0f,
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_WIDTH)),
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_HEIGHT)));
RasterizeStroke(&rasterizer, &path_data, pObject2Device, pGraphState, 1.0f,
false);
rasterizer.filling_rule(agg::fill_non_zero);
SetClipMask(rasterizer);
return true;
}
int CFX_AggDeviceDriver::GetDriverType() const {
return 1;
}
void CFX_AggDeviceDriver::RenderRasterizer(
agg::rasterizer_scanline_aa& rasterizer,
uint32_t color,
bool bFullCover,
bool bGroupKnockout) {
RetainPtr<CFX_DIBitmap> pt = bGroupKnockout ? m_pBackdropBitmap : nullptr;
CFX_Renderer render(m_pBitmap, pt, m_pClipRgn.get(), color, bFullCover,
m_bRgbByteOrder);
agg::scanline_u8 scanline;
agg::render_scanlines(rasterizer, scanline, render,
m_FillOptions.aliased_path);
}
bool CFX_AggDeviceDriver::DrawPath(const CFX_Path& path,
const CFX_Matrix* pObject2Device,
const CFX_GraphStateData* pGraphState,
uint32_t fill_color,
uint32_t stroke_color,
const CFX_FillRenderOptions& fill_options,
BlendMode blend_type) {
if (blend_type != BlendMode::kNormal)
return false;
if (!m_pBitmap->GetBuffer())
return true;
m_FillOptions = fill_options;
if (fill_options.fill_type != CFX_FillRenderOptions::FillType::kNoFill &&
fill_color) {
agg::path_storage path_data = BuildAggPath(path, pObject2Device);
agg::rasterizer_scanline_aa rasterizer;
rasterizer.clip_box(0.0f, 0.0f,
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_WIDTH)),
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_HEIGHT)));
rasterizer.add_path(path_data);
rasterizer.filling_rule(GetAlternateOrWindingFillType(fill_options));
RenderRasterizer(rasterizer, fill_color, fill_options.full_cover,
/*bGroupKnockout=*/false);
}
int stroke_alpha = FXARGB_A(stroke_color);
if (!pGraphState || !stroke_alpha)
return true;
if (fill_options.zero_area) {
agg::path_storage path_data = BuildAggPath(path, pObject2Device);
agg::rasterizer_scanline_aa rasterizer;
rasterizer.clip_box(0.0f, 0.0f,
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_WIDTH)),
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_HEIGHT)));
RasterizeStroke(&rasterizer, &path_data, nullptr, pGraphState, 1,
fill_options.stroke_text_mode);
RenderRasterizer(rasterizer, stroke_color, fill_options.full_cover,
m_bGroupKnockout);
return true;
}
CFX_Matrix matrix1;
CFX_Matrix matrix2;
if (pObject2Device) {
matrix1.a = std::max(fabs(pObject2Device->a), fabs(pObject2Device->b));
matrix1.d = matrix1.a;
matrix2 = CFX_Matrix(
pObject2Device->a / matrix1.a, pObject2Device->b / matrix1.a,
pObject2Device->c / matrix1.d, pObject2Device->d / matrix1.d, 0, 0);
matrix1 = *pObject2Device * matrix2.GetInverse();
}
agg::path_storage path_data = BuildAggPath(path, &matrix1);
agg::rasterizer_scanline_aa rasterizer;
rasterizer.clip_box(0.0f, 0.0f,
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_WIDTH)),
static_cast<float>(GetDeviceCaps(FXDC_PIXEL_HEIGHT)));
RasterizeStroke(&rasterizer, &path_data, &matrix2, pGraphState, matrix1.a,
fill_options.stroke_text_mode);
RenderRasterizer(rasterizer, stroke_color, fill_options.full_cover,
m_bGroupKnockout);
return true;
}
bool CFX_AggDeviceDriver::FillRectWithBlend(const FX_RECT& rect,
uint32_t fill_color,
BlendMode blend_type) {
if (blend_type != BlendMode::kNormal)
return false;
if (!m_pBitmap->GetBuffer())
return true;
FX_RECT clip_rect;
GetClipBox(&clip_rect);
FX_RECT draw_rect = clip_rect;
draw_rect.Intersect(rect);
if (draw_rect.IsEmpty())
return true;
if (!m_pClipRgn || m_pClipRgn->GetType() == CFX_ClipRgn::kRectI) {
if (m_bRgbByteOrder) {
RgbByteOrderCompositeRect(m_pBitmap, draw_rect.left, draw_rect.top,
draw_rect.Width(), draw_rect.Height(),
fill_color);
} else {
m_pBitmap->CompositeRect(draw_rect.left, draw_rect.top, draw_rect.Width(),
draw_rect.Height(), fill_color);
}
return true;
}
m_pBitmap->CompositeMask(draw_rect.left, draw_rect.top, draw_rect.Width(),
draw_rect.Height(), m_pClipRgn->GetMask(),
fill_color, draw_rect.left - clip_rect.left,
draw_rect.top - clip_rect.top, BlendMode::kNormal,
nullptr, m_bRgbByteOrder);
return true;
}
bool CFX_AggDeviceDriver::GetClipBox(FX_RECT* pRect) {
if (!m_pClipRgn) {
pRect->left = pRect->top = 0;
