| /* | 
 |  * Copyright (c) 1991-1997 Sam Leffler | 
 |  * Copyright (c) 1991-1997 Silicon Graphics, Inc. | 
 |  * | 
 |  * Permission to use, copy, modify, distribute, and sell this software and  | 
 |  * its documentation for any purpose is hereby granted without fee, provided | 
 |  * that (i) the above copyright notices and this permission notice appear in | 
 |  * all copies of the software and related documentation, and (ii) the names of | 
 |  * Sam Leffler and Silicon Graphics may not be used in any advertising or | 
 |  * publicity relating to the software without the specific, prior written | 
 |  * permission of Sam Leffler and Silicon Graphics. | 
 |  *  | 
 |  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,  | 
 |  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY  | 
 |  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.   | 
 |  *  | 
 |  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | 
 |  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | 
 |  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | 
 |  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF  | 
 |  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE  | 
 |  * OF THIS SOFTWARE. | 
 |  */ | 
 |  | 
 | /* | 
 |  * TIFF Library | 
 |  * | 
 |  * Read and return a packed RGBA image. | 
 |  */ | 
 | #include "tiffiop.h" | 
 | #include <stdio.h> | 
 | #include <limits.h> | 
 |  | 
 | static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); | 
 | static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | 
 | static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); | 
 | static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | 
 | static int PickContigCase(TIFFRGBAImage*); | 
 | static int PickSeparateCase(TIFFRGBAImage*); | 
 |  | 
 | static int BuildMapUaToAa(TIFFRGBAImage* img); | 
 | static int BuildMapBitdepth16To8(TIFFRGBAImage* img); | 
 |  | 
 | static const char photoTag[] = "PhotometricInterpretation"; | 
 |  | 
 | /*  | 
 |  * Helper constants used in Orientation tag handling | 
 |  */ | 
 | #define FLIP_VERTICALLY 0x01 | 
 | #define FLIP_HORIZONTALLY 0x02 | 
 |  | 
 | /* | 
 |  * Color conversion constants. We will define display types here. | 
 |  */ | 
 |  | 
 | static const TIFFDisplay display_sRGB = { | 
 | 	{			/* XYZ -> luminance matrix */ | 
 | 		{  3.2410F, -1.5374F, -0.4986F }, | 
 | 		{  -0.9692F, 1.8760F, 0.0416F }, | 
 | 		{  0.0556F, -0.2040F, 1.0570F } | 
 | 	},	 | 
 | 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */ | 
 | 	255, 255, 255,		/* Pixel values for ref. white */ | 
 | 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */ | 
 | 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Check the image to see if TIFFReadRGBAImage can deal with it. | 
 |  * 1/0 is returned according to whether or not the image can | 
 |  * be handled.  If 0 is returned, emsg contains the reason | 
 |  * why it is being rejected. | 
 |  */ | 
 | int | 
 | TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) | 
 | { | 
 | 	TIFFDirectory* td = &tif->tif_dir; | 
 | 	uint16 photometric; | 
 | 	int colorchannels; | 
 |  | 
 | 	if (!tif->tif_decodestatus) { | 
 | 		sprintf(emsg, "Sorry, requested compression method is not configured"); | 
 | 		return (0); | 
 | 	} | 
 | 	switch (td->td_bitspersample) { | 
 | 		case 1: | 
 | 		case 2: | 
 | 		case 4: | 
 | 		case 8: | 
 | 		case 16: | 
 | 			break; | 
 | 		default: | 
 | 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | 
 | 			    td->td_bitspersample); | 
 | 			return (0); | 
 | 	} | 
 |         if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) { | 
 |                 sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples"); | 
 |                 return (0); | 
 |         } | 
 | 	colorchannels = td->td_samplesperpixel - td->td_extrasamples; | 
 | 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { | 
 | 		switch (colorchannels) { | 
 | 			case 1: | 
 | 				photometric = PHOTOMETRIC_MINISBLACK; | 
 | 				break; | 
 | 			case 3: | 
 | 				photometric = PHOTOMETRIC_RGB; | 
 | 				break; | 
 | 			default: | 
 | 				sprintf(emsg, "Missing needed %s tag", photoTag); | 
 | 				return (0); | 
 | 		} | 
 | 	} | 
 | 	switch (photometric) { | 
 | 		case PHOTOMETRIC_MINISWHITE: | 
 | 		case PHOTOMETRIC_MINISBLACK: | 
 | 		case PHOTOMETRIC_PALETTE: | 
 | 			if (td->td_planarconfig == PLANARCONFIG_CONTIG | 
 | 			    && td->td_samplesperpixel != 1 | 
 | 			    && td->td_bitspersample < 8 ) { | 
 | 				sprintf(emsg, | 
 | 				    "Sorry, can not handle contiguous data with %s=%d, " | 
 | 				    "and %s=%d and Bits/Sample=%d", | 
 | 				    photoTag, photometric, | 
 | 				    "Samples/pixel", td->td_samplesperpixel, | 
 | 				    td->td_bitspersample); | 
 | 				return (0); | 
 | 			} | 
 | 			/* | 
 | 			 * We should likely validate that any extra samples are either | 
 | 			 * to be ignored, or are alpha, and if alpha we should try to use | 
 | 			 * them.  But for now we won't bother with this. | 
 | 			*/ | 
 | 			break; | 
 | 		case PHOTOMETRIC_YCBCR: | 
 | 			/* | 
 | 			 * TODO: if at all meaningful and useful, make more complete | 
 | 			 * support check here, or better still, refactor to let supporting | 
 | 			 * code decide whether there is support and what meaningful | 
 | 			 * error to return | 
 | 			 */ | 
 | 			break; | 
 | 		case PHOTOMETRIC_RGB: | 
 | 			if (colorchannels < 3) { | 
 | 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | 
 | 				    "Color channels", colorchannels); | 
 | 				return (0); | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_SEPARATED: | 
 | 			{ | 
 | 				uint16 inkset; | 
 | 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); | 
 | 				if (inkset != INKSET_CMYK) { | 
 | 					sprintf(emsg, | 
 | 					    "Sorry, can not handle separated image with %s=%d", | 
 | 					    "InkSet", inkset); | 
 | 					return 0; | 
 | 				} | 
 | 				if (td->td_samplesperpixel < 4) { | 
 | 					sprintf(emsg, | 
 | 					    "Sorry, can not handle separated image with %s=%d", | 
 | 					    "Samples/pixel", td->td_samplesperpixel); | 
 | 					return 0; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 		case PHOTOMETRIC_LOGL: | 
 | 			if (td->td_compression != COMPRESSION_SGILOG) { | 
 | 				sprintf(emsg, "Sorry, LogL data must have %s=%d", | 
 | 				    "Compression", COMPRESSION_SGILOG); | 
 | 				return (0); | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_LOGLUV: | 
 | 			if (td->td_compression != COMPRESSION_SGILOG && | 
 | 			    td->td_compression != COMPRESSION_SGILOG24) { | 
 | 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | 
 | 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | 
 | 				return (0); | 
 | 			} | 
 | 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | 
 | 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | 
 | 				    "Planarconfiguration", td->td_planarconfig); | 
 | 				return (0); | 
 | 			} | 
 | 			if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) { | 
 |                                 sprintf(emsg, | 
 |                                         "Sorry, can not handle image with %s=%d, %s=%d", | 
 |                                         "Samples/pixel", td->td_samplesperpixel, | 
 |                                         "colorchannels", colorchannels); | 
 |                                 return 0; | 
 |                         } | 
 | 			break; | 
 | 		case PHOTOMETRIC_CIELAB: | 
 |                         if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) { | 
 |                                 sprintf(emsg, | 
 |                                         "Sorry, can not handle image with %s=%d, %s=%d and %s=%d", | 
 |                                         "Samples/pixel", td->td_samplesperpixel, | 
 |                                         "colorchannels", colorchannels, | 
 |                                         "Bits/sample", td->td_bitspersample); | 
 |                                 return 0; | 
 |                         } | 
 | 			break; | 
 |                 default: | 
 | 			sprintf(emsg, "Sorry, can not handle image with %s=%d", | 
 | 			    photoTag, photometric); | 
 | 			return (0); | 
 | 	} | 
 | 	return (1); | 
 | } | 
 |  | 
 | void | 
 | TIFFRGBAImageEnd(TIFFRGBAImage* img) | 
 | { | 
 | 	if (img->Map) { | 
 | 		_TIFFfree(img->Map); | 
 | 		img->Map = NULL; | 
 | 	} | 
 | 	if (img->BWmap) { | 
 | 		_TIFFfree(img->BWmap); | 
 | 		img->BWmap = NULL; | 
 | 	} | 
 | 	if (img->PALmap) { | 
 | 		_TIFFfree(img->PALmap); | 
 | 		img->PALmap = NULL; | 
 | 	} | 
 | 	if (img->ycbcr) { | 
 | 		_TIFFfree(img->ycbcr); | 
 | 		img->ycbcr = NULL; | 
 | 	} | 
 | 	if (img->cielab) { | 
 | 		_TIFFfree(img->cielab); | 
 | 		img->cielab = NULL; | 
 | 	} | 
 | 	if (img->UaToAa) { | 
 | 		_TIFFfree(img->UaToAa); | 
 | 		img->UaToAa = NULL; | 
 | 	} | 
 | 	if (img->Bitdepth16To8) { | 
 | 		_TIFFfree(img->Bitdepth16To8); | 
 | 		img->Bitdepth16To8 = NULL; | 
 | 	} | 
 |  | 
 | 	if( img->redcmap ) { | 
 | 		_TIFFfree( img->redcmap ); | 
 | 		_TIFFfree( img->greencmap ); | 
 | 		_TIFFfree( img->bluecmap ); | 
 |                 img->redcmap = img->greencmap = img->bluecmap = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | isCCITTCompression(TIFF* tif) | 
 | { | 
 |     uint16 compress; | 
 |     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); | 
 |     return (compress == COMPRESSION_CCITTFAX3 || | 
 | 	    compress == COMPRESSION_CCITTFAX4 || | 
 | 	    compress == COMPRESSION_CCITTRLE || | 
 | 	    compress == COMPRESSION_CCITTRLEW); | 
 | } | 
 |  | 
 | int | 
 | TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) | 
 | { | 
 | 	uint16* sampleinfo; | 
 | 	uint16 extrasamples; | 
 | 	uint16 planarconfig; | 
 | 	uint16 compress; | 
 | 	int colorchannels; | 
 | 	uint16 *red_orig, *green_orig, *blue_orig; | 
 | 	int n_color; | 
 | 	 | 
 | 	if( !TIFFRGBAImageOK(tif, emsg) ) | 
 | 		return 0; | 
 |  | 
 | 	/* Initialize to normal values */ | 
 | 	img->row_offset = 0; | 
 | 	img->col_offset = 0; | 
 | 	img->redcmap = NULL; | 
 | 	img->greencmap = NULL; | 
 | 	img->bluecmap = NULL; | 
 | 	img->Map = NULL; | 
 | 	img->BWmap = NULL; | 
 | 	img->PALmap = NULL; | 
 | 	img->ycbcr = NULL; | 
 | 	img->cielab = NULL; | 
 | 	img->UaToAa = NULL; | 
 | 	img->Bitdepth16To8 = NULL; | 
 | 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */ | 
 |  | 
 | 	img->tif = tif; | 
 | 	img->stoponerr = stop; | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); | 
 | 	switch (img->bitspersample) { | 
 | 		case 1: | 
 | 		case 2: | 
 | 		case 4: | 
 | 		case 8: | 
 | 		case 16: | 
 | 			break; | 
 | 		default: | 
 | 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | 
 | 			    img->bitspersample); | 
 | 			goto fail_return; | 
 | 	} | 
 | 	img->alpha = 0; | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, | 
 | 	    &extrasamples, &sampleinfo); | 
 | 	if (extrasamples >= 1) | 
 | 	{ | 
 | 		switch (sampleinfo[0]) { | 
 | 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */ | 
 | 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */ | 
 | 					img->alpha = EXTRASAMPLE_ASSOCALPHA; | 
 | 				break; | 
 | 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */ | 
 | 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */ | 
 | 				img->alpha = sampleinfo[0]; | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA | 
 | 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) | 
 | 		img->photometric = PHOTOMETRIC_MINISWHITE; | 
 |  | 
 | 	if( extrasamples == 0 | 
 | 	    && img->samplesperpixel == 4 | 
 | 	    && img->photometric == PHOTOMETRIC_RGB ) | 
 | 	{ | 
 | 		img->alpha = EXTRASAMPLE_ASSOCALPHA; | 
 | 		extrasamples = 1; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	colorchannels = img->samplesperpixel - extrasamples; | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); | 
 | 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { | 
 | 		switch (colorchannels) { | 
 | 			case 1: | 
 | 				if (isCCITTCompression(tif)) | 
 | 					img->photometric = PHOTOMETRIC_MINISWHITE; | 
