|  | // Copyright 2014 The PDFium Authors | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com | 
|  | // Original code is licensed as follows: | 
|  | /* | 
|  | * Copyright 2007 ZXing authors | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "fxbarcode/common/reedsolomon/BC_ReedSolomonGF256Poly.h" | 
|  |  | 
|  | #include <memory> | 
|  | #include <utility> | 
|  |  | 
|  | #include "core/fxcrt/check.h" | 
|  | #include "core/fxcrt/fx_system.h" | 
|  | #include "core/fxcrt/stl_util.h" | 
|  | #include "fxbarcode/common/reedsolomon/BC_ReedSolomonGF256.h" | 
|  |  | 
|  | CBC_ReedSolomonGF256Poly::CBC_ReedSolomonGF256Poly( | 
|  | CBC_ReedSolomonGF256* field, | 
|  | const std::vector<int32_t>& coefficients) | 
|  | : m_field(field) { | 
|  | DCHECK(m_field); | 
|  | DCHECK(!coefficients.empty()); | 
|  | if (coefficients.size() == 1 || coefficients.front() != 0) { | 
|  | m_coefficients = coefficients; | 
|  | return; | 
|  | } | 
|  |  | 
|  | size_t firstNonZero = 1; | 
|  | while (firstNonZero < coefficients.size() && | 
|  | coefficients[firstNonZero] == 0) { | 
|  | firstNonZero++; | 
|  | } | 
|  | if (firstNonZero == coefficients.size()) { | 
|  | m_coefficients = m_field->GetZero()->GetCoefficients(); | 
|  | } else { | 
|  | m_coefficients.resize(coefficients.size() - firstNonZero); | 
|  | for (size_t i = firstNonZero, j = 0; i < coefficients.size(); i++, j++) | 
|  | m_coefficients[j] = coefficients[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | CBC_ReedSolomonGF256Poly::~CBC_ReedSolomonGF256Poly() = default; | 
|  |  | 
|  | const std::vector<int32_t>& CBC_ReedSolomonGF256Poly::GetCoefficients() const { | 
|  | return m_coefficients; | 
|  | } | 
|  |  | 
|  | int32_t CBC_ReedSolomonGF256Poly::GetDegree() const { | 
|  | return fxcrt::CollectionSize<int32_t>(m_coefficients) - 1; | 
|  | } | 
|  |  | 
|  | bool CBC_ReedSolomonGF256Poly::IsZero() const { | 
|  | return m_coefficients.front() == 0; | 
|  | } | 
|  |  | 
|  | int32_t CBC_ReedSolomonGF256Poly::GetCoefficients(int32_t degree) const { | 
|  | return m_coefficients[m_coefficients.size() - 1 - degree]; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CBC_ReedSolomonGF256Poly> CBC_ReedSolomonGF256Poly::Clone() | 
|  | const { | 
|  | return std::make_unique<CBC_ReedSolomonGF256Poly>(m_field, m_coefficients); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CBC_ReedSolomonGF256Poly> | 
|  | CBC_ReedSolomonGF256Poly::AddOrSubtract(const CBC_ReedSolomonGF256Poly* other) { | 
|  | if (IsZero()) | 
|  | return other->Clone(); | 
|  | if (other->IsZero()) | 
|  | return Clone(); | 
|  |  | 
|  | std::vector<int32_t> smallerCoefficients = m_coefficients; | 
|  | std::vector<int32_t> largerCoefficients = other->GetCoefficients(); | 
|  | if (smallerCoefficients.size() > largerCoefficients.size()) | 
|  | std::swap(smallerCoefficients, largerCoefficients); | 
|  |  | 
|  | std::vector<int32_t> sumDiff(largerCoefficients.size()); | 
|  | size_t lengthDiff = largerCoefficients.size() - smallerCoefficients.size(); | 
|  | for (size_t i = 0; i < lengthDiff; ++i) | 
|  | sumDiff[i] = largerCoefficients[i]; | 
|  |  | 
|  | for (size_t i = lengthDiff; i < largerCoefficients.size(); ++i) { | 