pRect->right = GetDeviceCaps(FXDC_PIXEL_WIDTH);
pRect->bottom = GetDeviceCaps(FXDC_PIXEL_HEIGHT);
return true;
}
*pRect = m_pClipRgn->GetBox();
return true;
}
bool CFX_AggDeviceDriver::GetDIBits(const RetainPtr<CFX_DIBitmap>& pBitmap,
int left,
int top) {
if (!m_pBitmap->GetBuffer())
return true;
FX_RECT rect(left, top, left + pBitmap->GetWidth(),
top + pBitmap->GetHeight());
RetainPtr<CFX_DIBitmap> pBack;
if (m_pBackdropBitmap) {
pBack = m_pBackdropBitmap->ClipTo(rect);
if (!pBack)
return true;
pBack->CompositeBitmap(0, 0, pBack->GetWidth(), pBack->GetHeight(),
m_pBitmap, 0, 0, BlendMode::kNormal, nullptr, false);
} else {
pBack = m_pBitmap->ClipTo(rect);
if (!pBack)
return true;
}
left = std::min(left, 0);
top = std::min(top, 0);
if (m_bRgbByteOrder) {
RgbByteOrderTransferBitmap(pBitmap, 0, 0, rect.Width(), rect.Height(),
pBack, left, top);
return true;
}
return pBitmap->TransferBitmap(0, 0, rect.Width(), rect.Height(), pBack, left,
top);
}
RetainPtr<CFX_DIBitmap> CFX_AggDeviceDriver::GetBackDrop() {
return m_pBackdropBitmap;
}
bool CFX_AggDeviceDriver::SetDIBits(const RetainPtr<CFX_DIBBase>& pBitmap,
uint32_t argb,
const FX_RECT& src_rect,
int left,
int top,
BlendMode blend_type) {
if (!m_pBitmap->GetBuffer())
return true;
if (pBitmap->IsMaskFormat()) {
return m_pBitmap->CompositeMask(left, top, src_rect.Width(),
src_rect.Height(), pBitmap, argb,
src_rect.left, src_rect.top, blend_type,
m_pClipRgn.get(), m_bRgbByteOrder);
}
return m_pBitmap->CompositeBitmap(
left, top, src_rect.Width(), src_rect.Height(), pBitmap, src_rect.left,
src_rect.top, blend_type, m_pClipRgn.get(), m_bRgbByteOrder);
}
bool CFX_AggDeviceDriver::StretchDIBits(const RetainPtr<CFX_DIBBase>& pSource,
uint32_t argb,
int dest_left,
int dest_top,
int dest_width,
int dest_height,
const FX_RECT* pClipRect,
const FXDIB_ResampleOptions& options,
BlendMode blend_type) {
if (!m_pBitmap->GetBuffer())
return true;
if (dest_width == pSource->GetWidth() &&
dest_height == pSource->GetHeight()) {
FX_RECT rect(0, 0, dest_width, dest_height);
return SetDIBits(pSource, argb, rect, dest_left, dest_top, blend_type);
}
FX_RECT dest_rect(dest_left, dest_top, dest_left + dest_width,
dest_top + dest_height);
dest_rect.Normalize();
FX_RECT dest_clip = dest_rect;
dest_clip.Intersect(*pClipRect);
CFX_BitmapComposer composer;
composer.Compose(m_pBitmap, m_pClipRgn.get(), 255, argb, dest_clip, false,
false, false, m_bRgbByteOrder, blend_type);
dest_clip.Offset(-dest_rect.left, -dest_rect.top);
CFX_ImageStretcher stretcher(&composer, pSource, dest_width, dest_height,
dest_clip, options);
if (stretcher.Start())
stretcher.Continue(nullptr);
return true;
}
bool CFX_AggDeviceDriver::StartDIBits(
const RetainPtr<CFX_DIBBase>& pSource,
int bitmap_alpha,
uint32_t argb,
const CFX_Matrix& matrix,
const FXDIB_ResampleOptions& options,
std::unique_ptr<CFX_ImageRenderer>* handle,
BlendMode blend_type) {
if (!m_pBitmap->GetBuffer())
return true;
*handle = std::make_unique<CFX_ImageRenderer>(
m_pBitmap, m_pClipRgn.get(), pSource, bitmap_alpha, argb, matrix, options,
m_bRgbByteOrder);
return true;
}
bool CFX_AggDeviceDriver::ContinueDIBits(CFX_ImageRenderer* pHandle,
PauseIndicatorIface* pPause) {
return !m_pBitmap->GetBuffer() || pHandle->Continue(pPause);
}
} // namespace pdfium
#if !defined(_SKIA_SUPPORT_)
CFX_DefaultRenderDevice::CFX_DefaultRenderDevice() = default;
CFX_DefaultRenderDevice::~CFX_DefaultRenderDevice() = default;
bool CFX_DefaultRenderDevice::Attach(
const RetainPtr<CFX_DIBitmap>& pBitmap,
bool bRgbByteOrder,
const RetainPtr<CFX_DIBitmap>& pBackdropBitmap,
bool bGroupKnockout) {
if (!pBitmap)
return false;
SetBitmap(pBitmap);
SetDeviceDriver(std::make_unique<pdfium::CFX_AggDeviceDriver>(
pBitmap, bRgbByteOrder, pBackdropBitmap, bGroupKnockout));
return true;
}
bool CFX_DefaultRenderDevice::Create(
int width,
int height,
FXDIB_Format format,
const RetainPtr<CFX_DIBitmap>& pBackdropBitmap) {
auto pBitmap = pdfium::MakeRetain<CFX_DIBitmap>();
if (!pBitmap->Create(width, height, format))
return false;
SetBitmap(pBitmap);
SetDeviceDriver(std::make_unique<pdfium::CFX_AggDeviceDriver>(
pBitmap, false, pBackdropBitmap, false));
return true;
}
#endif // !defined(_SKIA_SUPPORT_)