 | 				else | 
 | 					img->photometric = PHOTOMETRIC_MINISBLACK; | 
 | 				break; | 
 | 			case 3: | 
 | 				img->photometric = PHOTOMETRIC_RGB; | 
 | 				break; | 
 | 			default: | 
 | 				sprintf(emsg, "Missing needed %s tag", photoTag); | 
 |                                 goto fail_return; | 
 | 		} | 
 | 	} | 
 | 	switch (img->photometric) { | 
 | 		case PHOTOMETRIC_PALETTE: | 
 | 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP, | 
 | 			    &red_orig, &green_orig, &blue_orig)) { | 
 | 				sprintf(emsg, "Missing required \"Colormap\" tag"); | 
 |                                 goto fail_return; | 
 | 			} | 
 |  | 
 | 			/* copy the colormaps so we can modify them */ | 
 | 			n_color = (1U << img->bitspersample); | 
 | 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | 
 | 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | 
 | 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | 
 | 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) { | 
 | 				sprintf(emsg, "Out of memory for colormap copy"); | 
 |                                 goto fail_return; | 
 | 			} | 
 |  | 
 | 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 ); | 
 | 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 ); | 
 | 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 ); | 
 |  | 
 | 			/* fall through... */ | 
 | 		case PHOTOMETRIC_MINISWHITE: | 
 | 		case PHOTOMETRIC_MINISBLACK: | 
 | 			if (planarconfig == PLANARCONFIG_CONTIG | 
 | 			    && img->samplesperpixel != 1 | 
 | 			    && img->bitspersample < 8 ) { | 
 | 				sprintf(emsg, | 
 | 				    "Sorry, can not handle contiguous data with %s=%d, " | 
 | 				    "and %s=%d and Bits/Sample=%d", | 
 | 				    photoTag, img->photometric, | 
 | 				    "Samples/pixel", img->samplesperpixel, | 
 | 				    img->bitspersample); | 
 |                                 goto fail_return; | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_YCBCR: | 
 | 			/* It would probably be nice to have a reality check here. */ | 
 | 			if (planarconfig == PLANARCONFIG_CONTIG) | 
 | 				/* can rely on libjpeg to convert to RGB */ | 
 | 				/* XXX should restore current state on exit */ | 
 | 				switch (compress) { | 
 | 					case COMPRESSION_JPEG: | 
 | 						/* | 
 | 						 * TODO: when complete tests verify complete desubsampling | 
 | 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in | 
 | 						 * favor of tif_getimage.c native handling | 
 | 						 */ | 
 | 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); | 
 | 						img->photometric = PHOTOMETRIC_RGB; | 
 | 						break; | 
 | 					default: | 
 | 						/* do nothing */; | 
 | 						break; | 
 | 				} | 
 | 			/* | 
 | 			 * TODO: if at all meaningful and useful, make more complete | 
 | 			 * support check here, or better still, refactor to let supporting | 
 | 			 * code decide whether there is support and what meaningful | 
 | 			 * error to return | 
 | 			 */ | 
 | 			break; | 
 | 		case PHOTOMETRIC_RGB: | 
 | 			if (colorchannels < 3) { | 
 | 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | 
 | 				    "Color channels", colorchannels); | 
 |                                 goto fail_return; | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_SEPARATED: | 
 | 			{ | 
 | 				uint16 inkset; | 
 | 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); | 
 | 				if (inkset != INKSET_CMYK) { | 
 | 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | 
 | 					    "InkSet", inkset); | 
 |                                         goto fail_return; | 
 | 				} | 
 | 				if (img->samplesperpixel < 4) { | 
 | 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | 
 | 					    "Samples/pixel", img->samplesperpixel); | 
 |                                         goto fail_return; | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_LOGL: | 
 | 			if (compress != COMPRESSION_SGILOG) { | 
 | 				sprintf(emsg, "Sorry, LogL data must have %s=%d", | 
 | 				    "Compression", COMPRESSION_SGILOG); | 
 |                                 goto fail_return; | 
 | 			} | 
 | 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | 
 | 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */ | 
 | 			img->bitspersample = 8; | 
 | 			break; | 
 | 		case PHOTOMETRIC_LOGLUV: | 
 | 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) { | 
 | 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | 
 | 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | 
 |                                 goto fail_return; | 
 | 			} | 
 | 			if (planarconfig != PLANARCONFIG_CONTIG) { | 
 | 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | 
 | 				    "Planarconfiguration", planarconfig); | 
 | 				return (0); | 
 | 			} | 
 | 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | 
 | 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */ | 
 | 			img->bitspersample = 8; | 
 | 			break; | 
 | 		case PHOTOMETRIC_CIELAB: | 
 | 			break; | 
 | 		default: | 
 | 			sprintf(emsg, "Sorry, can not handle image with %s=%d", | 
 | 			    photoTag, img->photometric); | 
 |                         goto fail_return; | 
 | 	} | 
 | 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); | 
 | 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); | 
 | 	img->isContig = | 
 | 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1); | 
 | 	if (img->isContig) { | 
 | 		if (!PickContigCase(img)) { | 
 | 			sprintf(emsg, "Sorry, can not handle image"); | 
 | 			goto fail_return; | 
 | 		} | 
 | 	} else { | 
 | 		if (!PickSeparateCase(img)) { | 
 | 			sprintf(emsg, "Sorry, can not handle image"); | 
 | 			goto fail_return; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 |  | 
 |   fail_return: | 
 |         TIFFRGBAImageEnd( img ); | 
 |         return 0; | 
 | } | 
 |  | 
 | int | 
 | TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | 
 | { | 
 |     if (img->get == NULL) { | 
 | 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup"); | 
 | 		return (0); | 
 | 	} | 
 | 	if (img->put.any == NULL) { | 
 | 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | 
 | 		"No \"put\" routine setupl; probably can not handle image format"); | 
 | 		return (0); | 
 |     } | 
 |     return (*img->get)(img, raster, w, h); | 
 | } | 
 |  | 
 | /* | 
 |  * Read the specified image into an ABGR-format rastertaking in account | 
 |  * specified orientation. | 
 |  */ | 
 | int | 
 | TIFFReadRGBAImageOriented(TIFF* tif, | 
 | 			  uint32 rwidth, uint32 rheight, uint32* raster, | 
 | 			  int orientation, int stop) | 
 | { | 
 |     char emsg[1024] = ""; | 
 |     TIFFRGBAImage img; | 
 |     int ok; | 
 |  | 
 | 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) { | 
 | 		img.req_orientation = (uint16)orientation; | 
 | 		/* XXX verify rwidth and rheight against width and height */ | 
 | 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, | 
 | 			rwidth, img.height); | 
 | 		TIFFRGBAImageEnd(&img); | 
 | 	} else { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); | 
 | 		ok = 0; | 
 |     } | 
 |     return (ok); | 
 | } | 
 |  | 
 | /* | 
 |  * Read the specified image into an ABGR-format raster. Use bottom left | 
 |  * origin for raster by default. | 
 |  */ | 
 | int | 
 | TIFFReadRGBAImage(TIFF* tif, | 
 | 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop) | 
 | { | 
 | 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, | 
 | 					 ORIENTATION_BOTLEFT, stop); | 
 | } | 
 |  | 
 | static int  | 
 | setorientation(TIFFRGBAImage* img) | 
 | { | 
 | 	switch (img->orientation) { | 
 | 		case ORIENTATION_TOPLEFT: | 
 | 		case ORIENTATION_LEFTTOP: | 
 | 			if (img->req_orientation == ORIENTATION_TOPRIGHT || | 
 | 			    img->req_orientation == ORIENTATION_RIGHTTOP) | 
 | 				return FLIP_HORIZONTALLY; | 
 | 			else if (img->req_orientation == ORIENTATION_BOTRIGHT || | 
 | 			    img->req_orientation == ORIENTATION_RIGHTBOT) | 
 | 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | 
 | 			else if (img->req_orientation == ORIENTATION_BOTLEFT || | 
 | 			    img->req_orientation == ORIENTATION_LEFTBOT) | 
 | 				return FLIP_VERTICALLY; | 
 | 			else | 
 | 				return 0; | 
 | 		case ORIENTATION_TOPRIGHT: | 
 | 		case ORIENTATION_RIGHTTOP: | 
 | 			if (img->req_orientation == ORIENTATION_TOPLEFT || | 
 | 			    img->req_orientation == ORIENTATION_LEFTTOP) | 
 | 				return FLIP_HORIZONTALLY; | 
 | 			else if (img->req_orientation == ORIENTATION_BOTRIGHT || | 
 | 			    img->req_orientation == ORIENTATION_RIGHTBOT) | 
 | 				return FLIP_VERTICALLY; | 
 | 			else if (img->req_orientation == ORIENTATION_BOTLEFT || | 
 | 			    img->req_orientation == ORIENTATION_LEFTBOT) | 
 | 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | 
 | 			else | 
 | 				return 0; | 
 | 		case ORIENTATION_BOTRIGHT: | 
 | 		case ORIENTATION_RIGHTBOT: | 
 | 			if (img->req_orientation == ORIENTATION_TOPLEFT || | 
 | 			    img->req_orientation == ORIENTATION_LEFTTOP) | 
 | 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | 
 | 			else if (img->req_orientation == ORIENTATION_TOPRIGHT || | 
 | 			    img->req_orientation == ORIENTATION_RIGHTTOP) | 
 | 				return FLIP_VERTICALLY; | 
 | 			else if (img->req_orientation == ORIENTATION_BOTLEFT || | 
 | 			    img->req_orientation == ORIENTATION_LEFTBOT) | 
 | 				return FLIP_HORIZONTALLY; | 
 | 			else | 
 | 				return 0; | 
 | 		case ORIENTATION_BOTLEFT: | 
 | 		case ORIENTATION_LEFTBOT: | 
 | 			if (img->req_orientation == ORIENTATION_TOPLEFT || | 
 | 			    img->req_orientation == ORIENTATION_LEFTTOP) | 
 | 				return FLIP_VERTICALLY; | 
 | 			else if (img->req_orientation == ORIENTATION_TOPRIGHT || | 
 | 			    img->req_orientation == ORIENTATION_RIGHTTOP) | 
 | 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | 
 | 			else if (img->req_orientation == ORIENTATION_BOTRIGHT || | 
 | 			    img->req_orientation == ORIENTATION_RIGHTBOT) | 
 | 				return FLIP_HORIZONTALLY; | 
 | 			else | 
 | 				return 0; | 
 | 		default:	/* NOTREACHED */ | 
 | 			return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Get an tile-organized image that has | 
 |  *	PlanarConfiguration contiguous if SamplesPerPixel > 1 | 
 |  * or | 
 |  *	SamplesPerPixel == 1 | 
 |  */	 | 
 | static int | 
 | gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | 
 | { | 
 |     TIFF* tif = img->tif; | 
 |     tileContigRoutine put = img->put.contig; | 
 |     uint32 col, row, y, rowstoread; | 
 |     tmsize_t pos; | 
 |     uint32 tw, th; | 
 |     unsigned char* buf = NULL; | 
 |     int32 fromskew, toskew; | 
 |     int64 safeskew; | 
 |     uint32 nrow; | 
 |     int ret = 1, flip; | 
 |     uint32 this_tw, tocol; | 
 |     int32 this_toskew, leftmost_toskew; | 
 |     int32 leftmost_fromskew; | 
 |     uint32 leftmost_tw; | 
 |     tmsize_t bufsize; | 
 |  | 
 |     bufsize = TIFFTileSize(tif); | 
 |     if (bufsize == 0) { | 
 |         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer"); | 
 |         return (0); | 
 |     } | 
 |  | 
 |     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | 
 |     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | 
 |  | 
 |     flip = setorientation(img); | 
 |     if (flip & FLIP_VERTICALLY) { | 
 | 	    y = h - 1; | 
 | 	    safeskew = 0; | 
 | 	    safeskew -= tw; | 
 | 	    safeskew -= w; | 
 |     } | 
 |     else { | 
 | 	    y = 0; | 
 | 	    safeskew = 0; | 
 | 	    safeskew -= tw; | 
 | 	    safeskew +=w; | 
 |     } | 
 |       | 
 |     if(safeskew > INT_MAX || safeskew < INT_MIN){ | 
 |        _TIFFfree(buf); | 
 |        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew"); | 
 |        return (0); | 
 |     } | 
 |     toskew = safeskew; | 
 |  | 
 |     /* | 
 |      *	Leftmost tile is clipped on left side if col_offset > 0. | 
 |      */ | 
 |     leftmost_fromskew = img->col_offset % tw; | 
 |     leftmost_tw = tw - leftmost_fromskew; | 
 |     safeskew = toskew; | 
 |     safeskew += leftmost_fromskew; | 
 |     if(safeskew > INT_MAX || safeskew < INT_MIN){ | 
 |        _TIFFfree(buf); | 
