|  | //--------------------------------------------------------------------------------- | 
|  | // | 
|  | //  Little Color Management System | 
|  | //  Copyright (c) 1998-2023 Marti Maria Saguer | 
|  | // | 
|  | // Permission is hereby granted, free of charge, to any person obtaining | 
|  | // a copy of this software and associated documentation files (the "Software"), | 
|  | // to deal in the Software without restriction, including without limitation | 
|  | // the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | // and/or sell copies of the Software, and to permit persons to whom the Software | 
|  | // is furnished to do so, subject to the following conditions: | 
|  | // | 
|  | // The above copyright notice and this permission notice shall be included in | 
|  | // all copies or substantial portions of the Software. | 
|  | // | 
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | 
|  | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | 
|  | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | 
|  | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | 
|  | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | 
|  | // | 
|  | //--------------------------------------------------------------------------------- | 
|  | // | 
|  |  | 
|  | #include "lcms2_internal.h" | 
|  |  | 
|  |  | 
|  | //---------------------------------------------------------------------------------- | 
|  |  | 
|  | // Optimization for 8 bits, Shaper-CLUT (3 inputs only) | 
|  | typedef struct { | 
|  |  | 
|  | cmsContext ContextID; | 
|  |  | 
|  | const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer. | 
|  |  | 
|  | cmsUInt16Number rx[256], ry[256], rz[256]; | 
|  | cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data | 
|  |  | 
|  |  | 
|  | } Prelin8Data; | 
|  |  | 
|  |  | 
|  | // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs) | 
|  | typedef struct { | 
|  |  | 
|  | cmsContext ContextID; | 
|  |  | 
|  | // Number of channels | 
|  | cmsUInt32Number nInputs; | 
|  | cmsUInt32Number nOutputs; | 
|  |  | 
|  | _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance | 
|  | cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS]; | 
|  |  | 
|  | _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid | 
|  | const cmsInterpParams* CLUTparams;  // (not-owned pointer) | 
|  |  | 
|  |  | 
|  | _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer) | 
|  | cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer) | 
|  |  | 
|  |  | 
|  | } Prelin16Data; | 
|  |  | 
|  |  | 
|  | // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed | 
|  |  | 
|  | typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits! | 
|  |  | 
|  | #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5)) | 
|  |  | 
|  | typedef struct { | 
|  |  | 
|  | cmsContext ContextID; | 
|  |  | 
|  | cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0) | 
|  | cmsS1Fixed14Number Shaper1G[256]; | 
|  | cmsS1Fixed14Number Shaper1B[256]; | 
|  |  | 
|  | cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that) | 
|  | cmsS1Fixed14Number Off[3]; | 
|  |  | 
|  | cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255 | 
|  | cmsUInt16Number Shaper2G[16385]; | 
|  | cmsUInt16Number Shaper2B[16385]; | 
|  |  | 
|  | } MatShaper8Data; | 
|  |  | 
|  | // Curves, optimization is shared between 8 and 16 bits | 
|  | typedef struct { | 
|  |  | 
|  | cmsContext ContextID; | 
|  |  | 
|  | cmsUInt32Number nCurves;      // Number of curves | 
|  | cmsUInt32Number nElements;    // Elements in curves | 
|  | cmsUInt16Number** Curves;     // Points to a dynamically  allocated array | 
|  |  | 
|  | } Curves16Data; | 
|  |  | 
|  | // A simple adapter to prevent _cmsPipelineEval16Fn vs. _cmsInterpFn16 | 
|  | // confusion, which trips up UBSAN. | 
|  | static | 
|  | void Lerp16Adapter(CMSREGISTER const cmsUInt16Number in[], | 
|  | CMSREGISTER cmsUInt16Number out[], | 
|  | const void* data) { | 
|  | cmsInterpParams* params = (cmsInterpParams*)data; | 
|  | params->Interpolation.Lerp16(in, out, params); | 
|  | } | 
|  |  | 
|  | // Simple optimizations ---------------------------------------------------------------------------------------------------------- | 
|  |  | 
|  |  | 
|  | // Clamp a fixed point integer to signed 28 bits to avoid overflow in | 
|  | // calculations.  Clamp is intended for use with colorants, requiring one bit | 
|  | // for a colorant and another two bits to avoid overflow when combining the | 
|  | // colors. | 
|  | cmsINLINE cmsS1Fixed14Number _FixedClamp(cmsS1Fixed14Number n) { | 
|  | const cmsS1Fixed14Number max_positive = 268435455;  // 0x0FFFFFFF; | 
|  | const cmsS1Fixed14Number max_negative = -268435456; // 0xF0000000; | 
|  | // Normally expect the provided number to be in the range [0..1] (but in | 
|  | // fixed 1.14 format), so can perform a quick check for this typical case | 
|  | // to reduce number of compares. | 
|  | const cmsS1Fixed14Number typical_range_mask = 0xFFFF8000; | 
|  |  | 
|  | if (!(n & typical_range_mask)) | 
|  | return n; | 
|  | if (n < max_negative) | 
|  | return max_negative; | 
|  | if (n > max_positive) | 
|  | return max_positive; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | // Perform one row of matrix multiply with translation for MatShaperEval16(). | 
|  | cmsINLINE cmsInt64Number _MatShaperEvaluateRow(cmsS1Fixed14Number* mat, | 
|  | cmsS1Fixed14Number off, | 
|  | cmsS1Fixed14Number r, | 
|  | cmsS1Fixed14Number g, | 
|  | cmsS1Fixed14Number b) { | 
|  | return ((cmsInt64Number)mat[0] * r + | 
|  | (cmsInt64Number)mat[1] * g + | 
|  | (cmsInt64Number)mat[2] * b + | 
|  | off + 0x2000) >> 14; | 
|  | } | 
|  |  | 
|  | // Remove an element in linked chain | 
|  | static | 
|  | void _RemoveElement(cmsStage** head) | 
|  | { | 
|  | cmsStage* mpe = *head; | 
|  | cmsStage* next = mpe ->Next; | 
|  | *head = next; | 
|  | cmsStageFree(mpe); | 
|  | } | 
|  |  | 
|  | // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer. | 
|  | static | 
|  | cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp) | 
|  | { | 
|  | cmsStage** pt = &Lut ->Elements; | 
|  | cmsBool AnyOpt = FALSE; | 
|  |  | 
|  | while (*pt != NULL) { | 
|  |  | 
