blob: da166bb14aae7a2bc027128582366bb805bcb646 [file] [log] [blame] [edit]
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_SCANLINE_AA_INCLUDED
#define AGG_RASTERIZER_SCANLINE_AA_INCLUDED
#include "agg_array.h"
#include "agg_basics.h"
#include "agg_clip_liang_barsky.h"
#include "agg_math.h"
#include "agg_render_scanlines.h"
#include "core/fxcrt/fx_coordinates.h"
#include "core/fxcrt/fx_memory.h"
namespace agg
{
enum poly_base_scale_e {
poly_base_shift = 8,
poly_base_size = 1 << poly_base_shift,
poly_base_mask = poly_base_size - 1
};
inline int poly_coord(float c)
{
return int(c * poly_base_size);
}
struct cell_aa {
int x;
int y;
int cover;
int area;
void set(int x, int y, int c, int a);
void set_coord(int x, int y);
void set_cover(int c, int a);
void add_cover(int c, int a);
};
class outline_aa
{
enum cell_block_scale_e {
cell_block_shift = 12,
cell_block_size = 1 << cell_block_shift,
cell_block_mask = cell_block_size - 1,
cell_block_pool = 256,
cell_block_limit = 1024
};
struct sorted_y {
unsigned start;
unsigned num;
};
public:
~outline_aa();
outline_aa();
void reset();
void move_to(int x, int y);
void line_to(int x, int y);
int min_x() const
{
return m_min_x;
}
int min_y() const
{
return m_min_y;
}
int max_x() const
{
return m_max_x;
}
int max_y() const
{
return m_max_y;
}
void sort_cells();
unsigned total_cells() const
{
return m_num_cells;
}
unsigned scanline_num_cells(unsigned y) const
{
return m_sorted_y[y - m_min_y].num;
}
const cell_aa* const* scanline_cells(unsigned y) const
{
return m_sorted_cells.data() + m_sorted_y[y - m_min_y].start;
}
bool sorted() const
{
return m_sorted;
}
private:
outline_aa(const outline_aa&);
const outline_aa& operator = (const outline_aa&);
void set_cur_cell(int x, int y);
void add_cur_cell();
void render_hline(int ey, int x1, int y1, int x2, int y2);
void render_line(int x1, int y1, int x2, int y2);
void allocate_block();
private:
unsigned m_num_blocks;
unsigned m_max_blocks;
unsigned m_cur_block;
unsigned m_num_cells;
cell_aa** m_cells;
cell_aa* m_cur_cell_ptr;
pod_array<cell_aa*> m_sorted_cells;
pod_array<sorted_y> m_sorted_y;
cell_aa m_cur_cell;
int m_cur_x;
int m_cur_y;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
bool m_sorted;
};
class scanline_hit_test
{
public:
scanline_hit_test(int x) : m_x(x), m_hit(false) {}
void reset_spans() {}
void finalize(int) {}
void add_cell(int x, int)
{
if(m_x == x) {
m_hit = true;
}
}
void add_span(int x, int len, int)
{
if(m_x >= x && m_x < x + len) {
m_hit = true;
}
}
unsigned num_spans() const
{
return 1;
}
bool hit() const
{
return m_hit;
}
private:
int m_x;
bool m_hit;
};
enum filling_rule_e {
fill_non_zero,
fill_even_odd
};
class rasterizer_scanline_aa
{
enum status {
status_initial,
status_line_to,
status_closed
};
public:
enum aa_scale_e {
aa_num = 1 << 8,
aa_mask = aa_num - 1,
aa_2num = aa_num * 2,
aa_2mask = aa_2num - 1
};
rasterizer_scanline_aa() :
m_filling_rule(fill_non_zero),
m_clipped_start_x(0),
m_clipped_start_y(0),
m_status(status_initial),
m_clipping(false)
{
}
~rasterizer_scanline_aa() {}
void filling_rule(filling_rule_e filling_rule)
{
m_filling_rule = filling_rule;
}
int min_x() const
{
return m_outline.min_x();
}
int min_y() const
{
return m_outline.min_y();
}
int max_x() const
{
return m_outline.max_x();
}
int max_y() const
{
return m_outline.max_y();
}
void reset()
{
m_outline.reset();
m_status = status_initial;
}
void clip_box(float x1, float y1, float x2, float y2)
{
m_clip_box = rect(poly_coord(x1), poly_coord(y1),
poly_coord(x2), poly_coord(y2));
m_clip_box.normalize();
m_clipping = true;
}
void add_vertex(float x, float y, unsigned cmd)
{
if(is_close(cmd)) {
close_polygon();
} else {
if(is_move_to(cmd)) {
move_to(poly_coord(x), poly_coord(y));
} else {
if(is_vertex(cmd)) {
line_to(poly_coord(x), poly_coord(y));
}
}
}
}
void move_to(int x, int y)
{
if(m_clipping) {
if(m_outline.sorted()) {
reset();
}
if(m_status == status_line_to) {
close_polygon();
}
m_prev_x = m_start_x = x;
m_prev_y = m_start_y = y;
m_status = status_initial;
m_prev_flags = clipping_flags(x, y, m_clip_box);
if(m_prev_flags == 0) {
move_to_no_clip(x, y);
}
} else {