 |        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew"); | 
 |        return (0); | 
 |     } | 
 |     leftmost_toskew = safeskew; | 
 |     for (row = 0; ret != 0 && row < h; row += nrow) | 
 |     { | 
 |         rowstoread = th - (row + img->row_offset) % th; | 
 |     	nrow = (row + rowstoread > h ? h - row : rowstoread); | 
 | 	fromskew = leftmost_fromskew; | 
 | 	this_tw = leftmost_tw; | 
 | 	this_toskew = leftmost_toskew; | 
 | 	tocol = 0; | 
 | 	col = img->col_offset; | 
 | 	while (tocol < w) | 
 |         { | 
 | 	    if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col, | 
 | 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) && | 
 |                 (buf == NULL || img->stoponerr)) | 
 |             { | 
 |                 ret = 0; | 
 |                 break; | 
 |             } | 
 |             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \ | 
 | 		   ((tmsize_t) fromskew * img->samplesperpixel); | 
 | 	    if (tocol + this_tw > w)  | 
 | 	    { | 
 | 		/* | 
 | 		 * Rightmost tile is clipped on right side. | 
 | 		 */ | 
 | 		safeskew = tw; | 
 | 		safeskew -= w; | 
 | 		safeskew += tocol; | 
 | 		if(safeskew > INT_MAX || safeskew < INT_MIN){ | 
 | 		        _TIFFfree(buf); | 
 | 		        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew"); | 
 | 		        return (0); | 
 | 		} | 
 | 		fromskew = safeskew; | 
 | 		this_tw = tw - fromskew; | 
 | 		safeskew = toskew; | 
 | 		safeskew += fromskew; | 
 | 		if(safeskew > INT_MAX || safeskew < INT_MIN){ | 
 | 		        _TIFFfree(buf); | 
 | 		        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew"); | 
 | 		        return (0); | 
 | 		} | 
 | 		this_toskew = safeskew; | 
 | 	    } | 
 | 	    (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos); | 
 | 	    tocol += this_tw; | 
 | 	    col += this_tw; | 
 | 	    /* | 
 | 	     * After the leftmost tile, tiles are no longer clipped on left side. | 
 | 	     */ | 
 | 	    fromskew = 0; | 
 | 	    this_tw = tw; | 
 | 	    this_toskew = toskew; | 
 | 	} | 
 |  | 
 |         y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow); | 
 |     } | 
 |     _TIFFfree(buf); | 
 |  | 
 |     if (flip & FLIP_HORIZONTALLY) { | 
 | 	    uint32 line; | 
 |  | 
 | 	    for (line = 0; line < h; line++) { | 
 | 		    uint32 *left = raster + (line * w); | 
 | 		    uint32 *right = left + w - 1; | 
 | 		     | 
 | 		    while ( left < right ) { | 
 | 			    uint32 temp = *left; | 
 | 			    *left = *right; | 
 | 			    *right = temp; | 
 | 			    left++; | 
 | 				right--; | 
 | 		    } | 
 | 	    } | 
 |     } | 
 |  | 
 |     return (ret); | 
 | } | 
 |  | 
 | /* | 
 |  * Get an tile-organized image that has | 
 |  *	 SamplesPerPixel > 1 | 
 |  *	 PlanarConfiguration separated | 
 |  * We assume that all such images are RGB. | 
 |  */	 | 
 | static int | 
 | gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | 
 | { | 
 | 	TIFF* tif = img->tif; | 
 | 	tileSeparateRoutine put = img->put.separate; | 
 | 	uint32 col, row, y, rowstoread; | 
 | 	tmsize_t pos; | 
 | 	uint32 tw, th; | 
 | 	unsigned char* buf = NULL; | 
 | 	unsigned char* p0 = NULL; | 
 | 	unsigned char* p1 = NULL; | 
 | 	unsigned char* p2 = NULL; | 
 | 	unsigned char* pa = NULL; | 
 | 	tmsize_t tilesize; | 
 | 	tmsize_t bufsize; | 
 | 	int32 fromskew, toskew; | 
 | 	int alpha = img->alpha; | 
 | 	uint32 nrow; | 
 | 	int ret = 1, flip; | 
 |         uint16 colorchannels; | 
 | 	uint32 this_tw, tocol; | 
 | 	int32 this_toskew, leftmost_toskew; | 
 | 	int32 leftmost_fromskew; | 
 | 	uint32 leftmost_tw; | 
 |  | 
 | 	tilesize = TIFFTileSize(tif);   | 
 | 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize); | 
 | 	if (bufsize == 0) { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate"); | 
 | 		return (0); | 
 | 	} | 
 |  | 
 | 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | 
 | 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | 
 |  | 
 | 	flip = setorientation(img); | 
 | 	if (flip & FLIP_VERTICALLY) { | 
 | 		y = h - 1; | 
 | 		toskew = -(int32)(tw + w); | 
 | 	} | 
 | 	else { | 
 | 		y = 0; | 
 | 		toskew = -(int32)(tw - w); | 
 | 	} | 
 |  | 
 |         switch( img->photometric ) | 
 |         { | 
 |           case PHOTOMETRIC_MINISWHITE: | 
 |           case PHOTOMETRIC_MINISBLACK: | 
 |           case PHOTOMETRIC_PALETTE: | 
 |             colorchannels = 1; | 
 |             break; | 
 |  | 
 |           default: | 
 |             colorchannels = 3; | 
 |             break; | 
 |         } | 
 |  | 
 | 	/* | 
 | 	 *	Leftmost tile is clipped on left side if col_offset > 0. | 
 | 	 */ | 
 | 	leftmost_fromskew = img->col_offset % tw; | 
 | 	leftmost_tw = tw - leftmost_fromskew; | 
 | 	leftmost_toskew = toskew + leftmost_fromskew; | 
 | 	for (row = 0; ret != 0 && row < h; row += nrow) | 
 | 	{ | 
 | 		rowstoread = th - (row + img->row_offset) % th; | 
 | 		nrow = (row + rowstoread > h ? h - row : rowstoread); | 
 | 		fromskew = leftmost_fromskew; | 
 | 		this_tw = leftmost_tw; | 
 | 		this_toskew = leftmost_toskew; | 
 | 		tocol = 0; | 
 | 		col = img->col_offset; | 
 | 		while (tocol < w) | 
 | 		{ | 
 |                         if( buf == NULL ) | 
 |                         { | 
 |                             if (_TIFFReadTileAndAllocBuffer( | 
 |                                     tif, (void**) &buf, bufsize, col, | 
 |                                     row+img->row_offset,0,0)==(tmsize_t)(-1) | 
 |                                 && (buf == NULL || img->stoponerr)) | 
 |                             { | 
 |                                     ret = 0; | 
 |                                     break; | 
 |                             } | 
 |                             p0 = buf; | 
 |                             if( colorchannels == 1 ) | 
 |                             { | 
 |                                 p2 = p1 = p0; | 
 |                                 pa = (alpha?(p0+3*tilesize):NULL); | 
 |                             } | 
 |                             else | 
 |                             { | 
 |                                 p1 = p0 + tilesize; | 
 |                                 p2 = p1 + tilesize; | 
 |                                 pa = (alpha?(p2+tilesize):NULL); | 
 |                             } | 
 |                         } | 
 | 			else if (TIFFReadTile(tif, p0, col,   | 
 | 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr) | 
 | 			{ | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			if (colorchannels > 1  | 
 |                             && TIFFReadTile(tif, p1, col,   | 
 |                                             row+img->row_offset,0,1) == (tmsize_t)(-1)  | 
 |                             && img->stoponerr) | 
 | 			{ | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			if (colorchannels > 1  | 
 |                             && TIFFReadTile(tif, p2, col,   | 
 |                                             row+img->row_offset,0,2) == (tmsize_t)(-1)  | 
 |                             && img->stoponerr) | 
 | 			{ | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			if (alpha | 
 |                             && TIFFReadTile(tif,pa,col,   | 
 |                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)  | 
 |                             && img->stoponerr) | 
 |                         { | 
 |                             ret = 0; | 
 |                             break; | 
 | 			} | 
 |  | 
 | 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \ | 
 | 			   ((tmsize_t) fromskew * img->samplesperpixel); | 
 | 			if (tocol + this_tw > w)  | 
 | 			{ | 
 | 				/* | 
 | 				 * Rightmost tile is clipped on right side. | 
 | 				 */ | 
 | 				fromskew = tw - (w - tocol); | 
 | 				this_tw = tw - fromskew; | 
 | 				this_toskew = toskew + fromskew; | 
 | 			} | 
 | 			(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \ | 
 | 				p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL)); | 
 | 			tocol += this_tw; | 
 | 			col += this_tw; | 
 | 			/* | 
 | 			* After the leftmost tile, tiles are no longer clipped on left side. | 
 | 			*/ | 
 | 			fromskew = 0; | 
 | 			this_tw = tw; | 
 | 			this_toskew = toskew; | 
 | 		} | 
 |  | 
 | 		y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow); | 
 | 	} | 
 |  | 
 | 	if (flip & FLIP_HORIZONTALLY) { | 
 | 		uint32 line; | 
 |  | 
 | 		for (line = 0; line < h; line++) { | 
 | 			uint32 *left = raster + (line * w); | 
 | 			uint32 *right = left + w - 1; | 
 |  | 
 | 			while ( left < right ) { | 
 | 				uint32 temp = *left; | 
 | 				*left = *right; | 
 | 				*right = temp; | 
 | 				left++; | 
 | 				right--; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	_TIFFfree(buf); | 
 | 	return (ret); | 
 | } | 
 |  | 
 | /* | 
 |  * Get a strip-organized image that has | 
 |  *	PlanarConfiguration contiguous if SamplesPerPixel > 1 | 
 |  * or | 
 |  *	SamplesPerPixel == 1 | 
 |  */	 | 
 | static int | 
 | gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | 
 | { | 
 | 	TIFF* tif = img->tif; | 
 | 	tileContigRoutine put = img->put.contig; | 
 | 	uint32 row, y, nrow, nrowsub, rowstoread; | 
 | 	tmsize_t pos; | 
 | 	unsigned char* buf = NULL; | 
 | 	uint32 rowsperstrip; | 
 | 	uint16 subsamplinghor,subsamplingver; | 
 | 	uint32 imagewidth = img->width; | 
 | 	tmsize_t scanline; | 
 | 	int32 fromskew, toskew; | 
 | 	int ret = 1, flip; | 
 |         tmsize_t maxstripsize; | 
 |  | 
 | 	if ((tmsize_t)img->row_offset > TIFF_SSIZE_T_MAX || (size_t)h > (size_t)TIFF_SSIZE_T_MAX) | 
 | 		return (0); | 
 |  | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver); | 
 | 	if( subsamplingver == 0 ) { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling"); | 
 | 		return (0); | 
 | 	} | 
 | 	 | 
 | 	maxstripsize = TIFFStripSize(tif); | 
 |  | 
 | 	flip = setorientation(img); | 
 | 	if (flip & FLIP_VERTICALLY) { | 
 | 		y = h - 1; | 
 | 		toskew = -(int32)(w + w); | 
 | 	} else { | 
 | 		y = 0; | 
 | 		toskew = -(int32)(w - w); | 
 | 	} | 
 |  | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | 
 |  | 
 | 	scanline = TIFFScanlineSize(tif); | 
 | 	fromskew = (w < imagewidth ? imagewidth - w : 0); | 
 | 	for (row = 0; row < h; row += nrow) | 
 | 	{ | 
 | 		tmsize_t actual_row; | 
 | 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; | 
 | 		nrow = (row + rowstoread > h ? h - row : rowstoread); | 
 | 		nrowsub = nrow; | 
 | 		if ((nrowsub%subsamplingver)!=0) | 
 | 			nrowsub+=subsamplingver-nrowsub%subsamplingver; | 
 |  | 
 | 		if (row > (size_t)TIFF_SSIZE_T_MAX - img->row_offset) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		actual_row = row + img->row_offset; | 
 | 		actual_row %= rowsperstrip; | 
 | 		if ((size_t)nrowsub > (size_t)TIFF_SSIZE_T_MAX || (size_t)actual_row > (size_t)TIFF_SSIZE_T_MAX - nrowsub) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		actual_row += nrowsub; | 
 | 		if ((tmsize_t)actual_row > TIFF_SSIZE_T_MAX / scanline) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (_TIFFReadEncodedStripAndAllocBuffer(tif, | 
 | 		    TIFFComputeStrip(tif,row+img->row_offset, 0), | 
 | 		    (void**)(&buf), | 
 |                     maxstripsize, | 
 | 		    actual_row * scanline)==(tmsize_t)(-1) | 
 | 		    && (buf == NULL || img->stoponerr)) | 
 | 		{ | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \ | 
 | 			((tmsize_t) img->col_offset * img->samplesperpixel); | 
 | 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos); | 
 | 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow); | 
 | 	} | 
 |  | 
 | 	if (flip & FLIP_HORIZONTALLY) { | 
 | 		uint32 line; | 
 |  | 
 | 		for (line = 0; line < h; line++) { | 
 | 			uint32 *left = raster + (line * w); | 
 | 			uint32 *right = left + w - 1; | 
 |  | 
 | 			while ( left < right ) { | 
 | 				uint32 temp = *left; | 
 | 				*left = *right; | 
 | 				*right = temp; | 
 | 				left++; | 
 | 				right--; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	_TIFFfree(buf); | 
 | 	return (ret); | 
 | } | 
 |  | 
 | /* | 
 |  * Get a strip-organized image with | 
 |  *	 SamplesPerPixel > 1 | 