|  | if ((*pt) ->Implements == UnaryOp) { | 
|  | _RemoveElement(pt); | 
|  | AnyOpt = TRUE; | 
|  | } | 
|  | else | 
|  | pt = &((*pt) -> Next); | 
|  | } | 
|  |  | 
|  | return AnyOpt; | 
|  | } | 
|  |  | 
|  | // Same, but only if two adjacent elements are found | 
|  | static | 
|  | cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2) | 
|  | { | 
|  | cmsStage** pt1; | 
|  | cmsStage** pt2; | 
|  | cmsBool AnyOpt = FALSE; | 
|  |  | 
|  | pt1 = &Lut ->Elements; | 
|  | if (*pt1 == NULL) return AnyOpt; | 
|  |  | 
|  | while (*pt1 != NULL) { | 
|  |  | 
|  | pt2 = &((*pt1) -> Next); | 
|  | if (*pt2 == NULL) return AnyOpt; | 
|  |  | 
|  | if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) { | 
|  | _RemoveElement(pt2); | 
|  | _RemoveElement(pt1); | 
|  | AnyOpt = TRUE; | 
|  | } | 
|  | else | 
|  | pt1 = &((*pt1) -> Next); | 
|  | } | 
|  |  | 
|  | return AnyOpt; | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b) | 
|  | { | 
|  | return fabs(b - a) < 0.00001f; | 
|  | } | 
|  |  | 
|  | static | 
|  | cmsBool  isFloatMatrixIdentity(const cmsMAT3* a) | 
|  | { | 
|  | cmsMAT3 Identity; | 
|  | int i, j; | 
|  |  | 
|  | _cmsMAT3identity(&Identity); | 
|  |  | 
|  | for (i = 0; i < 3; i++) | 
|  | for (j = 0; j < 3; j++) | 
|  | if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  | // if two adjacent matrices are found, multiply them. | 
|  | static | 
|  | cmsBool _MultiplyMatrix(cmsPipeline* Lut) | 
|  | { | 
|  | cmsStage** pt1; | 
|  | cmsStage** pt2; | 
|  | cmsStage*  chain; | 
|  | cmsBool AnyOpt = FALSE; | 
|  |  | 
|  | pt1 = &Lut->Elements; | 
|  | if (*pt1 == NULL) return AnyOpt; | 
|  |  | 
|  | while (*pt1 != NULL) { | 
|  |  | 
|  | pt2 = &((*pt1)->Next); | 
|  | if (*pt2 == NULL) return AnyOpt; | 
|  |  | 
|  | if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) { | 
|  |  | 
|  | // Get both matrices | 
|  | _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1); | 
|  | _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2); | 
|  | cmsMAT3 res; | 
|  |  | 
|  | // Input offset and output offset should be zero to use this optimization | 
|  | if (m1->Offset != NULL || m2 ->Offset != NULL || | 
|  | cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 || | 
|  | cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3) | 
|  | return FALSE; | 
|  |  | 
|  | // Multiply both matrices to get the result | 
|  | _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double); | 
|  |  | 
|  | // Get the next in chain after the matrices | 
|  | chain = (*pt2)->Next; | 
|  |  | 
|  | // Remove both matrices | 
|  | _RemoveElement(pt2); | 
|  | _RemoveElement(pt1); | 
|  |  | 
|  | // Now what if the result is a plain identity? | 
|  | if (!isFloatMatrixIdentity(&res)) { | 
|  |  | 
|  | // We can not get rid of full matrix | 
|  | cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL); | 
|  | if (Multmat == NULL) return FALSE;  // Should never happen | 
|  |  | 
|  | // Recover the chain | 
|  | Multmat->Next = chain; | 
|  | *pt1 = Multmat; | 
|  | } | 
|  |  | 
|  | AnyOpt = TRUE; | 
|  | } | 
|  | else | 
|  | pt1 = &((*pt1)->Next); | 
|  | } | 
|  |  | 
|  | return AnyOpt; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed | 
|  | // by a v4 to v2 and vice-versa. The elements are then discarded. | 
|  | static | 
|  | cmsBool PreOptimize(cmsPipeline* Lut) | 
|  | { | 
|  | cmsBool AnyOpt = FALSE, Opt; | 
|  |  | 
|  | do { | 
|  |  | 
|  | Opt = FALSE; | 
|  |  | 
|  | // Remove all identities | 
|  | Opt |= _Remove1Op(Lut, cmsSigIdentityElemType); | 
|  |  | 
|  | // Remove XYZ2Lab followed by Lab2XYZ | 
|  | Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType); | 
|  |  | 
|  | // Remove Lab2XYZ followed by XYZ2Lab | 
|  | Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType); | 
|  |  | 
|  | // Remove V4 to V2 followed by V2 to V4 | 
|  | Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4); | 
|  |  | 
|  | // Remove V2 to V4 followed by V4 to V2 | 
|  | Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2); | 
|  |  | 
|  | // Remove float pcs Lab conversions | 
|  | Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab); | 
|  |  | 
|  | // Remove float pcs Lab conversions | 
|  | Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ); | 
|  |  | 
|  | // Simplify matrix. | 
|  | Opt |= _MultiplyMatrix(Lut); | 
|  |  | 
|  | if (Opt) AnyOpt = TRUE; | 
|  |  | 
|  | } while (Opt); | 
|  |  | 
|  | return AnyOpt; | 
|  | } | 
|  |  | 
|  | static | 
|  | void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[], | 
|  | CMSREGISTER cmsUInt16Number Output[], | 
|  | CMSREGISTER const struct _cms_interp_struc* p) | 
|  | { | 
|  | Output[0] = Input[0]; | 
|  |  | 
|  | cmsUNUSED_PARAMETER(p); | 
|  | } | 
|  |  | 
|  | static | 
|  | void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[], | 
|  | CMSREGISTER cmsUInt16Number Output[], | 
|  | CMSREGISTER const void* D) | 
|  | { | 
|  | Prelin16Data* p16 = (Prelin16Data*) D; | 
|  | cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS]; | 
|  | cmsUInt16Number  StageDEF[cmsMAXCHANNELS]; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | for (i=0; i < p16 ->nInputs; i++) { | 
|  |  | 
|  | p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]); | 
|  | } | 
|  |  | 
|  | p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams); | 
|  |  | 
|  | for (i=0; i < p16 ->nOutputs; i++) { | 
|  |  | 
|  | p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | void PrelinOpt16free(cmsContext ContextID, void* ptr) | 
|  | { | 
|  | Prelin16Data* p16 = (Prelin16Data*) ptr; | 
|  |  | 
|  | _cmsFree(ContextID, p16 ->EvalCurveOut16); | 
|  | _cmsFree(ContextID, p16 ->ParamsCurveOut16); | 
|  |  | 
|  | _cmsFree(ContextID, p16); | 
|  | } | 
|  |  | 
|  | static | 
|  | void* Prelin16dup(cmsContext ContextID, const void* ptr) | 
|  | { | 
|  | Prelin16Data* p16 = (Prelin16Data*) ptr; | 
|  | Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data)); | 
|  |  | 
|  | if (Duped == NULL) return NULL; | 
|  |  | 
|  | Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16)); | 
|  | Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*)); | 
|  |  | 