|  | sumDiff[i] = CBC_ReedSolomonGF256::AddOrSubtract( | 
|  | smallerCoefficients[i - lengthDiff], largerCoefficients[i]); | 
|  | } | 
|  | return std::make_unique<CBC_ReedSolomonGF256Poly>(m_field, sumDiff); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CBC_ReedSolomonGF256Poly> CBC_ReedSolomonGF256Poly::Multiply( | 
|  | const CBC_ReedSolomonGF256Poly* other) { | 
|  | if (IsZero() || other->IsZero()) | 
|  | return m_field->GetZero()->Clone(); | 
|  |  | 
|  | const std::vector<int32_t>& aCoefficients = m_coefficients; | 
|  | const std::vector<int32_t>& bCoefficients = other->GetCoefficients(); | 
|  | size_t aLength = aCoefficients.size(); | 
|  | size_t bLength = bCoefficients.size(); | 
|  | std::vector<int32_t> product(aLength + bLength - 1); | 
|  | for (size_t i = 0; i < aLength; i++) { | 
|  | int32_t aCoeff = aCoefficients[i]; | 
|  | for (size_t j = 0; j < bLength; j++) { | 
|  | product[i + j] = CBC_ReedSolomonGF256::AddOrSubtract( | 
|  | product[i + j], m_field->Multiply(aCoeff, bCoefficients[j])); | 
|  | } | 
|  | } | 
|  | return std::make_unique<CBC_ReedSolomonGF256Poly>(m_field, product); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CBC_ReedSolomonGF256Poly> | 
|  | CBC_ReedSolomonGF256Poly::MultiplyByMonomial(int32_t degree, | 
|  | int32_t coefficient) const { | 
|  | if (degree < 0) | 
|  | return nullptr; | 
|  | if (coefficient == 0) | 
|  | return m_field->GetZero()->Clone(); | 
|  |  | 
|  | size_t size = m_coefficients.size(); | 
|  | std::vector<int32_t> product(size + degree); | 
|  | for (size_t i = 0; i < size; i++) | 
|  | product[i] = m_field->Multiply(m_coefficients[i], coefficient); | 
|  |  | 
|  | return std::make_unique<CBC_ReedSolomonGF256Poly>(m_field, product); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CBC_ReedSolomonGF256Poly> CBC_ReedSolomonGF256Poly::Divide( | 
|  | const CBC_ReedSolomonGF256Poly* other) { | 
|  | if (other->IsZero()) | 
|  | return nullptr; | 
|  |  | 
|  | auto quotient = m_field->GetZero()->Clone(); | 
|  | if (!quotient) | 
|  | return nullptr; | 
|  | auto remainder = Clone(); | 
|  | if (!remainder) | 
|  | return nullptr; | 
|  |  | 
|  | int32_t denominatorLeadingTerm = other->GetCoefficients(other->GetDegree()); | 
|  | std::optional<int32_t> inverseDenominatorLeadingTeam = | 
|  | m_field->Inverse(denominatorLeadingTerm); | 
|  | if (!inverseDenominatorLeadingTeam.has_value()) | 
|  | return nullptr; | 
|  |  | 
|  | while (remainder->GetDegree() >= other->GetDegree() && !remainder->IsZero()) { | 
|  | int32_t degreeDifference = remainder->GetDegree() - other->GetDegree(); | 
|  | int32_t scale = | 
|  | m_field->Multiply(remainder->GetCoefficients((remainder->GetDegree())), | 
|  | inverseDenominatorLeadingTeam.value()); | 
|  | auto term = other->MultiplyByMonomial(degreeDifference, scale); | 
|  | if (!term) | 
|  | return nullptr; | 
|  | auto iteratorQuotient = m_field->BuildMonomial(degreeDifference, scale); | 
|  | if (!iteratorQuotient) | 
|  | return nullptr; | 
|  | quotient = quotient->AddOrSubtract(iteratorQuotient.get()); | 
|  | if (!quotient) | 
|  | return nullptr; | 
|  | remainder = remainder->AddOrSubtract(term.get()); | 
|  | if (!remainder) | 
|  | return nullptr; | 
|  | } | 
|  | return remainder; | 
|  | } |