 |  *	 PlanarConfiguration separated | 
 |  * We assume that all such images are RGB. | 
 |  */ | 
 | static int | 
 | gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | 
 | { | 
 | 	TIFF* tif = img->tif; | 
 | 	tileSeparateRoutine put = img->put.separate; | 
 | 	unsigned char *buf = NULL; | 
 | 	unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL; | 
 | 	uint32 row, y, nrow, rowstoread; | 
 | 	tmsize_t pos; | 
 | 	tmsize_t scanline; | 
 | 	uint32 rowsperstrip, offset_row; | 
 | 	uint32 imagewidth = img->width; | 
 | 	tmsize_t stripsize; | 
 | 	tmsize_t bufsize; | 
 | 	int32 fromskew, toskew; | 
 | 	int alpha = img->alpha; | 
 | 	int ret = 1, flip; | 
 |         uint16 colorchannels; | 
 |  | 
 | 	stripsize = TIFFStripSize(tif);   | 
 | 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize); | 
 | 	if (bufsize == 0) { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate"); | 
 | 		return (0); | 
 | 	} | 
 |  | 
 | 	flip = setorientation(img); | 
 | 	if (flip & FLIP_VERTICALLY) { | 
 | 		y = h - 1; | 
 | 		toskew = -(int32)(w + w); | 
 | 	} | 
 | 	else { | 
 | 		y = 0; | 
 | 		toskew = -(int32)(w - w); | 
 | 	} | 
 |  | 
 |         switch( img->photometric ) | 
 |         { | 
 |           case PHOTOMETRIC_MINISWHITE: | 
 |           case PHOTOMETRIC_MINISBLACK: | 
 |           case PHOTOMETRIC_PALETTE: | 
 |             colorchannels = 1; | 
 |             break; | 
 |  | 
 |           default: | 
 |             colorchannels = 3; | 
 |             break; | 
 |         } | 
 |  | 
 | 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | 
 | 	scanline = TIFFScanlineSize(tif);   | 
 | 	fromskew = (w < imagewidth ? imagewidth - w : 0); | 
 | 	for (row = 0; row < h; row += nrow) | 
 | 	{ | 
 | 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; | 
 | 		nrow = (row + rowstoread > h ? h - row : rowstoread); | 
 | 		offset_row = row + img->row_offset; | 
 |                 if( buf == NULL ) | 
 |                 { | 
 |                     if (_TIFFReadEncodedStripAndAllocBuffer( | 
 |                             tif, TIFFComputeStrip(tif, offset_row, 0), | 
 |                             (void**) &buf, bufsize, | 
 |                             ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) | 
 |                         && (buf == NULL || img->stoponerr)) | 
 |                     { | 
 |                             ret = 0; | 
 |                             break; | 
 |                     } | 
 |                     p0 = buf; | 
 |                     if( colorchannels == 1 ) | 
 |                     { | 
 |                         p2 = p1 = p0; | 
 |                         pa = (alpha?(p0+3*stripsize):NULL); | 
 |                     } | 
 |                     else | 
 |                     { | 
 |                         p1 = p0 + stripsize; | 
 |                         p2 = p1 + stripsize; | 
 |                         pa = (alpha?(p2+stripsize):NULL); | 
 |                     } | 
 |                 } | 
 | 		else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), | 
 | 		    p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) | 
 | 		    && img->stoponerr) | 
 | 		{ | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		if (colorchannels > 1  | 
 |                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), | 
 |                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) | 
 | 		    && img->stoponerr) | 
 | 		{ | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		if (colorchannels > 1  | 
 |                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), | 
 |                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) | 
 | 		    && img->stoponerr) | 
 | 		{ | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		if (alpha) | 
 | 		{ | 
 | 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels), | 
 | 			    pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) | 
 | 			    && img->stoponerr) | 
 | 			{ | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \ | 
 | 			((tmsize_t) img->col_offset * img->samplesperpixel); | 
 | 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos, | 
 | 		    p2 + pos, (alpha?(pa+pos):NULL)); | 
 | 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow); | 
 | 	} | 
 |  | 
 | 	if (flip & FLIP_HORIZONTALLY) { | 
 | 		uint32 line; | 
 |  | 
 | 		for (line = 0; line < h; line++) { | 
 | 			uint32 *left = raster + (line * w); | 
 | 			uint32 *right = left + w - 1; | 
 |  | 
 | 			while ( left < right ) { | 
 | 				uint32 temp = *left; | 
 | 				*left = *right; | 
 | 				*right = temp; | 
 | 				left++; | 
 | 				right--; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	_TIFFfree(buf); | 
 | 	return (ret); | 
 | } | 
 |  | 
 | /* | 
 |  * The following routines move decoded data returned | 
 |  * from the TIFF library into rasters filled with packed | 
 |  * ABGR pixels (i.e. suitable for passing to lrecwrite.) | 
 |  * | 
 |  * The routines have been created according to the most | 
 |  * important cases and optimized.  PickContigCase and | 
 |  * PickSeparateCase analyze the parameters and select | 
 |  * the appropriate "get" and "put" routine to use. | 
 |  */ | 
 | #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op) | 
 | #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op) | 
 | #define	REPEAT2(op)	op; op | 
 | #define	CASE8(x,op)			\ | 
 |     switch (x) {			\ | 
 |     case 7: op; /*-fallthrough*/ \ | 
 |     case 6: op; /*-fallthrough*/ \ | 
 |     case 5: op; /*-fallthrough*/ \ | 
 |     case 4: op; /*-fallthrough*/ \ | 
 |     case 3: op; /*-fallthrough*/ \ | 
 |     case 2: op; /*-fallthrough*/ \ | 
 |     case 1: op;				\ | 
 |     } | 
 | #define	CASE4(x,op)	switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; } | 
 | #define	NOP | 
 |  | 
 | #define	UNROLL8(w, op1, op2) {		\ | 
 |     uint32 _x;				\ | 
 |     for (_x = w; _x >= 8; _x -= 8) {	\ | 
 | 	op1;				\ | 
 | 	REPEAT8(op2);			\ | 
 |     }					\ | 
 |     if (_x > 0) {			\ | 
 | 	op1;				\ | 
 | 	CASE8(_x,op2);			\ | 
 |     }					\ | 
 | } | 
 | #define	UNROLL4(w, op1, op2) {		\ | 
 |     uint32 _x;				\ | 
 |     for (_x = w; _x >= 4; _x -= 4) {	\ | 
 | 	op1;				\ | 
 | 	REPEAT4(op2);			\ | 
 |     }					\ | 
 |     if (_x > 0) {			\ | 
 | 	op1;				\ | 
 | 	CASE4(_x,op2);			\ | 
 |     }					\ | 
 | } | 
 | #define	UNROLL2(w, op1, op2) {		\ | 
 |     uint32 _x;				\ | 
 |     for (_x = w; _x >= 2; _x -= 2) {	\ | 
 | 	op1;				\ | 
 | 	REPEAT2(op2);			\ | 
 |     }					\ | 
 |     if (_x) {				\ | 
 | 	op1;				\ | 
 | 	op2;				\ | 
 |     }					\ | 
 | } | 
 |      | 
 | #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; } | 
 | #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; } | 
 |  | 
 | #define A1 (((uint32)0xffL)<<24) | 
 | #define	PACK(r,g,b)	\ | 
 | 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) | 
 | #define	PACK4(r,g,b,a)	\ | 
 | 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) | 
 | #define W2B(v) (((v)>>8)&0xff) | 
 | /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */ | 
 | #define	PACKW(r,g,b)	\ | 
 | 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) | 
 | #define	PACKW4(r,g,b,a)	\ | 
 | 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24)) | 
 |  | 
 | #define	DECLAREContigPutFunc(name) \ | 
 | static void name(\ | 
 |     TIFFRGBAImage* img, \ | 
 |     uint32* cp, \ | 
 |     uint32 x, uint32 y, \ | 
 |     uint32 w, uint32 h, \ | 
 |     int32 fromskew, int32 toskew, \ | 
 |     unsigned char* pp \ | 
 | ) | 
 |  | 
 | /* | 
 |  * 8-bit palette => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(put8bitcmaptile) | 
 | { | 
 |     uint32** PALmap = img->PALmap; | 
 |     int samplesperpixel = img->samplesperpixel; | 
 |  | 
 |     (void) y; | 
 |     for( ; h > 0; --h) { | 
 | 	for (x = w; x > 0; --x) | 
 |         { | 
 | 	    *cp++ = PALmap[*pp][0]; | 
 |             pp += samplesperpixel; | 
 |         } | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 4-bit palette => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(put4bitcmaptile) | 
 | { | 
 |     uint32** PALmap = img->PALmap; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew /= 2; | 
 |     for( ; h > 0; --h) { | 
 | 	uint32* bw; | 
 | 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 2-bit palette => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(put2bitcmaptile) | 
 | { | 
 |     uint32** PALmap = img->PALmap; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew /= 4; | 
 |     for( ; h > 0; --h) { | 
 | 	uint32* bw; | 
 | 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 1-bit palette => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(put1bitcmaptile) | 
 | { | 
 |     uint32** PALmap = img->PALmap; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew /= 8; | 
 |     for( ; h > 0; --h) { | 
 | 	uint32* bw; | 
 | 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit greyscale => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putgreytile) | 
 | { | 
 |     int samplesperpixel = img->samplesperpixel; | 
 |     uint32** BWmap = img->BWmap; | 
 |  | 
 |     (void) y; | 
 |     for( ; h > 0; --h) { | 
 | 	for (x = w; x > 0; --x) | 
 |         { | 
 | 	    *cp++ = BWmap[*pp][0]; | 
 |             pp += samplesperpixel; | 
 |         } | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit greyscale with associated alpha => colormap/RGBA | 
 |  */ | 
 | DECLAREContigPutFunc(putagreytile) | 
 | { | 
 |     int samplesperpixel = img->samplesperpixel; | 
 |     uint32** BWmap = img->BWmap; | 
 |  | 
 |     (void) y; | 
 |     for( ; h > 0; --h) { | 
 | 	for (x = w; x > 0; --x) | 
 |         { | 
 |             *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1); | 
 |             pp += samplesperpixel; | 
 |         } | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 16-bit greyscale => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(put16bitbwtile) | 
 | { | 
 |     int samplesperpixel = img->samplesperpixel; | 
 |     uint32** BWmap = img->BWmap; | 
 |  | 
 |     (void) y; | 
 |     for( ; h > 0; --h) { | 
 |         uint16 *wp = (uint16 *) pp; | 
 |  | 
 | 	for (x = w; x > 0; --x) | 
 |         { | 
 |             /* use high order byte of 16bit value */ | 
 |  | 
 | 	    *cp++ = BWmap[*wp >> 8][0]; | 
 |             pp += 2 * samplesperpixel; | 
 |             wp += samplesperpixel; | 
 |         } | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 1-bit bilevel => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(put1bitbwtile) | 
 | { | 
 |     uint32** BWmap = img->BWmap; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew /= 8; | 
 |     for( ; h > 0; --h) { | 
 | 	uint32* bw; | 
 | 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 2-bit greyscale => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(put2bitbwtile) | 
 | { | 
 |     uint32** BWmap = img->BWmap; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew /= 4; | 
 |     for( ; h > 0; --h) { | 
 | 	uint32* bw; | 
 | 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 4-bit greyscale => colormap/RGB | 
 |  */ | 
 | DECLAREContigPutFunc(put4bitbwtile) | 
 | { | 
 |     uint32** BWmap = img->BWmap; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew /= 2; | 
 |     for( ; h > 0; --h) { | 
 | 	uint32* bw; | 
 | 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed samples, no Map => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putRGBcontig8bittile) | 
 | { | 
 |     int samplesperpixel = img->samplesperpixel; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew *= samplesperpixel; | 
 |     for( ; h > 0; --h) { | 
 | 	UNROLL8(w, NOP, | 
 | 	    *cp++ = PACK(pp[0], pp[1], pp[2]); | 
 | 	    pp += samplesperpixel); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed samples => RGBA w/ associated alpha | 
 |  * (known to have Map == NULL) | 
 |  */ | 
 | DECLAREContigPutFunc(putRGBAAcontig8bittile) | 
 | { | 
 |     int samplesperpixel = img->samplesperpixel; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew *= samplesperpixel; | 