|  | return Duped; | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | Prelin16Data* PrelinOpt16alloc(cmsContext ContextID, | 
|  | const cmsInterpParams* ColorMap, | 
|  | cmsUInt32Number nInputs, cmsToneCurve** In, | 
|  | cmsUInt32Number nOutputs, cmsToneCurve** Out ) | 
|  | { | 
|  | cmsUInt32Number i; | 
|  | Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data)); | 
|  | if (p16 == NULL) return NULL; | 
|  |  | 
|  | p16 ->nInputs = nInputs; | 
|  | p16 ->nOutputs = nOutputs; | 
|  |  | 
|  |  | 
|  | for (i=0; i < nInputs; i++) { | 
|  |  | 
|  | if (In == NULL) { | 
|  | p16 -> ParamsCurveIn16[i] = NULL; | 
|  | p16 -> EvalCurveIn16[i] = Eval16nop1D; | 
|  |  | 
|  | } | 
|  | else { | 
|  | p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams; | 
|  | p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16; | 
|  | } | 
|  | } | 
|  |  | 
|  | p16 ->CLUTparams = ColorMap; | 
|  | p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16; | 
|  |  | 
|  |  | 
|  | p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16)); | 
|  | if (p16->EvalCurveOut16 == NULL) | 
|  | { | 
|  | _cmsFree(ContextID, p16); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* )); | 
|  | if (p16->ParamsCurveOut16 == NULL) | 
|  | { | 
|  |  | 
|  | _cmsFree(ContextID, p16->EvalCurveOut16); | 
|  | _cmsFree(ContextID, p16); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (i=0; i < nOutputs; i++) { | 
|  |  | 
|  | if (Out == NULL) { | 
|  | p16 ->ParamsCurveOut16[i] = NULL; | 
|  | p16 -> EvalCurveOut16[i] = Eval16nop1D; | 
|  | } | 
|  | else { | 
|  |  | 
|  | p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams; | 
|  | p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16; | 
|  | } | 
|  | } | 
|  |  | 
|  | return p16; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Resampling --------------------------------------------------------------------------------- | 
|  |  | 
|  | #define PRELINEARIZATION_POINTS 4096 | 
|  |  | 
|  | // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for | 
|  | // almost any transform. We use floating point precision and then convert from floating point to 16 bits. | 
|  | static | 
|  | cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[], | 
|  | CMSREGISTER cmsUInt16Number Out[], | 
|  | CMSREGISTER void* Cargo) | 
|  | { | 
|  | cmsPipeline* Lut = (cmsPipeline*) Cargo; | 
|  | cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS); | 
|  | _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS); | 
|  |  | 
|  | // From 16 bit to floating point | 
|  | for (i=0; i < Lut ->InputChannels; i++) | 
|  | InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0); | 
|  |  | 
|  | // Evaluate in floating point | 
|  | cmsPipelineEvalFloat(InFloat, OutFloat, Lut); | 
|  |  | 
|  | // Back to 16 bits representation | 
|  | for (i=0; i < Lut ->OutputChannels; i++) | 
|  | Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0); | 
|  |  | 
|  | // Always succeed | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Try to see if the curves of a given MPE are linear | 
|  | static | 
|  | cmsBool AllCurvesAreLinear(cmsStage* mpe) | 
|  | { | 
|  | cmsToneCurve** Curves; | 
|  | cmsUInt32Number i, n; | 
|  |  | 
|  | Curves = _cmsStageGetPtrToCurveSet(mpe); | 
|  | if (Curves == NULL) return FALSE; | 
|  |  | 
|  | n = cmsStageOutputChannels(mpe); | 
|  |  | 
|  | for (i=0; i < n; i++) { | 
|  | if (!cmsIsToneCurveLinear(Curves[i])) return FALSE; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose | 
|  | // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels | 
|  | static | 
|  | cmsBool  PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[], | 
|  | cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn) | 
|  | { | 
|  | _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data; | 
|  | cmsInterpParams* p16  = Grid ->Params; | 
|  | cmsFloat64Number px, py, pz, pw; | 
|  | int        x0, y0, z0, w0; | 
|  | int        i, index; | 
|  |  | 
|  | if (CLUT -> Type != cmsSigCLutElemType) { | 
|  | cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage"); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | if (nChannelsIn == 4) { | 
|  |  | 
|  | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | 
|  | py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; | 
|  | pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; | 
|  | pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0; | 
|  |  | 
|  | x0 = (int) floor(px); | 
|  | y0 = (int) floor(py); | 
|  | z0 = (int) floor(pz); | 
|  | w0 = (int) floor(pw); | 
|  |  | 
|  | if (((px - x0) != 0) || | 
|  | ((py - y0) != 0) || | 
|  | ((pz - z0) != 0) || | 
|  | ((pw - w0) != 0)) return FALSE; // Not on exact node | 
|  |  | 
|  | index = (int) p16 -> opta[3] * x0 + | 
|  | (int) p16 -> opta[2] * y0 + | 
|  | (int) p16 -> opta[1] * z0 + | 
|  | (int) p16 -> opta[0] * w0; | 
|  | } | 
|  | else | 
|  | if (nChannelsIn == 3) { | 
|  |  | 
|  | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | 
|  | py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; | 
|  | pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; | 
|  |  | 
|  | x0 = (int) floor(px); | 
|  | y0 = (int) floor(py); | 
|  | z0 = (int) floor(pz); | 
|  |  | 
|  | if (((px - x0) != 0) || | 
|  | ((py - y0) != 0) || | 
|  | ((pz - z0) != 0)) return FALSE;  // Not on exact node | 
|  |  | 
|  | index = (int) p16 -> opta[2] * x0 + | 
|  | (int) p16 -> opta[1] * y0 + | 
|  | (int) p16 -> opta[0] * z0; | 
|  | } | 
|  | else | 
|  | if (nChannelsIn == 1) { | 
|  |  | 
|  | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | 
|  |  | 
|  | x0 = (int) floor(px); | 
|  |  | 
|  | if (((px - x0) != 0)) return FALSE; // Not on exact node | 
|  |  | 
|  | index = (int) p16 -> opta[0] * x0; | 
|  | } | 
|  | else { | 
|  | cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < (int) nChannelsOut; i++) | 
|  | Grid->Tab.T[index + i] = Value[i]; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Auxiliary, to see if two values are equal or very different | 
|  | static | 
|  | cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] ) | 
|  | { | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | for (i=0; i < n; i++) { | 
|  |  | 
|  | if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided | 