move_to_no_clip(x, y);
}
}
void line_to(int x, int y)
{
if(m_clipping) {
clip_segment(x, y);
} else {
line_to_no_clip(x, y);
}
}
void close_polygon()
{
if (m_status != status_line_to) {
return;
}
if(m_clipping) {
clip_segment(m_start_x, m_start_y);
}
close_polygon_no_clip();
}
AGG_INLINE unsigned calculate_alpha(int area, bool no_smooth) const
{
int cover = area >> (poly_base_shift * 2 + 1 - 8);
if(cover < 0) {
cover = -cover;
}
if(m_filling_rule == fill_even_odd) {
cover &= aa_2mask;
if(cover > aa_num) {
cover = aa_2num - cover;
}
}
if (no_smooth) {
cover = cover > aa_mask / 2 ? aa_mask : 0;
}
if(cover > aa_mask) {
cover = aa_mask;
}
return cover;
}
AGG_INLINE void sort()
{
m_outline.sort_cells();
}
AGG_INLINE bool rewind_scanlines()
{
close_polygon();
m_outline.sort_cells();
if(m_outline.total_cells() == 0) {
return false;
}
m_cur_y = m_outline.min_y();
return true;
}
AGG_INLINE bool navigate_scanline(int y)
{
close_polygon();
m_outline.sort_cells();
if(m_outline.total_cells() == 0 ||
y < m_outline.min_y() ||
y > m_outline.max_y()) {
return false;
}
m_cur_y = y;
return true;
}
template<class Scanline> bool sweep_scanline(Scanline& sl, bool no_smooth)
{
for(;;) {
if(m_cur_y > m_outline.max_y()) {
return false;
}
sl.reset_spans();
unsigned num_cells = m_outline.scanline_num_cells(m_cur_y);
const cell_aa* const* cells = m_outline.scanline_cells(m_cur_y);
int cover = 0;
while(num_cells) {
const cell_aa* cur_cell = *cells;
int x = cur_cell->x;
int area = cur_cell->area;
unsigned alpha;
cover += cur_cell->cover;
while(--num_cells) {
cur_cell = *++cells;
if(cur_cell->x != x) {
break;
}
area += cur_cell->area;
cover += cur_cell->cover;
}
if(area) {
alpha = calculate_alpha(calculate_area(cover, poly_base_shift + 1) - area, no_smooth);
if(alpha) {
sl.add_cell(x, alpha);
}
x++;
}
if(num_cells && cur_cell->x > x) {
alpha = calculate_alpha(calculate_area(cover, poly_base_shift + 1), no_smooth);
if(alpha) {
sl.add_span(x, cur_cell->x - x, alpha);
}
}
}
if(sl.num_spans()) {
break;
}
++m_cur_y;
}
sl.finalize(m_cur_y);
++m_cur_y;
return true;
}
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id = 0)
{
float x;
float y;
unsigned cmd;
vs.rewind(path_id);
while(!is_stop(cmd = vs.vertex(&x, &y))) {
add_vertex(x, y, cmd);
}
}
template<class VertexSource>
void add_path_transformed(VertexSource& vs, const CFX_Matrix* pMatrix, unsigned path_id = 0)
{
float x;
float y;
unsigned cmd;
vs.rewind(path_id);
while(!is_stop(cmd = vs.vertex(&x, &y))) {
if (pMatrix) {
CFX_PointF ret = pMatrix->Transform(CFX_PointF(x, y));
x = ret.x;
y = ret.y;
}
add_vertex(x, y, cmd);
}
}
private:
rasterizer_scanline_aa(const rasterizer_scanline_aa&);
const rasterizer_scanline_aa&
operator = (const rasterizer_scanline_aa&);
void move_to_no_clip(int x, int y)
{
if(m_status == status_line_to) {
close_polygon_no_clip();
}
m_outline.move_to(x * 1, y);
m_clipped_start_x = x;
m_clipped_start_y = y;
m_status = status_line_to;
}
void line_to_no_clip(int x, int y)
{
if(m_status != status_initial) {
m_outline.line_to(x * 1, y);
m_status = status_line_to;
}
}
void close_polygon_no_clip()
{
if(m_status == status_line_to) {
m_outline.line_to(m_clipped_start_x * 1, m_clipped_start_y);
m_status = status_closed;
}
}
void clip_segment(int x, int y)
{
unsigned flags = clipping_flags(x, y, m_clip_box);
if(m_prev_flags == flags) {
if(flags == 0) {
if(m_status == status_initial) {
move_to_no_clip(x, y);
} else {
line_to_no_clip(x, y);
}
}
} else {
int cx[4];
int cy[4];
unsigned n = clip_liang_barsky(m_prev_x, m_prev_y,
x, y,
m_clip_box,
cx, cy);
const int* px = cx;
const int* py = cy;
while(n--) {
if(m_status == status_initial) {
move_to_no_clip(*px++, *py++);
} else {
line_to_no_clip(*px++, *py++);
}
}
}
m_prev_flags = flags;
m_prev_x = x;
m_prev_y = y;
}
static int calculate_area(int cover, int shift) {
unsigned int result = cover;
result <<= shift;
return result;
}
private:
outline_aa m_outline;
filling_rule_e m_filling_rule;
int m_clipped_start_x;
int m_clipped_start_y;
int m_start_x;
int m_start_y;
int m_prev_x;
int m_prev_y;
unsigned m_prev_flags;
unsigned m_status;
rect m_clip_box;
bool m_clipping;
int m_cur_y;
};
}
#endif