 |     for( ; h > 0; --h) { | 
 | 	UNROLL8(w, NOP, | 
 | 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); | 
 | 	    pp += samplesperpixel); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed samples => RGBA w/ unassociated alpha | 
 |  * (known to have Map == NULL) | 
 |  */ | 
 | DECLAREContigPutFunc(putRGBUAcontig8bittile) | 
 | { | 
 | 	int samplesperpixel = img->samplesperpixel; | 
 | 	(void) y; | 
 | 	fromskew *= samplesperpixel; | 
 | 	for( ; h > 0; --h) { | 
 | 		uint32 r, g, b, a; | 
 | 		uint8* m; | 
 | 		for (x = w; x > 0; --x) { | 
 | 			a = pp[3]; | 
 | 			m = img->UaToAa+((size_t) a<<8); | 
 | 			r = m[pp[0]]; | 
 | 			g = m[pp[1]]; | 
 | 			b = m[pp[2]]; | 
 | 			*cp++ = PACK4(r,g,b,a); | 
 | 			pp += samplesperpixel; | 
 | 		} | 
 | 		cp += toskew; | 
 | 		pp += fromskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 16-bit packed samples => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putRGBcontig16bittile) | 
 | { | 
 | 	int samplesperpixel = img->samplesperpixel; | 
 | 	uint16 *wp = (uint16 *)pp; | 
 | 	(void) y; | 
 | 	fromskew *= samplesperpixel; | 
 | 	for( ; h > 0; --h) { | 
 | 		for (x = w; x > 0; --x) { | 
 | 			*cp++ = PACK(img->Bitdepth16To8[wp[0]], | 
 | 			    img->Bitdepth16To8[wp[1]], | 
 | 			    img->Bitdepth16To8[wp[2]]); | 
 | 			wp += samplesperpixel; | 
 | 		} | 
 | 		cp += toskew; | 
 | 		wp += fromskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 16-bit packed samples => RGBA w/ associated alpha | 
 |  * (known to have Map == NULL) | 
 |  */ | 
 | DECLAREContigPutFunc(putRGBAAcontig16bittile) | 
 | { | 
 | 	int samplesperpixel = img->samplesperpixel; | 
 | 	uint16 *wp = (uint16 *)pp; | 
 | 	(void) y; | 
 | 	fromskew *= samplesperpixel; | 
 | 	for( ; h > 0; --h) { | 
 | 		for (x = w; x > 0; --x) { | 
 | 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]], | 
 | 			    img->Bitdepth16To8[wp[1]], | 
 | 			    img->Bitdepth16To8[wp[2]], | 
 | 			    img->Bitdepth16To8[wp[3]]); | 
 | 			wp += samplesperpixel; | 
 | 		} | 
 | 		cp += toskew; | 
 | 		wp += fromskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 16-bit packed samples => RGBA w/ unassociated alpha | 
 |  * (known to have Map == NULL) | 
 |  */ | 
 | DECLAREContigPutFunc(putRGBUAcontig16bittile) | 
 | { | 
 | 	int samplesperpixel = img->samplesperpixel; | 
 | 	uint16 *wp = (uint16 *)pp; | 
 | 	(void) y; | 
 | 	fromskew *= samplesperpixel; | 
 | 	for( ; h > 0; --h) { | 
 | 		uint32 r,g,b,a; | 
 | 		uint8* m; | 
 | 		for (x = w; x > 0; --x) { | 
 | 			a = img->Bitdepth16To8[wp[3]]; | 
 | 			m = img->UaToAa+((size_t) a<<8); | 
 | 			r = m[img->Bitdepth16To8[wp[0]]]; | 
 | 			g = m[img->Bitdepth16To8[wp[1]]]; | 
 | 			b = m[img->Bitdepth16To8[wp[2]]]; | 
 | 			*cp++ = PACK4(r,g,b,a); | 
 | 			wp += samplesperpixel; | 
 | 		} | 
 | 		cp += toskew; | 
 | 		wp += fromskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed CMYK samples w/o Map => RGB | 
 |  * | 
 |  * NB: The conversion of CMYK->RGB is *very* crude. | 
 |  */ | 
 | DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | 
 | { | 
 |     int samplesperpixel = img->samplesperpixel; | 
 |     uint16 r, g, b, k; | 
 |  | 
 |     (void) x; (void) y; | 
 |     fromskew *= samplesperpixel; | 
 |     for( ; h > 0; --h) { | 
 | 	UNROLL8(w, NOP, | 
 | 	    k = 255 - pp[3]; | 
 | 	    r = (k*(255-pp[0]))/255; | 
 | 	    g = (k*(255-pp[1]))/255; | 
 | 	    b = (k*(255-pp[2]))/255; | 
 | 	    *cp++ = PACK(r, g, b); | 
 | 	    pp += samplesperpixel); | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed CMYK samples w/Map => RGB | 
 |  * | 
 |  * NB: The conversion of CMYK->RGB is *very* crude. | 
 |  */ | 
 | DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | 
 | { | 
 |     int samplesperpixel = img->samplesperpixel; | 
 |     TIFFRGBValue* Map = img->Map; | 
 |     uint16 r, g, b, k; | 
 |  | 
 |     (void) y; | 
 |     fromskew *= samplesperpixel; | 
 |     for( ; h > 0; --h) { | 
 | 	for (x = w; x > 0; --x) { | 
 | 	    k = 255 - pp[3]; | 
 | 	    r = (k*(255-pp[0]))/255; | 
 | 	    g = (k*(255-pp[1]))/255; | 
 | 	    b = (k*(255-pp[2]))/255; | 
 | 	    *cp++ = PACK(Map[r], Map[g], Map[b]); | 
 | 	    pp += samplesperpixel; | 
 | 	} | 
 | 	pp += fromskew; | 
 | 	cp += toskew; | 
 |     } | 
 | } | 
 |  | 
 | #define	DECLARESepPutFunc(name) \ | 
 | static void name(\ | 
 |     TIFFRGBAImage* img,\ | 
 |     uint32* cp,\ | 
 |     uint32 x, uint32 y, \ | 
 |     uint32 w, uint32 h,\ | 
 |     int32 fromskew, int32 toskew,\ | 
 |     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\ | 
 | ) | 
 |  | 
 | /* | 
 |  * 8-bit unpacked samples => RGB | 
 |  */ | 
 | DECLARESepPutFunc(putRGBseparate8bittile) | 
 | { | 
 |     (void) img; (void) x; (void) y; (void) a; | 
 |     for( ; h > 0; --h) { | 
 | 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); | 
 | 	SKEW(r, g, b, fromskew); | 
 | 	cp += toskew; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit unpacked samples => RGBA w/ associated alpha | 
 |  */ | 
 | DECLARESepPutFunc(putRGBAAseparate8bittile) | 
 | { | 
 | 	(void) img; (void) x; (void) y;  | 
 | 	for( ; h > 0; --h) { | 
 | 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); | 
 | 		SKEW4(r, g, b, a, fromskew); | 
 | 		cp += toskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit unpacked CMYK samples => RGBA | 
 |  */ | 
 | DECLARESepPutFunc(putCMYKseparate8bittile) | 
 | { | 
 | 	(void) img; (void) y; | 
 | 	for( ; h > 0; --h) { | 
 | 		uint32 rv, gv, bv, kv; | 
 | 		for (x = w; x > 0; --x) { | 
 | 			kv = 255 - *a++; | 
 | 			rv = (kv*(255-*r++))/255; | 
 | 			gv = (kv*(255-*g++))/255; | 
 | 			bv = (kv*(255-*b++))/255; | 
 | 			*cp++ = PACK4(rv,gv,bv,255); | 
 | 		} | 
 | 		SKEW4(r, g, b, a, fromskew); | 
 | 		cp += toskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit unpacked samples => RGBA w/ unassociated alpha | 
 |  */ | 
 | DECLARESepPutFunc(putRGBUAseparate8bittile) | 
 | { | 
 | 	(void) img; (void) y; | 
 | 	for( ; h > 0; --h) { | 
 | 		uint32 rv, gv, bv, av; | 
 | 		uint8* m; | 
 | 		for (x = w; x > 0; --x) { | 
 | 			av = *a++; | 
 | 			m = img->UaToAa+((size_t) av<<8); | 
 | 			rv = m[*r++]; | 
 | 			gv = m[*g++]; | 
 | 			bv = m[*b++]; | 
 | 			*cp++ = PACK4(rv,gv,bv,av); | 
 | 		} | 
 | 		SKEW4(r, g, b, a, fromskew); | 
 | 		cp += toskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 16-bit unpacked samples => RGB | 
 |  */ | 
 | DECLARESepPutFunc(putRGBseparate16bittile) | 
 | { | 
 | 	uint16 *wr = (uint16*) r; | 
 | 	uint16 *wg = (uint16*) g; | 
 | 	uint16 *wb = (uint16*) b; | 
 | 	(void) img; (void) y; (void) a; | 
 | 	for( ; h > 0; --h) { | 
 | 		for (x = 0; x < w; x++) | 
 | 			*cp++ = PACK(img->Bitdepth16To8[*wr++], | 
 | 			    img->Bitdepth16To8[*wg++], | 
 | 			    img->Bitdepth16To8[*wb++]); | 
 | 		SKEW(wr, wg, wb, fromskew); | 
 | 		cp += toskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 16-bit unpacked samples => RGBA w/ associated alpha | 
 |  */ | 
 | DECLARESepPutFunc(putRGBAAseparate16bittile) | 
 | { | 
 | 	uint16 *wr = (uint16*) r; | 
 | 	uint16 *wg = (uint16*) g; | 
 | 	uint16 *wb = (uint16*) b; | 
 | 	uint16 *wa = (uint16*) a; | 
 | 	(void) img; (void) y; | 
 | 	for( ; h > 0; --h) { | 
 | 		for (x = 0; x < w; x++) | 
 | 			*cp++ = PACK4(img->Bitdepth16To8[*wr++], | 
 | 			    img->Bitdepth16To8[*wg++], | 
 | 			    img->Bitdepth16To8[*wb++], | 
 | 			    img->Bitdepth16To8[*wa++]); | 
 | 		SKEW4(wr, wg, wb, wa, fromskew); | 
 | 		cp += toskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 16-bit unpacked samples => RGBA w/ unassociated alpha | 
 |  */ | 
 | DECLARESepPutFunc(putRGBUAseparate16bittile) | 
 | { | 
 | 	uint16 *wr = (uint16*) r; | 
 | 	uint16 *wg = (uint16*) g; | 
 | 	uint16 *wb = (uint16*) b; | 
 | 	uint16 *wa = (uint16*) a; | 
 | 	(void) img; (void) y; | 
 | 	for( ; h > 0; --h) { | 
 | 		uint32 r2,g2,b2,a2; | 
 | 		uint8* m; | 
 | 		for (x = w; x > 0; --x) { | 
 | 			a2 = img->Bitdepth16To8[*wa++]; | 
 | 			m = img->UaToAa+((size_t) a2<<8); | 
 | 			r2 = m[img->Bitdepth16To8[*wr++]]; | 
 | 			g2 = m[img->Bitdepth16To8[*wg++]]; | 
 | 			b2 = m[img->Bitdepth16To8[*wb++]]; | 
 | 			*cp++ = PACK4(r2,g2,b2,a2); | 
 | 		} | 
 | 		SKEW4(wr, wg, wb, wa, fromskew); | 
 | 		cp += toskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed CIE L*a*b 1976 samples => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putcontig8bitCIELab) | 
 | { | 
 | 	float X, Y, Z; | 
 | 	uint32 r, g, b; | 
 | 	(void) y; | 
 | 	fromskew *= 3; | 
 | 	for( ; h > 0; --h) { | 
 | 		for (x = w; x > 0; --x) { | 
 | 			TIFFCIELabToXYZ(img->cielab, | 
 | 					(unsigned char)pp[0], | 
 | 					(signed char)pp[1], | 
 | 					(signed char)pp[2], | 
 | 					&X, &Y, &Z); | 
 | 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); | 
 | 			*cp++ = PACK(r, g, b); | 
 | 			pp += 3; | 
 | 		} | 
 | 		cp += toskew; | 
 | 		pp += fromskew; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * YCbCr -> RGB conversion and packing routines. | 
 |  */ | 
 |  | 
 | #define	YCbCrtoRGB(dst, Y) {						\ | 
 | 	uint32 r, g, b;							\ | 
 | 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\ | 
 | 	dst = PACK(r, g, b);						\ | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples => RGB  | 
 |  * This function is generic for different sampling sizes,  | 
 |  * and can handle blocks sizes that aren't multiples of the | 
 |  * sampling size.  However, it is substantially less optimized | 
 |  * than the specific sampling cases.  It is used as a fallback | 
 |  * for difficult blocks. | 
 |  */ | 
 | #ifdef notdef | 
 | static void putcontig8bitYCbCrGenericTile(  | 
 |     TIFFRGBAImage* img,  | 
 |     uint32* cp,  | 
 |     uint32 x, uint32 y,  | 
 |     uint32 w, uint32 h,  | 
 |     int32 fromskew, int32 toskew,  | 
 |     unsigned char* pp, | 
 |     int h_group,  | 
 |     int v_group ) | 
 |  | 
 | { | 
 |     uint32* cp1 = cp+w+toskew; | 
 |     uint32* cp2 = cp1+w+toskew; | 
 |     uint32* cp3 = cp2+w+toskew; | 
 |     int32 incr = 3*w+4*toskew; | 
 |     int32   Cb, Cr; | 
 |     int     group_size = v_group * h_group + 2; | 
 |  | 
 |     (void) y; | 
 |     fromskew = (fromskew * group_size) / h_group; | 
 |  | 
 |     for( yy = 0; yy < h; yy++ ) | 
 |     { | 
 |         unsigned char *pp_line; | 
 |         int     y_line_group = yy / v_group; | 
 |         int     y_remainder = yy - y_line_group * v_group; | 
 |  | 
 |         pp_line = pp + v_line_group *  | 
 |  | 
 |          | 
 |         for( xx = 0; xx < w; xx++ ) | 
 |         { | 
 |             Cb = pp | 
 |         } | 
 |     } | 
 |     for (; h >= 4; h -= 4) { | 
 | 	x = w>>2; | 
 | 	do { | 
 | 	    Cb = pp[16]; | 
 | 	    Cr = pp[17]; | 
 |  | 
 | 	    YCbCrtoRGB(cp [0], pp[ 0]); | 
 | 	    YCbCrtoRGB(cp [1], pp[ 1]); | 
 | 	    YCbCrtoRGB(cp [2], pp[ 2]); | 
 | 	    YCbCrtoRGB(cp [3], pp[ 3]); | 
 | 	    YCbCrtoRGB(cp1[0], pp[ 4]); | 
 | 	    YCbCrtoRGB(cp1[1], pp[ 5]); | 
 | 	    YCbCrtoRGB(cp1[2], pp[ 6]); | 
 | 	    YCbCrtoRGB(cp1[3], pp[ 7]); | 
 | 	    YCbCrtoRGB(cp2[0], pp[ 8]); | 
 | 	    YCbCrtoRGB(cp2[1], pp[ 9]); | 
 | 	    YCbCrtoRGB(cp2[2], pp[10]); | 
 | 	    YCbCrtoRGB(cp2[3], pp[11]); | 
 | 	    YCbCrtoRGB(cp3[0], pp[12]); | 
 | 	    YCbCrtoRGB(cp3[1], pp[13]); | 
 | 	    YCbCrtoRGB(cp3[2], pp[14]); | 
 | 	    YCbCrtoRGB(cp3[3], pp[15]); | 
 |  | 
 | 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | 
 | 	    pp += 18; | 
 | 	} while (--x); | 
 | 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | 
 | 	pp += fromskew; | 
 |     } | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putcontig8bitYCbCr44tile) | 
 | { | 
 |     uint32* cp1 = cp+w+toskew; | 
 |     uint32* cp2 = cp1+w+toskew; | 
 |     uint32* cp3 = cp2+w+toskew; | 
 |     int32 incr = 3*w+4*toskew; | 
 |  | 
 |     (void) y; | 
 |     /* adjust fromskew */ | 
 |     fromskew = (fromskew / 4) * (4*2+2); | 
 |     if ((h & 3) == 0 && (w & 3) == 0) {				         | 
 |         for (; h >= 4; h -= 4) { | 
 |             x = w>>2; | 
 |             do { | 