|  | if (White1[i] != White2[i]) return FALSE; | 
|  | } | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Locate the node for the white point and fix it to pure white in order to avoid scum dot. | 
|  | static | 
|  | cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace) | 
|  | { | 
|  | cmsUInt16Number *WhitePointIn, *WhitePointOut; | 
|  | cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS]; | 
|  | cmsUInt32Number i, nOuts, nIns; | 
|  | cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL; | 
|  |  | 
|  | if (!_cmsEndPointsBySpace(EntryColorSpace, | 
|  | &WhitePointIn, NULL, &nIns)) return FALSE; | 
|  |  | 
|  | if (!_cmsEndPointsBySpace(ExitColorSpace, | 
|  | &WhitePointOut, NULL, &nOuts)) return FALSE; | 
|  |  | 
|  | // It needs to be fixed? | 
|  | if (Lut ->InputChannels != nIns) return FALSE; | 
|  | if (Lut ->OutputChannels != nOuts) return FALSE; | 
|  |  | 
|  | cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut); | 
|  |  | 
|  | if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match | 
|  |  | 
|  | // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations | 
|  | if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin)) | 
|  | if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT)) | 
|  | if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin)) | 
|  | if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT)) | 
|  | return FALSE; | 
|  |  | 
|  | // We need to interpolate white points of both, pre and post curves | 
|  | if (PreLin) { | 
|  |  | 
|  | cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin); | 
|  |  | 
|  | for (i=0; i < nIns; i++) { | 
|  | WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]); | 
|  | } | 
|  | } | 
|  | else { | 
|  | for (i=0; i < nIns; i++) | 
|  | WhiteIn[i] = WhitePointIn[i]; | 
|  | } | 
|  |  | 
|  | // If any post-linearization, we need to find how is represented white before the curve, do | 
|  | // a reverse interpolation in this case. | 
|  | if (PostLin) { | 
|  |  | 
|  | cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin); | 
|  |  | 
|  | for (i=0; i < nOuts; i++) { | 
|  |  | 
|  | cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]); | 
|  | if (InversePostLin == NULL) { | 
|  | WhiteOut[i] = WhitePointOut[i]; | 
|  |  | 
|  | } else { | 
|  |  | 
|  | WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]); | 
|  | cmsFreeToneCurve(InversePostLin); | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | for (i=0; i < nOuts; i++) | 
|  | WhiteOut[i] = WhitePointOut[i]; | 
|  | } | 
|  |  | 
|  | // Ok, proceed with patching. May fail and we don't care if it fails | 
|  | PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns); | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------------------------------------------------------------------------- | 
|  | // This function creates simple LUT from complex ones. The generated LUT has an optional set of | 
|  | // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables. | 
|  | // These curves have to exist in the original LUT in order to be used in the simplified output. | 
|  | // Caller may also use the flags to allow this feature. | 
|  | // LUTS with all curves will be simplified to a single curve. Parametric curves are lost. | 
|  | // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified | 
|  | // ----------------------------------------------------------------------------------------------------------------------------------------------- | 
|  |  | 
|  | static | 
|  | cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | 
|  | { | 
|  | cmsPipeline* Src = NULL; | 
|  | cmsPipeline* Dest = NULL; | 
|  | cmsStage* CLUT; | 
|  | cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL; | 
|  | cmsUInt32Number nGridPoints; | 
|  | cmsColorSpaceSignature ColorSpace, OutputColorSpace; | 
|  | cmsStage *NewPreLin = NULL; | 
|  | cmsStage *NewPostLin = NULL; | 
|  | _cmsStageCLutData* DataCLUT; | 
|  | cmsToneCurve** DataSetIn; | 
|  | cmsToneCurve** DataSetOut; | 
|  | Prelin16Data* p16; | 
|  |  | 
|  | // This is a lossy optimization! does not apply in floating-point cases | 
|  | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; | 
|  |  | 
|  | ColorSpace       = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)); | 
|  | OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)); | 
|  |  | 
|  | // Color space must be specified | 
|  | if (ColorSpace == (cmsColorSpaceSignature)0 || | 
|  | OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; | 
|  |  | 
|  | nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); | 
|  |  | 
|  | // For empty LUTs, 2 points are enough | 
|  | if (cmsPipelineStageCount(*Lut) == 0) | 
|  | nGridPoints = 2; | 
|  |  | 
|  | Src = *Lut; | 
|  |  | 
|  | // Allocate an empty LUT | 
|  | Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); | 
|  | if (!Dest) return FALSE; | 
|  |  | 
|  | // Prelinearization tables are kept unless indicated by flags | 
|  | if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) { | 
|  |  | 
|  | // Get a pointer to the prelinearization element | 
|  | cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src); | 
|  |  | 
|  | // Check if suitable | 
|  | if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) { | 
|  |  | 
|  | // Maybe this is a linear tram, so we can avoid the whole stuff | 
|  | if (!AllCurvesAreLinear(PreLin)) { | 
|  |  | 
|  | // All seems ok, proceed. | 
|  | NewPreLin = cmsStageDup(PreLin); | 
|  | if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin)) | 
|  | goto Error; | 
|  |  | 
|  | // Remove prelinearization. Since we have duplicated the curve | 
|  | // in destination LUT, the sampling should be applied after this stage. | 
|  | cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate the CLUT | 
|  | CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL); | 
|  | if (CLUT == NULL) goto Error; | 
|  |  | 
|  | // Add the CLUT to the destination LUT | 
|  | if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) { | 
|  | goto Error; | 
|  | } | 
|  |  | 
|  | // Postlinearization tables are kept unless indicated by flags | 
|  | if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) { | 
|  |  | 
|  | // Get a pointer to the postlinearization if present | 
|  | cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src); | 
|  |  | 
|  | // Check if suitable | 
|  | if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) { | 
|  |  | 
|  | // Maybe this is a linear tram, so we can avoid the whole stuff | 
|  | if (!AllCurvesAreLinear(PostLin)) { | 
|  |  | 
|  | // All seems ok, proceed. | 
|  | NewPostLin = cmsStageDup(PostLin); | 
|  | if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin)) | 
|  | goto Error; | 
|  |  | 
|  | // In destination LUT, the sampling should be applied after this stage. | 
|  | cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now its time to do the sampling. We have to ignore pre/post linearization | 
|  | // The source LUT without pre/post curves is passed as parameter. | 
|  | if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) { | 
|  | Error: | 
|  | // Ops, something went wrong, Restore stages | 
|  | if (KeepPreLin != NULL) { | 
|  | if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) { | 
|  | _cmsAssert(0); // This never happens | 
|  | } | 
|  | } | 
|  | if (KeepPostLin != NULL) { | 
|  | if (!cmsPipelineInsertStage(Src, cmsAT_END,   KeepPostLin)) { | 
|  | _cmsAssert(0); // This never happens | 
|  | } | 
|  | } | 
|  | cmsPipelineFree(Dest); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | // Done. | 
|  |  | 
|  | if (KeepPreLin != NULL) cmsStageFree(KeepPreLin); | 
|  | if (KeepPostLin != NULL) cmsStageFree(KeepPostLin); | 
|  | cmsPipelineFree(Src); | 
|  |  | 
|  | DataCLUT = (_cmsStageCLutData*) CLUT ->Data; | 
|  |  | 
|  | if (NewPreLin == NULL) DataSetIn = NULL; | 
|  | else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves; | 
|  |  | 
|  | if (NewPostLin == NULL) DataSetOut = NULL; | 
|  | else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves; | 
|  |  | 
|  |  | 
|  | if (DataSetIn == NULL && DataSetOut == NULL) { | 
|  |  | 
|  | _cmsPipelineSetOptimizationParameters(Dest, Lerp16Adapter, DataCLUT->Params, NULL, NULL); | 
|  | } | 
|  | else { | 
|  |  | 
|  | p16 = PrelinOpt16alloc(Dest ->ContextID, | 
|  | DataCLUT ->Params, | 
|  | Dest ->InputChannels, | 
|  | DataSetIn, | 
|  | Dest ->OutputChannels, | 
|  | DataSetOut); | 
|  |  | 
|  | _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Don't fix white on absolute colorimetric | 
|  | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) | 
|  | *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; | 
|  |  | 
|  | if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { | 
|  |  | 
|  | FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace); | 
|  | } | 
|  |  | 
|  | *Lut = Dest; | 
|  | return TRUE; | 
|  |  | 
|  | cmsUNUSED_PARAMETER(Intent); | 
|  | } | 
|  |  | 
|  |  | 
|  | // ----------------------------------------------------------------------------------------------------------------------------------------------- | 
|  | // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on | 
|  | // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works | 
|  | // for RGB transforms. See the paper for more details | 
|  | // ----------------------------------------------------------------------------------------------------------------------------------------------- | 
|  |  | 
|  |  | 
|  | // Normalize endpoints by slope limiting max and min. This assures endpoints as well. | 
|  | // Descending curves are handled as well. | 
|  | static | 
|  | void SlopeLimiting(cmsToneCurve* g) | 
|  | { | 
|  | int BeginVal, EndVal; | 
|  | int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2% | 
|  | int AtEnd   = (int) g ->nEntries - AtBegin - 1;                                  // And 98% | 
|  | cmsFloat64Number Val, Slope, beta; | 
|  | int i; | 
|  |  | 
|  | if (cmsIsToneCurveDescending(g)) { | 
|  | BeginVal = 0xffff; EndVal = 0; | 
|  | } | 
|  | else { | 
|  | BeginVal = 0; EndVal = 0xffff; | 
|  | } | 
|  |  | 
|  | // Compute slope and offset for begin of curve | 
|  | Val   = g ->Table16[AtBegin]; | 
|  | Slope = (Val - BeginVal) / AtBegin; | 
|  | beta  = Val - Slope * AtBegin; | 
|  |  | 
|  | for (i=0; i < AtBegin; i++) | 
|  | g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); | 
|  |  | 
|  | // Compute slope and offset for the end | 
|  | Val   = g ->Table16[AtEnd]; | 
|  | Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases | 
|  | beta  = Val - Slope * AtEnd; | 
|  |  | 
|  | for (i = AtEnd; i < (int) g ->nEntries; i++) | 
|  | g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Precomputes tables for 8-bit on input devicelink. | 
|  | static | 
|  | Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3]) | 
|  | { | 
|  | int i; | 
|  | cmsUInt16Number Input[3]; | 
|  | cmsS15Fixed16Number v1, v2, v3; | 
|  | Prelin8Data* p8; | 
|  |  | 
|  | p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data)); | 
|  | if (p8 == NULL) return NULL; | 
|  |  | 
|  | // Since this only works for 8 bit input, values comes always as x * 257, | 
|  | // we can safely take msb byte (x << 8 + x) | 
|  |  | 
|  | for (i=0; i < 256; i++) { | 
|  |  | 
|  | if (G != NULL) { | 
|  |  | 
|  | // Get 16-bit representation | 
|  | Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i)); | 
|  | Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i)); | 
|  | Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i)); | 
|  | } | 
|  | else { | 
|  | Input[0] = FROM_8_TO_16(i); | 
|  | Input[1] = FROM_8_TO_16(i); | 
|  | Input[2] = FROM_8_TO_16(i); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Move to 0..1.0 in fixed domain | 
|  | v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0])); | 
|  | v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1])); | 
|  | v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2])); | 
|  |  | 
|  | // Store the precalculated table of nodes | 
|  | p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1)); | 
|  | p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2)); | 
|  | p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3)); | 
|  |  | 
|  | // Store the precalculated table of offsets | 
|  | p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1); | 
|  | p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2); | 