 |                 int32 Cb = pp[16]; | 
 |                 int32 Cr = pp[17]; | 
 |  | 
 |                 YCbCrtoRGB(cp [0], pp[ 0]); | 
 |                 YCbCrtoRGB(cp [1], pp[ 1]); | 
 |                 YCbCrtoRGB(cp [2], pp[ 2]); | 
 |                 YCbCrtoRGB(cp [3], pp[ 3]); | 
 |                 YCbCrtoRGB(cp1[0], pp[ 4]); | 
 |                 YCbCrtoRGB(cp1[1], pp[ 5]); | 
 |                 YCbCrtoRGB(cp1[2], pp[ 6]); | 
 |                 YCbCrtoRGB(cp1[3], pp[ 7]); | 
 |                 YCbCrtoRGB(cp2[0], pp[ 8]); | 
 |                 YCbCrtoRGB(cp2[1], pp[ 9]); | 
 |                 YCbCrtoRGB(cp2[2], pp[10]); | 
 |                 YCbCrtoRGB(cp2[3], pp[11]); | 
 |                 YCbCrtoRGB(cp3[0], pp[12]); | 
 |                 YCbCrtoRGB(cp3[1], pp[13]); | 
 |                 YCbCrtoRGB(cp3[2], pp[14]); | 
 |                 YCbCrtoRGB(cp3[3], pp[15]); | 
 |  | 
 |                 cp += 4; | 
 |                 cp1 += 4; | 
 |                 cp2 += 4; | 
 |                 cp3 += 4; | 
 |                 pp += 18; | 
 |             } while (--x); | 
 |             cp += incr; | 
 |             cp1 += incr; | 
 |             cp2 += incr; | 
 |             cp3 += incr; | 
 |             pp += fromskew; | 
 |         } | 
 |     } else { | 
 |         while (h > 0) { | 
 |             for (x = w; x > 0;) { | 
 |                 int32 Cb = pp[16]; | 
 |                 int32 Cr = pp[17]; | 
 |                 switch (x) { | 
 |                 default: | 
 |                     switch (h) { | 
 |                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ | 
 |                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ | 
 |                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | 
 |                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | 
 |                     }                                    /* FALLTHROUGH */ | 
 |                 case 3: | 
 |                     switch (h) { | 
 |                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ | 
 |                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ | 
 |                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | 
 |                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | 
 |                     }                                    /* FALLTHROUGH */ | 
 |                 case 2: | 
 |                     switch (h) { | 
 |                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ | 
 |                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ | 
 |                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | 
 |                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | 
 |                     }                                    /* FALLTHROUGH */ | 
 |                 case 1: | 
 |                     switch (h) { | 
 |                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ | 
 |                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ | 
 |                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | 
 |                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | 
 |                     }                                    /* FALLTHROUGH */ | 
 |                 } | 
 |                 if (x < 4) { | 
 |                     cp += x; cp1 += x; cp2 += x; cp3 += x; | 
 |                     x = 0; | 
 |                 } | 
 |                 else { | 
 |                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; | 
 |                     x -= 4; | 
 |                 } | 
 |                 pp += 18; | 
 |             } | 
 |             if (h <= 4) | 
 |                 break; | 
 |             h -= 4; | 
 |             cp += incr; | 
 |             cp1 += incr; | 
 |             cp2 += incr; | 
 |             cp3 += incr; | 
 |             pp += fromskew; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putcontig8bitYCbCr42tile) | 
 | { | 
 |     uint32* cp1 = cp+w+toskew; | 
 |     int32 incr = 2*toskew+w; | 
 |  | 
 |     (void) y; | 
 |     fromskew = (fromskew / 4) * (4*2+2); | 
 |     if ((w & 3) == 0 && (h & 1) == 0) { | 
 |         for (; h >= 2; h -= 2) { | 
 |             x = w>>2; | 
 |             do { | 
 |                 int32 Cb = pp[8]; | 
 |                 int32 Cr = pp[9]; | 
 |                  | 
 |                 YCbCrtoRGB(cp [0], pp[0]); | 
 |                 YCbCrtoRGB(cp [1], pp[1]); | 
 |                 YCbCrtoRGB(cp [2], pp[2]); | 
 |                 YCbCrtoRGB(cp [3], pp[3]); | 
 |                 YCbCrtoRGB(cp1[0], pp[4]); | 
 |                 YCbCrtoRGB(cp1[1], pp[5]); | 
 |                 YCbCrtoRGB(cp1[2], pp[6]); | 
 |                 YCbCrtoRGB(cp1[3], pp[7]); | 
 |                  | 
 |                 cp += 4; | 
 |                 cp1 += 4; | 
 |                 pp += 10; | 
 |             } while (--x); | 
 |             cp += incr; | 
 |             cp1 += incr; | 
 |             pp += fromskew; | 
 |         } | 
 |     } else { | 
 |         while (h > 0) { | 
 |             for (x = w; x > 0;) { | 
 |                 int32 Cb = pp[8]; | 
 |                 int32 Cr = pp[9]; | 
 |                 switch (x) { | 
 |                 default: | 
 |                     switch (h) { | 
 |                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | 
 |                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | 
 |                     }                                    /* FALLTHROUGH */ | 
 |                 case 3: | 
 |                     switch (h) { | 
 |                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | 
 |                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | 
 |                     }                                    /* FALLTHROUGH */ | 
 |                 case 2: | 
 |                     switch (h) { | 
 |                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | 
 |                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | 
 |                     }                                    /* FALLTHROUGH */ | 
 |                 case 1: | 
 |                     switch (h) { | 
 |                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | 
 |                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | 
 |                     }                                    /* FALLTHROUGH */ | 
 |                 } | 
 |                 if (x < 4) { | 
 |                     cp += x; cp1 += x; | 
 |                     x = 0; | 
 |                 } | 
 |                 else { | 
 |                     cp += 4; cp1 += 4; | 
 |                     x -= 4; | 
 |                 } | 
 |                 pp += 10; | 
 |             } | 
 |             if (h <= 2) | 
 |                 break; | 
 |             h -= 2; | 
 |             cp += incr; | 
 |             cp1 += incr; | 
 |             pp += fromskew; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putcontig8bitYCbCr41tile) | 
 | { | 
 |     (void) y; | 
 |     fromskew = (fromskew / 4) * (4*1+2); | 
 |     do { | 
 | 	x = w>>2; | 
 | 	while(x>0) { | 
 | 	    int32 Cb = pp[4]; | 
 | 	    int32 Cr = pp[5]; | 
 |  | 
 | 	    YCbCrtoRGB(cp [0], pp[0]); | 
 | 	    YCbCrtoRGB(cp [1], pp[1]); | 
 | 	    YCbCrtoRGB(cp [2], pp[2]); | 
 | 	    YCbCrtoRGB(cp [3], pp[3]); | 
 |  | 
 | 	    cp += 4; | 
 | 	    pp += 6; | 
 | 		x--; | 
 | 	} | 
 |  | 
 |         if( (w&3) != 0 ) | 
 |         { | 
 | 	    int32 Cb = pp[4]; | 
 | 	    int32 Cr = pp[5]; | 
 |  | 
 |             switch( (w&3) ) { | 
 |               case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/ | 
 |               case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/ | 
 |               case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/ | 
 |               case 0: break; | 
 |             } | 
 |  | 
 |             cp += (w&3); | 
 |             pp += 6; | 
 |         } | 
 |  | 
 | 	cp += toskew; | 
 | 	pp += fromskew; | 
 |     } while (--h); | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putcontig8bitYCbCr22tile) | 
 | { | 
 | 	uint32* cp2; | 
 | 	int32 incr = 2*toskew+w; | 
 | 	(void) y; | 
 | 	fromskew = (fromskew / 2) * (2*2+2); | 
 | 	cp2 = cp+w+toskew; | 
 | 	while (h>=2) { | 
 | 		x = w; | 
 | 		while (x>=2) { | 
 | 			uint32 Cb = pp[4]; | 
 | 			uint32 Cr = pp[5]; | 
 | 			YCbCrtoRGB(cp[0], pp[0]); | 
 | 			YCbCrtoRGB(cp[1], pp[1]); | 
 | 			YCbCrtoRGB(cp2[0], pp[2]); | 
 | 			YCbCrtoRGB(cp2[1], pp[3]); | 
 | 			cp += 2; | 
 | 			cp2 += 2; | 
 | 			pp += 6; | 
 | 			x -= 2; | 
 | 		} | 
 | 		if (x==1) { | 
 | 			uint32 Cb = pp[4]; | 
 | 			uint32 Cr = pp[5]; | 
 | 			YCbCrtoRGB(cp[0], pp[0]); | 
 | 			YCbCrtoRGB(cp2[0], pp[2]); | 
 | 			cp ++ ; | 
 | 			cp2 ++ ; | 
 | 			pp += 6; | 
 | 		} | 
 | 		cp += incr; | 
 | 		cp2 += incr; | 
 | 		pp += fromskew; | 
 | 		h-=2; | 
 | 	} | 
 | 	if (h==1) { | 
 | 		x = w; | 
 | 		while (x>=2) { | 
 | 			uint32 Cb = pp[4]; | 
 | 			uint32 Cr = pp[5]; | 
 | 			YCbCrtoRGB(cp[0], pp[0]); | 
 | 			YCbCrtoRGB(cp[1], pp[1]); | 
 | 			cp += 2; | 
 | 			cp2 += 2; | 
 | 			pp += 6; | 
 | 			x -= 2; | 
 | 		} | 
 | 		if (x==1) { | 
 | 			uint32 Cb = pp[4]; | 
 | 			uint32 Cr = pp[5]; | 
 | 			YCbCrtoRGB(cp[0], pp[0]); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putcontig8bitYCbCr21tile) | 
 | { | 
 | 	(void) y; | 
 | 	fromskew = (fromskew / 2) * (2*1+2); | 
 | 	do { | 
 | 		x = w>>1; | 
 | 		while(x>0) { | 
 | 			int32 Cb = pp[2]; | 
 | 			int32 Cr = pp[3]; | 
 |  | 
 | 			YCbCrtoRGB(cp[0], pp[0]); | 
 | 			YCbCrtoRGB(cp[1], pp[1]); | 
 |  | 
 | 			cp += 2; | 
 | 			pp += 4; | 
 | 			x --; | 
 | 		} | 
 |  | 
 | 		if( (w&1) != 0 ) | 
 | 		{ | 
 | 			int32 Cb = pp[2]; | 
 | 			int32 Cr = pp[3]; | 
 |  | 
 | 			YCbCrtoRGB(cp[0], pp[0]); | 
 |  | 
 | 			cp += 1; | 
 | 			pp += 4; | 
 | 		} | 
 |  | 
 | 		cp += toskew; | 
 | 		pp += fromskew; | 
 | 	} while (--h); | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putcontig8bitYCbCr12tile) | 
 | { | 
 | 	uint32* cp2; | 
 | 	int32 incr = 2*toskew+w; | 
 | 	(void) y; | 
 | 	fromskew = (fromskew / 1) * (1 * 2 + 2); | 
 | 	cp2 = cp+w+toskew; | 
 | 	while (h>=2) { | 
 | 		x = w; | 
 | 		do { | 
 | 			uint32 Cb = pp[2]; | 
 | 			uint32 Cr = pp[3]; | 
 | 			YCbCrtoRGB(cp[0], pp[0]); | 
 | 			YCbCrtoRGB(cp2[0], pp[1]); | 
 | 			cp ++; | 
 | 			cp2 ++; | 
 | 			pp += 4; | 
 | 		} while (--x); | 
 | 		cp += incr; | 
 | 		cp2 += incr; | 
 | 		pp += fromskew; | 
 | 		h-=2; | 
 | 	} | 
 | 	if (h==1) { | 
 | 		x = w; | 
 | 		do { | 
 | 			uint32 Cb = pp[2]; | 
 | 			uint32 Cr = pp[3]; | 
 | 			YCbCrtoRGB(cp[0], pp[0]); | 
 | 			cp ++; | 
 | 			pp += 4; | 
 | 		} while (--x); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples w/ no subsampling => RGB | 
 |  */ | 
 | DECLAREContigPutFunc(putcontig8bitYCbCr11tile) | 
 | { | 
 | 	(void) y; | 
 | 	fromskew = (fromskew / 1) * (1 * 1 + 2); | 
 | 	do { | 
 | 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ | 
 | 		do { | 
 | 			int32 Cb = pp[1]; | 
 | 			int32 Cr = pp[2]; | 
 |  | 
 | 			YCbCrtoRGB(*cp++, pp[0]); | 
 |  | 
 | 			pp += 3; | 
 | 		} while (--x); | 
 | 		cp += toskew; | 
 | 		pp += fromskew; | 
 | 	} while (--h); | 
 | } | 
 |  | 
 | /* | 
 |  * 8-bit packed YCbCr samples w/ no subsampling => RGB | 
 |  */ | 
 | DECLARESepPutFunc(putseparate8bitYCbCr11tile) | 
 | { | 
 | 	(void) y; | 
 | 	(void) a; | 
 | 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */ | 
 | 	for( ; h > 0; --h) { | 
 | 		x = w; | 
 | 		do { | 
 | 			uint32 dr, dg, db; | 
 | 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db); | 
 | 			*cp++ = PACK(dr,dg,db); | 
 | 		} while (--x); | 
 | 		SKEW(r, g, b, fromskew); | 
 | 		cp += toskew; | 
 | 	} | 
 | } | 
 | #undef YCbCrtoRGB | 
 |  | 
 | static int isInRefBlackWhiteRange(float f) | 
 | { | 
 |     return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF; | 
 | } | 
 |  | 
 | static int | 
 | initYCbCrConversion(TIFFRGBAImage* img) | 
 | { | 