|  | p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3); | 
|  | } | 
|  |  | 
|  | p8 ->ContextID = ContextID; | 
|  | p8 ->p = p; | 
|  |  | 
|  | return p8; | 
|  | } | 
|  |  | 
|  | static | 
|  | void Prelin8free(cmsContext ContextID, void* ptr) | 
|  | { | 
|  | _cmsFree(ContextID, ptr); | 
|  | } | 
|  |  | 
|  | static | 
|  | void* Prelin8dup(cmsContext ContextID, const void* ptr) | 
|  | { | 
|  | return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data)); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // A optimized interpolation for 8-bit input. | 
|  | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | 
|  | static CMS_NO_SANITIZE | 
|  | void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[], | 
|  | CMSREGISTER cmsUInt16Number Output[], | 
|  | CMSREGISTER const void* D) | 
|  | { | 
|  |  | 
|  | cmsUInt8Number         r, g, b; | 
|  | cmsS15Fixed16Number    rx, ry, rz; | 
|  | cmsS15Fixed16Number    c0, c1, c2, c3, Rest; | 
|  | int                    OutChan; | 
|  | CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; | 
|  | Prelin8Data* p8 = (Prelin8Data*) D; | 
|  | CMSREGISTER const cmsInterpParams* p = p8 ->p; | 
|  | int                    TotalOut = (int) p -> nOutputs; | 
|  | const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table; | 
|  |  | 
|  | r = (cmsUInt8Number) (Input[0] >> 8); | 
|  | g = (cmsUInt8Number) (Input[1] >> 8); | 
|  | b = (cmsUInt8Number) (Input[2] >> 8); | 
|  |  | 
|  | X0 = (cmsS15Fixed16Number) p8->X0[r]; | 
|  | Y0 = (cmsS15Fixed16Number) p8->Y0[g]; | 
|  | Z0 = (cmsS15Fixed16Number) p8->Z0[b]; | 
|  |  | 
|  | rx = p8 ->rx[r]; | 
|  | ry = p8 ->ry[g]; | 
|  | rz = p8 ->rz[b]; | 
|  |  | 
|  | X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 :  p ->opta[2]); | 
|  | Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 :  p ->opta[1]); | 
|  | Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 :  p ->opta[0]); | 
|  |  | 
|  |  | 
|  | // These are the 6 Tetrahedral | 
|  | for (OutChan=0; OutChan < TotalOut; OutChan++) { | 
|  |  | 
|  | c0 = DENS(X0, Y0, Z0); | 
|  |  | 
|  | if (rx >= ry && ry >= rz) | 
|  | { | 
|  | c1 = DENS(X1, Y0, Z0) - c0; | 
|  | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | 
|  | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | 
|  | } | 
|  | else | 
|  | if (rx >= rz && rz >= ry) | 
|  | { | 
|  | c1 = DENS(X1, Y0, Z0) - c0; | 
|  | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | 
|  | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | 
|  | } | 
|  | else | 
|  | if (rz >= rx && rx >= ry) | 
|  | { | 
|  | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | 
|  | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | 
|  | c3 = DENS(X0, Y0, Z1) - c0; | 
|  | } | 
|  | else | 
|  | if (ry >= rx && rx >= rz) | 
|  | { | 
|  | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | 
|  | c2 = DENS(X0, Y1, Z0) - c0; | 
|  | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | 
|  | } | 
|  | else | 
|  | if (ry >= rz && rz >= rx) | 
|  | { | 
|  | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | 
|  | c2 = DENS(X0, Y1, Z0) - c0; | 
|  | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | 
|  | } | 
|  | else | 
|  | if (rz >= ry && ry >= rx) | 
|  | { | 
|  | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | 
|  | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | 
|  | c3 = DENS(X0, Y0, Z1) - c0; | 
|  | } | 
|  | else  { | 
|  | c1 = c2 = c3 = 0; | 
|  | } | 
|  |  | 
|  | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | 
|  | Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16)); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef DENS | 
|  |  | 
|  |  | 
|  | // Curves that contain wide empty areas are not optimizeable | 
|  | static | 
|  | cmsBool IsDegenerated(const cmsToneCurve* g) | 
|  | { | 
|  | cmsUInt32Number i, Zeros = 0, Poles = 0; | 
|  | cmsUInt32Number nEntries = g ->nEntries; | 
|  |  | 
|  | for (i=0; i < nEntries; i++) { | 
|  |  | 
|  | if (g ->Table16[i] == 0x0000) Zeros++; | 
|  | if (g ->Table16[i] == 0xffff) Poles++; | 
|  | } | 
|  |  | 
|  | if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables | 
|  | if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros | 
|  | if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles | 
|  |  | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | // -------------------------------------------------------------------------------------------------------------- | 
|  | // We need xput over here | 
|  |  | 
|  | static | 
|  | cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | 
|  | { | 
|  | cmsPipeline* OriginalLut; | 
|  | cmsUInt32Number nGridPoints; | 
|  | cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS]; | 
|  | cmsUInt32Number t, i; | 
|  | cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS]; | 
|  | cmsBool lIsSuitable, lIsLinear; | 
|  | cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL; | 
|  | cmsStage* OptimizedCLUTmpe; | 
|  | cmsColorSpaceSignature ColorSpace, OutputColorSpace; | 
|  | cmsStage* OptimizedPrelinMpe; | 
|  | cmsToneCurve** OptimizedPrelinCurves; | 
|  | _cmsStageCLutData* OptimizedPrelinCLUT; | 
|  |  | 
|  |  | 
|  | // This is a lossy optimization! does not apply in floating-point cases | 
|  | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; | 
|  |  | 
|  | // Only on chunky RGB | 
|  | if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE; | 
|  | if (T_PLANAR(*InputFormat)) return FALSE; | 
|  |  | 
|  | if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE; | 
|  | if (T_PLANAR(*OutputFormat)) return FALSE; | 
|  |  | 
|  | // On 16 bits, user has to specify the feature | 
|  | if (!_cmsFormatterIs8bit(*InputFormat)) { | 
|  | if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE; | 
|  | } | 
|  |  | 
|  | OriginalLut = *Lut; | 
|  |  | 
|  | ColorSpace       = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)); | 
|  | OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)); | 
|  |  | 
|  | // Color space must be specified | 
|  | if (ColorSpace == (cmsColorSpaceSignature)0 || | 
|  | OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; | 
|  |  | 
|  | nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); | 
|  |  | 
|  | // Empty gamma containers | 
|  | memset(Trans, 0, sizeof(Trans)); | 
|  | memset(TransReverse, 0, sizeof(TransReverse)); | 
|  |  | 
|  | // If the last stage of the original lut are curves, and those curves are | 
|  | // degenerated, it is likely the transform is squeezing and clipping | 
|  | // the output from previous CLUT. We cannot optimize this case | 
|  | { | 
|  | cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut); | 
|  |  | 
|  | if (last == NULL) goto Error; | 
|  | if (cmsStageType(last) == cmsSigCurveSetElemType) { | 
|  |  | 
|  | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last); | 
|  | for (i = 0; i < Data->nCurves; i++) { | 
|  | if (IsDegenerated(Data->TheCurves[i])) | 
|  | goto Error; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (t = 0; t < OriginalLut ->InputChannels; t++) { | 
|  | Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL); | 
|  | if (Trans[t] == NULL) goto Error; | 
|  | } | 
|  |  | 
|  | // Populate the curves | 
|  | for (i=0; i < PRELINEARIZATION_POINTS; i++) { | 
|  |  | 
|  | v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); | 
|  |  | 
|  | // Feed input with a gray ramp | 
|  | for (t=0; t < OriginalLut ->InputChannels; t++) | 
|  | In[t] = v; | 
|  |  | 
|  | // Evaluate the gray value | 
|  | cmsPipelineEvalFloat(In, Out, OriginalLut); | 
|  |  | 
|  | // Store result in curve | 
|  | for (t=0; t < OriginalLut ->InputChannels; t++) | 
|  | Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0); | 
|  | } | 
|  |  | 
|  | // Slope-limit the obtained curves | 
|  | for (t = 0; t < OriginalLut ->InputChannels; t++) | 
|  | SlopeLimiting(Trans[t]); | 
|  |  | 
|  | // Check for validity | 
|  | lIsSuitable = TRUE; | 
|  | lIsLinear   = TRUE; | 
|  | for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) { | 
|  |  | 
|  | // Exclude if already linear | 
|  | if (!cmsIsToneCurveLinear(Trans[t])) | 
|  | lIsLinear = FALSE; | 
|  |  | 
|  | // Exclude if non-monotonic | 
|  | if (!cmsIsToneCurveMonotonic(Trans[t])) | 
|  | lIsSuitable = FALSE; | 
|  |  | 
|  | if (IsDegenerated(Trans[t])) | 
|  | lIsSuitable = FALSE; | 
|  | } | 
|  |  | 
|  | // If it is not suitable, just quit | 
|  | if (!lIsSuitable) goto Error; | 
|  |  | 
|  | // Invert curves if possible | 
|  | for (t = 0; t < OriginalLut ->InputChannels; t++) { | 
|  | TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]); | 
|  | if (TransReverse[t] == NULL) goto Error; | 
|  | } | 
|  |  | 
|  | // Now inset the reversed curves at the begin of transform | 
|  | LutPlusCurves = cmsPipelineDup(OriginalLut); | 
|  | if (LutPlusCurves == NULL) goto Error; | 
|  |  | 
|  | if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse))) | 
|  | goto Error; | 
|  |  | 
|  | // Create the result LUT | 
|  | OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels); | 
|  | if (OptimizedLUT == NULL) goto Error; | 
|  |  | 
|  | OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans); | 
|  |  | 
|  | // Create and insert the curves at the beginning | 
|  | if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe)) | 
|  | goto Error; | 
|  |  | 
|  | // Allocate the CLUT for result | 
|  | OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL); | 
|  |  | 
|  | // Add the CLUT to the destination LUT | 
|  | if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe)) | 
|  | goto Error; | 
|  |  | 
|  | // Resample the LUT | 
|  | if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error; | 
|  |  | 
|  | // Free resources | 
|  | for (t = 0; t < OriginalLut ->InputChannels; t++) { | 
|  |  | 
|  | if (Trans[t]) cmsFreeToneCurve(Trans[t]); | 
|  | if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); | 
|  | } | 
|  |  | 
|  | cmsPipelineFree(LutPlusCurves); | 
|  |  | 
|  |  | 
|  | OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe); | 
|  | OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data; | 
|  |  | 
|  | // Set the evaluator if 8-bit | 
|  | if (_cmsFormatterIs8bit(*InputFormat)) { | 
|  |  | 
|  | Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID, | 
|  | OptimizedPrelinCLUT ->Params, | 
|  | OptimizedPrelinCurves); | 
|  | if (p8 == NULL) return FALSE; | 
|  |  | 
|  | _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup); | 
|  |  | 
|  | } | 
|  | else | 
|  | { | 
|  | Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID, | 
|  | OptimizedPrelinCLUT ->Params, | 
|  | 3, OptimizedPrelinCurves, 3, NULL); | 
|  | if (p16 == NULL) return FALSE; | 
|  |  | 
|  | _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); | 
|  |  | 
|  | } | 
|  |  | 
|  | // Don't fix white on absolute colorimetric | 
|  | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) | 
|  | *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; | 
|  |  | 
|  | if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { | 
|  |  | 
|  | if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) { | 
|  |  | 
|  | return FALSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // And return the obtained LUT | 
|  |  | 
|  | cmsPipelineFree(OriginalLut); | 
|  | *Lut = OptimizedLUT; | 
|  | return TRUE; | 
|  |  | 
|  | Error: | 
|  |  | 
|  | for (t = 0; t < OriginalLut ->InputChannels; t++) { | 
|  |  | 
|  | if (Trans[t]) cmsFreeToneCurve(Trans[t]); | 
|  | if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); | 
|  | } | 
|  |  | 
|  | if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves); | 
|  | if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT); | 
|  |  | 
|  | return FALSE; | 
|  |  | 
|  | cmsUNUSED_PARAMETER(Intent); | 
|  | cmsUNUSED_PARAMETER(lIsLinear); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Curves optimizer ------------------------------------------------------------------------------------------------------------------ | 
|  |  | 
|  | static | 
|  | void CurvesFree(cmsContext ContextID, void* ptr) | 
|  | { | 
|  | Curves16Data* Data = (Curves16Data*) ptr; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | for (i=0; i < Data -> nCurves; i++) { | 
|  |  | 
|  | _cmsFree(ContextID, Data ->Curves[i]); | 
|  | } | 
|  |  | 
|  | _cmsFree(ContextID, Data ->Curves); | 
|  | _cmsFree(ContextID, ptr); | 
|  | } | 