 | 	static const char module[] = "initYCbCrConversion"; | 
 |  | 
 | 	float *luma, *refBlackWhite; | 
 |  | 
 | 	if (img->ycbcr == NULL) { | 
 | 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( | 
 | 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))   | 
 | 		    + 4*256*sizeof (TIFFRGBValue) | 
 | 		    + 2*256*sizeof (int) | 
 | 		    + 3*256*sizeof (int32) | 
 | 		    ); | 
 | 		if (img->ycbcr == NULL) { | 
 | 			TIFFErrorExt(img->tif->tif_clientdata, module, | 
 | 			    "No space for YCbCr->RGB conversion state"); | 
 | 			return (0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); | 
 | 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, | 
 | 	    &refBlackWhite); | 
 |  | 
 |         /* Do some validation to avoid later issues. Detect NaN for now */ | 
 |         /* and also if lumaGreen is zero since we divide by it later */ | 
 |         if( luma[0] != luma[0] || | 
 |             luma[1] != luma[1] || | 
 |             luma[1] == 0.0 || | 
 |             luma[2] != luma[2] ) | 
 |         { | 
 |             TIFFErrorExt(img->tif->tif_clientdata, module, | 
 |                 "Invalid values for YCbCrCoefficients tag"); | 
 |             return (0); | 
 |         } | 
 |  | 
 |         if( !isInRefBlackWhiteRange(refBlackWhite[0]) || | 
 |             !isInRefBlackWhiteRange(refBlackWhite[1]) || | 
 |             !isInRefBlackWhiteRange(refBlackWhite[2]) || | 
 |             !isInRefBlackWhiteRange(refBlackWhite[3]) || | 
 |             !isInRefBlackWhiteRange(refBlackWhite[4]) || | 
 |             !isInRefBlackWhiteRange(refBlackWhite[5]) ) | 
 |         { | 
 |             TIFFErrorExt(img->tif->tif_clientdata, module, | 
 |                 "Invalid values for ReferenceBlackWhite tag"); | 
 |             return (0); | 
 |         } | 
 |  | 
 | 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) | 
 | 		return(0); | 
 | 	return (1); | 
 | } | 
 |  | 
 | static tileContigRoutine | 
 | initCIELabConversion(TIFFRGBAImage* img) | 
 | { | 
 | 	static const char module[] = "initCIELabConversion"; | 
 |  | 
 | 	float   *whitePoint; | 
 | 	float   refWhite[3]; | 
 |  | 
 | 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); | 
 | 	if (whitePoint[1] == 0.0f ) { | 
 | 		TIFFErrorExt(img->tif->tif_clientdata, module, | 
 | 		    "Invalid value for WhitePoint tag."); | 
 | 		return NULL; | 
 |         } | 
 |  | 
 | 	if (!img->cielab) { | 
 | 		img->cielab = (TIFFCIELabToRGB *) | 
 | 			_TIFFmalloc(sizeof(TIFFCIELabToRGB)); | 
 | 		if (!img->cielab) { | 
 | 			TIFFErrorExt(img->tif->tif_clientdata, module, | 
 | 			    "No space for CIE L*a*b*->RGB conversion state."); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	refWhite[1] = 100.0F; | 
 | 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; | 
 | 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) | 
 | 		      / whitePoint[1] * refWhite[1]; | 
 | 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { | 
 | 		TIFFErrorExt(img->tif->tif_clientdata, module, | 
 | 		    "Failed to initialize CIE L*a*b*->RGB conversion state."); | 
 | 		_TIFFfree(img->cielab); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return putcontig8bitCIELab; | 
 | } | 
 |  | 
 | /* | 
 |  * Greyscale images with less than 8 bits/sample are handled | 
 |  * with a table to avoid lots of shifts and masks.  The table | 
 |  * is setup so that put*bwtile (below) can retrieve 8/bitspersample | 
 |  * pixel values simply by indexing into the table with one | 
 |  * number. | 
 |  */ | 
 | static int | 
 | makebwmap(TIFFRGBAImage* img) | 
 | { | 
 |     TIFFRGBValue* Map = img->Map; | 
 |     int bitspersample = img->bitspersample; | 
 |     int nsamples = 8 / bitspersample; | 
 |     int i; | 
 |     uint32* p; | 
 |  | 
 |     if( nsamples == 0 ) | 
 |         nsamples = 1; | 
 |  | 
 |     img->BWmap = (uint32**) _TIFFmalloc( | 
 | 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | 
 |     if (img->BWmap == NULL) { | 
 | 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table"); | 
 | 		return (0); | 
 |     } | 
 |     p = (uint32*)(img->BWmap + 256); | 
 |     for (i = 0; i < 256; i++) { | 
 | 	TIFFRGBValue c; | 
 | 	img->BWmap[i] = p; | 
 | 	switch (bitspersample) { | 
 | #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c); | 
 | 	case 1: | 
 | 	    GREY(i>>7); | 
 | 	    GREY((i>>6)&1); | 
 | 	    GREY((i>>5)&1); | 
 | 	    GREY((i>>4)&1); | 
 | 	    GREY((i>>3)&1); | 
 | 	    GREY((i>>2)&1); | 
 | 	    GREY((i>>1)&1); | 
 | 	    GREY(i&1); | 
 | 	    break; | 
 | 	case 2: | 
 | 	    GREY(i>>6); | 
 | 	    GREY((i>>4)&3); | 
 | 	    GREY((i>>2)&3); | 
 | 	    GREY(i&3); | 
 | 	    break; | 
 | 	case 4: | 
 | 	    GREY(i>>4); | 
 | 	    GREY(i&0xf); | 
 | 	    break; | 
 | 	case 8: | 
 |         case 16: | 
 | 	    GREY(i); | 
 | 	    break; | 
 | 	} | 
 | #undef	GREY | 
 |     } | 
 |     return (1); | 
 | } | 
 |  | 
 | /* | 
 |  * Construct a mapping table to convert from the range | 
 |  * of the data samples to [0,255] --for display.  This | 
 |  * process also handles inverting B&W images when needed. | 
 |  */  | 
 | static int | 
 | setupMap(TIFFRGBAImage* img) | 
 | { | 
 |     int32 x, range; | 
 |  | 
 |     range = (int32)((1L<<img->bitspersample)-1); | 
 |      | 
 |     /* treat 16 bit the same as eight bit */ | 
 |     if( img->bitspersample == 16 ) | 
 |         range = (int32) 255; | 
 |  | 
 |     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); | 
 |     if (img->Map == NULL) { | 
 | 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | 
 | 			"No space for photometric conversion table"); | 
 | 		return (0); | 
 |     } | 
 |     if (img->photometric == PHOTOMETRIC_MINISWHITE) { | 
 | 	for (x = 0; x <= range; x++) | 
 | 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); | 
 |     } else { | 
 | 	for (x = 0; x <= range; x++) | 
 | 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range); | 
 |     } | 
 |     if (img->bitspersample <= 16 && | 
 | 	(img->photometric == PHOTOMETRIC_MINISBLACK || | 
 | 	 img->photometric == PHOTOMETRIC_MINISWHITE)) { | 
 | 	/* | 
 | 	 * Use photometric mapping table to construct | 
 | 	 * unpacking tables for samples <= 8 bits. | 
 | 	 */ | 
 | 	if (!makebwmap(img)) | 
 | 	    return (0); | 
 | 	/* no longer need Map, free it */ | 
 | 	_TIFFfree(img->Map); | 
 | 	img->Map = NULL; | 
 |     } | 
 |     return (1); | 
 | } | 
 |  | 
 | static int | 
 | checkcmap(TIFFRGBAImage* img) | 
 | { | 
 |     uint16* r = img->redcmap; | 
 |     uint16* g = img->greencmap; | 
 |     uint16* b = img->bluecmap; | 
 |     long n = 1L<<img->bitspersample; | 
 |  | 
 |     while (n-- > 0) | 
 | 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) | 
 | 	    return (16); | 
 |     return (8); | 
 | } | 
 |  | 
 | static void | 
 | cvtcmap(TIFFRGBAImage* img) | 
 | { | 
 |     uint16* r = img->redcmap; | 
 |     uint16* g = img->greencmap; | 
 |     uint16* b = img->bluecmap; | 
 |     long i; | 
 |  | 
 |     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { | 
 | #define	CVT(x)		((uint16)((x)>>8)) | 
 | 	r[i] = CVT(r[i]); | 
 | 	g[i] = CVT(g[i]); | 
 | 	b[i] = CVT(b[i]); | 
 | #undef	CVT | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * Palette images with <= 8 bits/sample are handled | 
 |  * with a table to avoid lots of shifts and masks.  The table | 
 |  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample | 
 |  * pixel values simply by indexing into the table with one | 
 |  * number. | 
 |  */ | 
 | static int | 
 | makecmap(TIFFRGBAImage* img) | 
 | { | 
 |     int bitspersample = img->bitspersample; | 
 |     int nsamples = 8 / bitspersample; | 
 |     uint16* r = img->redcmap; | 
 |     uint16* g = img->greencmap; | 
 |     uint16* b = img->bluecmap; | 
 |     uint32 *p; | 
 |     int i; | 
 |  | 
 |     img->PALmap = (uint32**) _TIFFmalloc( | 
 | 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | 
 |     if (img->PALmap == NULL) { | 
 | 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table"); | 
 | 		return (0); | 
 | 	} | 
 |     p = (uint32*)(img->PALmap + 256); | 
 |     for (i = 0; i < 256; i++) { | 
 | 	TIFFRGBValue c; | 
 | 	img->PALmap[i] = p; | 
 | #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff); | 
 | 	switch (bitspersample) { | 
 | 	case 1: | 
 | 	    CMAP(i>>7); | 
 | 	    CMAP((i>>6)&1); | 
 | 	    CMAP((i>>5)&1); | 
 | 	    CMAP((i>>4)&1); | 
 | 	    CMAP((i>>3)&1); | 
 | 	    CMAP((i>>2)&1); | 
 | 	    CMAP((i>>1)&1); | 
 | 	    CMAP(i&1); | 
 | 	    break; | 
 | 	case 2: | 
 | 	    CMAP(i>>6); | 
 | 	    CMAP((i>>4)&3); | 
 | 	    CMAP((i>>2)&3); | 
 | 	    CMAP(i&3); | 
 | 	    break; | 
 | 	case 4: | 
 | 	    CMAP(i>>4); | 
 | 	    CMAP(i&0xf); | 
 | 	    break; | 
 | 	case 8: | 
 | 	    CMAP(i); | 
 | 	    break; | 
 | 	} | 
 | #undef CMAP | 
 |     } | 
 |     return (1); | 
 | } | 
 |  | 
 | /*  | 
 |  * Construct any mapping table used | 
 |  * by the associated put routine. | 
 |  */ | 
 | static int | 
 | buildMap(TIFFRGBAImage* img) | 
 | { | 
 |     switch (img->photometric) { | 
 |     case PHOTOMETRIC_RGB: | 
 |     case PHOTOMETRIC_YCBCR: | 
 |     case PHOTOMETRIC_SEPARATED: | 
 | 	if (img->bitspersample == 8) | 
 | 	    break; | 
 | 	/* fall through... */ | 
 |     case PHOTOMETRIC_MINISBLACK: | 
 |     case PHOTOMETRIC_MINISWHITE: | 
 | 	if (!setupMap(img)) | 
 | 	    return (0); | 
 | 	break; | 
 |     case PHOTOMETRIC_PALETTE: | 
 | 	/* | 
 | 	 * Convert 16-bit colormap to 8-bit (unless it looks | 
 | 	 * like an old-style 8-bit colormap). | 
 | 	 */ | 
 | 	if (checkcmap(img) == 16) | 
 | 	    cvtcmap(img); | 
 | 	else | 
 | 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap"); | 
 | 	/* | 
 | 	 * Use mapping table and colormap to construct | 
 | 	 * unpacking tables for samples < 8 bits. | 
 | 	 */ | 
 | 	if (img->bitspersample <= 8 && !makecmap(img)) | 
 | 	    return (0); | 
 | 	break; | 
 |     } | 
 |     return (1); | 
 | } | 
 |  | 
 | /* | 
 |  * Select the appropriate conversion routine for packed data. | 
 |  */ | 
 | static int | 
 | PickContigCase(TIFFRGBAImage* img) | 
 | { | 
 | 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig; | 
 | 	img->put.contig = NULL; | 
 | 	switch (img->photometric) { | 
 | 		case PHOTOMETRIC_RGB: | 
 | 			switch (img->bitspersample) { | 
 | 				case 8: | 
 | 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA && | 
 | 						img->samplesperpixel >= 4) | 
 | 						img->put.contig = putRGBAAcontig8bittile; | 
 | 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA && | 
 | 							 img->samplesperpixel >= 4) | 
 | 					{ | 
 | 						if (BuildMapUaToAa(img)) | 
 | 							img->put.contig = putRGBUAcontig8bittile; | 
 | 					} | 
 | 					else if( img->samplesperpixel >= 3 ) | 
 | 						img->put.contig = putRGBcontig8bittile; | 
 | 					break; | 
 | 				case 16: | 
 | 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA && | 
 | 						img->samplesperpixel >=4 ) | 
 | 					{ | 
 | 						if (BuildMapBitdepth16To8(img)) | 
 | 							img->put.contig = putRGBAAcontig16bittile; | 
 | 					} | 
 | 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA && | 
 | 							 img->samplesperpixel >=4 ) | 
 | 					{ | 
 | 						if (BuildMapBitdepth16To8(img) && | 
 | 						    BuildMapUaToAa(img)) | 
 | 							img->put.contig = putRGBUAcontig16bittile; | 
 | 					} | 
 | 					else if( img->samplesperpixel >=3 ) | 
 | 					{ | 
 | 						if (BuildMapBitdepth16To8(img)) | 
 | 							img->put.contig = putRGBcontig16bittile; | 
 | 					} | 
 | 					break; | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_SEPARATED: | 
 | 			if (img->samplesperpixel >=4 && buildMap(img)) { | 
 | 				if (img->bitspersample == 8) { | 
 | 					if (!img->Map) | 
 | 						img->put.contig = putRGBcontig8bitCMYKtile; | 
 | 					else | 
 | 						img->put.contig = putRGBcontig8bitCMYKMaptile; | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_PALETTE: | 
 | 			if (buildMap(img)) { | 
 | 				switch (img->bitspersample) { | 
 | 					case 8: | 
 | 						img->put.contig = put8bitcmaptile; | 
 | 						break; | 
 | 					case 4: | 
 | 						img->put.contig = put4bitcmaptile; | 
 | 						break; | 
 | 					case 2: | 
 | 						img->put.contig = put2bitcmaptile; | 
 | 						break; | 
 | 					case 1: | 
 | 						img->put.contig = put1bitcmaptile; | 
 | 						break; | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_MINISWHITE: | 
 | 		case PHOTOMETRIC_MINISBLACK: | 
 | 			if (buildMap(img)) { | 
 | 				switch (img->bitspersample) { | 
 | 					case 16: | 
 | 						img->put.contig = put16bitbwtile; | 
 | 						break; | 
 | 					case 8: | 
 | 						if (img->alpha && img->samplesperpixel == 2) | 
 | 							img->put.contig = putagreytile; | 
 | 						else | 
 | 							img->put.contig = putgreytile; | 
 | 						break; | 
 | 					case 4: | 
 | 						img->put.contig = put4bitbwtile; | 
 | 						break; | 
 | 					case 2: | 
 | 						img->put.contig = put2bitbwtile; | 
 | 						break; | 
 | 					case 1: | 
 | 						img->put.contig = put1bitbwtile; | 
 | 						break; | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_YCBCR: | 
 | 			if ((img->bitspersample==8) && (img->samplesperpixel==3)) | 
 | 			{ | 
 | 				if (initYCbCrConversion(img)!=0) | 
 | 				{ | 
 | 					/* | 
 | 					 * The 6.0 spec says that subsampling must be | 
 | 					 * one of 1, 2, or 4, and that vertical subsampling | 
 | 					 * must always be <= horizontal subsampling; so | 
 | 					 * there are only a few possibilities and we just | 
 | 					 * enumerate the cases. | 
 | 					 * Joris: added support for the [1,2] case, nonetheless, to accommodate | 
 | 					 * some OJPEG files | 
 | 					 */ | 
 | 					uint16 SubsamplingHor; | 
 | 					uint16 SubsamplingVer; | 
 | 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer); | 
 | 					switch ((SubsamplingHor<<4)|SubsamplingVer) { | 
 | 						case 0x44: | 
 | 							img->put.contig = putcontig8bitYCbCr44tile; | 
 | 							break; | 
 | 						case 0x42: | 
 | 							img->put.contig = putcontig8bitYCbCr42tile; | 
 | 							break; | 
 | 						case 0x41: | 
 | 							img->put.contig = putcontig8bitYCbCr41tile; | 
 | 							break; | 
 | 						case 0x22: | 
 | 							img->put.contig = putcontig8bitYCbCr22tile; | 
 | 							break; | 
 | 						case 0x21: | 
 | 							img->put.contig = putcontig8bitYCbCr21tile; | 
 | 							break; | 
 | 						case 0x12: | 
 | 							img->put.contig = putcontig8bitYCbCr12tile; | 
 | 							break; | 
 | 						case 0x11: | 
 | 							img->put.contig = putcontig8bitYCbCr11tile; | 
 | 							break; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		case PHOTOMETRIC_CIELAB: | 
 | 			if (img->samplesperpixel == 3 && buildMap(img)) { | 
 | 				if (img->bitspersample == 8) | 
 | 					img->put.contig = initCIELabConversion(img); | 
 | 				break; | 
 | 			} | 
 | 	} | 
 | 	return ((img->get!=NULL) && (img->put.contig!=NULL)); | 
 | } | 
 |  | 
 | /* | 
 |  * Select the appropriate conversion routine for unpacked data. | 
 |  * | 
 |  * NB: we assume that unpacked single channel data is directed | 
 |  *	 to the "packed routines. | 
 |  */ | 
 | static int | 
 | PickSeparateCase(TIFFRGBAImage* img) | 
 | { | 
 | 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate; | 
 | 	img->put.separate = NULL; | 
 | 	switch (img->photometric) { | 
 | 	case PHOTOMETRIC_MINISWHITE: | 
 | 	case PHOTOMETRIC_MINISBLACK: | 
 | 		/* greyscale images processed pretty much as RGB by gtTileSeparate */ | 
 | 	case PHOTOMETRIC_RGB: | 
 | 		switch (img->bitspersample) { | 
 | 		case 8: | 
 | 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | 
 | 				img->put.separate = putRGBAAseparate8bittile; | 
 | 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | 
 | 			{ | 
 | 				if (BuildMapUaToAa(img)) | 
 | 					img->put.separate = putRGBUAseparate8bittile; | 
 | 			} | 
 | 			else | 
 | 				img->put.separate = putRGBseparate8bittile; | 
 | 			break; | 
 | 		case 16: | 
 | 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | 
 | 			{ | 
 | 				if (BuildMapBitdepth16To8(img)) | 
 | 					img->put.separate = putRGBAAseparate16bittile; | 
 | 			} | 
 | 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | 
 | 			{ | 
 | 				if (BuildMapBitdepth16To8(img) && | 
 | 				    BuildMapUaToAa(img)) | 
 | 					img->put.separate = putRGBUAseparate16bittile; | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				if (BuildMapBitdepth16To8(img)) | 
 | 					img->put.separate = putRGBseparate16bittile; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case PHOTOMETRIC_SEPARATED: | 
 | 		if (img->bitspersample == 8 && img->samplesperpixel == 4) | 
 | 		{ | 
 | 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band | 
 | 			img->put.separate = putCMYKseparate8bittile; | 
 | 		} | 
 | 		break; | 
 | 	case PHOTOMETRIC_YCBCR: | 
 | 		if ((img->bitspersample==8) && (img->samplesperpixel==3)) | 
 | 		{ | 
 | 			if (initYCbCrConversion(img)!=0) | 
 | 			{ | 
 | 				uint16 hs, vs; | 
 | 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs); | 
 | 				switch ((hs<<4)|vs) { | 
 | 				case 0x11: | 
 | 					img->put.separate = putseparate8bitYCbCr11tile; | 
 | 					break; | 
 | 					/* TODO: add other cases here */ | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	return ((img->get!=NULL) && (img->put.separate!=NULL)); | 
 | } | 
 |  | 
 | static int | 
 | BuildMapUaToAa(TIFFRGBAImage* img) | 
 | { | 
 | 	static const char module[]="BuildMapUaToAa"; | 
 | 	uint8* m; | 
 | 	uint16 na,nv; | 
 | 	assert(img->UaToAa==NULL); | 
 | 	img->UaToAa=_TIFFmalloc(65536); | 
 | 	if (img->UaToAa==NULL) | 
 | 	{ | 
 | 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); | 
 | 		return(0); | 
 | 	} | 
 | 	m=img->UaToAa; | 
 | 	for (na=0; na<256; na++) | 
 | 	{ | 
 | 		for (nv=0; nv<256; nv++) | 
 | 			*m++=(uint8)((nv*na+127)/255); | 
 | 	} | 
 | 	return(1); | 
 | } | 
 |  | 
 | static int | 
 | BuildMapBitdepth16To8(TIFFRGBAImage* img) | 
 | { | 
 | 	static const char module[]="BuildMapBitdepth16To8"; | 
 | 	uint8* m; | 
 | 	uint32 n; | 
 | 	assert(img->Bitdepth16To8==NULL); | 
 | 	img->Bitdepth16To8=_TIFFmalloc(65536); | 
 | 	if (img->Bitdepth16To8==NULL) | 
 | 	{ | 
 | 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); | 
 | 		return(0); | 
 | 	} | 
 | 	m=img->Bitdepth16To8; | 
 | 	for (n=0; n<65536; n++) | 
 | 		*m++=(uint8)((n+128)/257); | 
 | 	return(1); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Read a whole strip off data from the file, and convert to RGBA form. | 
 |  * If this is the last strip, then it will only contain the portion of | 
 |  * the strip that is actually within the image space.  The result is | 
 |  * organized in bottom to top form. | 
 |  */ | 
 |  | 
 |  | 
 | int | 
 | TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) | 
 |  | 
 | { | 
 |     return TIFFReadRGBAStripExt(tif, row, raster, 0 ); | 
 | } | 
 |  | 
 | int | 
 | TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error) | 
 |  | 
 | { | 
 |     char 	emsg[1024] = ""; | 
 |     TIFFRGBAImage img; | 
 |     int 	ok; | 
 |     uint32	rowsperstrip, rows_to_read; | 
 |  | 
 |     if( TIFFIsTiled( tif ) ) | 
 |     { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | 
 |                   "Can't use TIFFReadRGBAStrip() with tiled file."); | 
 | 	return (0); | 
 |     } | 
 |      | 
 |     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | 
 |     if( (row % rowsperstrip) != 0 ) | 
 |     { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | 
 | 				"Row passed to TIFFReadRGBAStrip() must be first in a strip."); | 
 | 		return (0); | 
 |     } | 
 |  | 
 |     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) { | 
 |  | 
 |         img.row_offset = row; | 
 |         img.col_offset = 0; | 
 |  | 
 |         if( row + rowsperstrip > img.height ) | 
 |             rows_to_read = img.height - row; | 
 |         else | 
 |             rows_to_read = rowsperstrip; | 
 |          | 
 | 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); | 
 |          | 
 | 	TIFFRGBAImageEnd(&img); | 
 |     } else { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); | 
 | 		ok = 0; | 
 |     } | 
 |      | 
 |     return (ok); | 
 | } | 
 |  | 
 | /* | 
 |  * Read a whole tile off data from the file, and convert to RGBA form. | 
 |  * The returned RGBA data is organized from bottom to top of tile, | 
 |  * and may include zeroed areas if the tile extends off the image. | 
 |  */ | 
 |  | 
 | int | 
 | TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) | 
 |  | 
 | { | 
 |     return TIFFReadRGBATileExt(tif, col, row, raster, 0 ); | 
 | } | 
 |  | 
 |  | 
 | int | 
 | TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error ) | 
 | { | 
 |     char 	emsg[1024] = ""; | 
 |     TIFFRGBAImage img; | 
 |     int 	ok; | 
 |     uint32	tile_xsize, tile_ysize; | 
 |     uint32	read_xsize, read_ysize; | 
 |     uint32	i_row; | 
 |  | 
 |     /* | 
 |      * Verify that our request is legal - on a tile file, and on a | 
 |      * tile boundary. | 
 |      */ | 
 |      | 
 |     if( !TIFFIsTiled( tif ) ) | 
 |     { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | 
 | 				  "Can't use TIFFReadRGBATile() with stripped file."); | 
 | 		return (0); | 
 |     } | 
 |      | 
 |     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); | 
 |     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); | 
 |     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) | 
 |     { | 
 | 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | 
 |                   "Row/col passed to TIFFReadRGBATile() must be top" | 
 |                   "left corner of a tile."); | 
 | 	return (0); | 
 |     } | 
 |  | 
 |     /* | 
 |      * Setup the RGBA reader. | 
 |      */ | 
 |      | 
 |     if (!TIFFRGBAImageOK(tif, emsg)  | 
 | 	|| !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) { | 
 | 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); | 
 | 	    return( 0 ); | 
 |     } | 
 |  | 
 |     /* | 
 |      * The TIFFRGBAImageGet() function doesn't allow us to get off the | 
 |      * edge of the image, even to fill an otherwise valid tile.  So we | 
 |      * figure out how much we can read, and fix up the tile buffer to | 
 |      * a full tile configuration afterwards. | 
 |      */ | 
 |  | 
 |     if( row + tile_ysize > img.height ) | 
 |         read_ysize = img.height - row; | 
 |     else | 
 |         read_ysize = tile_ysize; | 
 |      | 
 |     if( col + tile_xsize > img.width ) | 
 |         read_xsize = img.width - col; | 
 |     else | 
 |         read_xsize = tile_xsize; | 
 |  | 
 |     /* | 
 |      * Read the chunk of imagery. | 
 |      */ | 
 |      | 
 |     img.row_offset = row; | 
 |     img.col_offset = col; | 
 |  | 
 |     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); | 
 |          | 
 |     TIFFRGBAImageEnd(&img); | 
 |  | 
 |     /* | 
 |      * If our read was incomplete we will need to fix up the tile by | 
 |      * shifting the data around as if a full tile of data is being returned. | 
 |      * | 
 |      * This is all the more complicated because the image is organized in | 
 |      * bottom to top format.  | 
 |      */ | 
 |  | 
 |     if( read_xsize == tile_xsize && read_ysize == tile_ysize ) | 
 |         return( ok ); | 
 |  | 
 |     for( i_row = 0; i_row < read_ysize; i_row++ ) { | 
 |         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, | 
 |                  raster + (read_ysize - i_row - 1) * read_xsize, | 
 |                  read_xsize * sizeof(uint32) ); | 
 |         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, | 
 |                      0, sizeof(uint32) * (tile_xsize - read_xsize) ); | 
 |     } | 
 |  | 
 |     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { | 
 |         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, | 
 |                      0, sizeof(uint32) * tile_xsize ); | 
 |     } | 
 |  | 
 |     return (ok); | 
 | } | 
 |  | 
 | /* vim: set ts=8 sts=8 sw=8 noet: */ | 
 | /* | 
 |  * Local Variables: | 
 |  * mode: c | 
 |  * c-basic-offset: 8 | 
 |  * fill-column: 78 | 
 |  * End: | 
 |  */ |