|  |  | 
|  | static | 
|  | void* CurvesDup(cmsContext ContextID, const void* ptr) | 
|  | { | 
|  | Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data)); | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | if (Data == NULL) return NULL; | 
|  |  | 
|  | Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*)); | 
|  |  | 
|  | for (i=0; i < Data -> nCurves; i++) { | 
|  | Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number)); | 
|  | } | 
|  |  | 
|  | return (void*) Data; | 
|  | } | 
|  |  | 
|  | // Precomputes tables for 8-bit on input devicelink. | 
|  | static | 
|  | Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G) | 
|  | { | 
|  | cmsUInt32Number i, j; | 
|  | Curves16Data* c16; | 
|  |  | 
|  | c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data)); | 
|  | if (c16 == NULL) return NULL; | 
|  |  | 
|  | c16 ->nCurves = nCurves; | 
|  | c16 ->nElements = nElements; | 
|  |  | 
|  | c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*)); | 
|  | if (c16->Curves == NULL) { | 
|  | _cmsFree(ContextID, c16); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (i=0; i < nCurves; i++) { | 
|  |  | 
|  | c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number)); | 
|  |  | 
|  | if (c16->Curves[i] == NULL) { | 
|  |  | 
|  | for (j=0; j < i; j++) { | 
|  | _cmsFree(ContextID, c16->Curves[j]); | 
|  | } | 
|  | _cmsFree(ContextID, c16->Curves); | 
|  | _cmsFree(ContextID, c16); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (nElements == 256U) { | 
|  |  | 
|  | for (j=0; j < nElements; j++) { | 
|  |  | 
|  | c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j)); | 
|  | } | 
|  | } | 
|  | else { | 
|  |  | 
|  | for (j=0; j < nElements; j++) { | 
|  | c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return c16; | 
|  | } | 
|  |  | 
|  | static | 
|  | void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[], | 
|  | CMSREGISTER cmsUInt16Number Out[], | 
|  | CMSREGISTER const void* D) | 
|  | { | 
|  | Curves16Data* Data = (Curves16Data*) D; | 
|  | int x; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | for (i=0; i < Data ->nCurves; i++) { | 
|  |  | 
|  | x = (In[i] >> 8); | 
|  | Out[i] = Data -> Curves[i][x]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[], | 
|  | CMSREGISTER cmsUInt16Number Out[], | 
|  | CMSREGISTER const void* D) | 
|  | { | 
|  | Curves16Data* Data = (Curves16Data*) D; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | for (i=0; i < Data ->nCurves; i++) { | 
|  | Out[i] = Data -> Curves[i][In[i]]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | void FastIdentity16(CMSREGISTER const cmsUInt16Number In[], | 
|  | CMSREGISTER cmsUInt16Number Out[], | 
|  | CMSREGISTER const void* D) | 
|  | { | 
|  | cmsPipeline* Lut = (cmsPipeline*) D; | 
|  | cmsUInt32Number i; | 
|  |  | 
|  | for (i=0; i < Lut ->InputChannels; i++) { | 
|  | Out[i] = In[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // If the target LUT holds only curves, the optimization procedure is to join all those | 
|  | // curves together. That only works on curves and does not work on matrices. | 
|  | static | 
|  | cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | 
|  | { | 
|  | cmsToneCurve** GammaTables = NULL; | 
|  | cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; | 
|  | cmsUInt32Number i, j; | 
|  | cmsPipeline* Src = *Lut; | 
|  | cmsPipeline* Dest = NULL; | 
|  | cmsStage* mpe; | 
|  | cmsStage* ObtainedCurves = NULL; | 
|  |  | 
|  |  | 
|  | // This is a lossy optimization! does not apply in floating-point cases | 
|  | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; | 
|  |  | 
|  | //  Only curves in this LUT? | 
|  | for (mpe = cmsPipelineGetPtrToFirstStage(Src); | 
|  | mpe != NULL; | 
|  | mpe = cmsStageNext(mpe)) { | 
|  | if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE; | 
|  | } | 
|  |  | 
|  | // Allocate an empty LUT | 
|  | Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); | 
|  | if (Dest == NULL) return FALSE; | 
|  |  | 
|  | // Create target curves | 
|  | GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*)); | 
|  | if (GammaTables == NULL) goto Error; | 
|  |  | 
|  | for (i=0; i < Src ->InputChannels; i++) { | 
|  | GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL); | 
|  | if (GammaTables[i] == NULL) goto Error; | 
|  | } | 
|  |  | 
|  | // Compute 16 bit result by using floating point | 
|  | for (i=0; i < PRELINEARIZATION_POINTS; i++) { | 
|  |  | 
|  | for (j=0; j < Src ->InputChannels; j++) | 
|  | InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); | 
|  |  | 
|  | cmsPipelineEvalFloat(InFloat, OutFloat, Src); | 
|  |  | 
|  | for (j=0; j < Src ->InputChannels; j++) | 
|  | GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0); | 
|  | } | 
|  |  | 
|  | ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables); | 
|  | if (ObtainedCurves == NULL) goto Error; | 
|  |  | 
|  | for (i=0; i < Src ->InputChannels; i++) { | 
|  | cmsFreeToneCurve(GammaTables[i]); | 
|  | GammaTables[i] = NULL; | 
|  | } | 
|  |  | 
|  | if (GammaTables != NULL) { | 
|  | _cmsFree(Src->ContextID, GammaTables); | 
|  | GammaTables = NULL; | 
|  | } | 
|  |  | 
|  | // Maybe the curves are linear at the end | 
|  | if (!AllCurvesAreLinear(ObtainedCurves)) { | 
|  | _cmsStageToneCurvesData* Data; | 
|  |  | 
|  | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves)) | 
|  | goto Error; | 
|  | Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves); | 
|  | ObtainedCurves = NULL; | 
|  |  | 
|  | // If the curves are to be applied in 8 bits, we can save memory | 
|  | if (_cmsFormatterIs8bit(*InputFormat)) { | 
|  | Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves); | 
|  |  | 
|  | if (c16 == NULL) goto Error; | 
|  | *dwFlags |= cmsFLAGS_NOCACHE; | 
|  | _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup); | 
|  |  | 
|  | } | 
|  | else { | 
|  | Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves); | 
|  |  | 
|  | if (c16 == NULL) goto Error; | 
|  | *dwFlags |= cmsFLAGS_NOCACHE; | 
|  | _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup); | 
|  | } | 
|  | } | 
|  | else { | 
|  |  | 
|  | // LUT optimizes to nothing. Set the identity LUT | 
|  | cmsStageFree(ObtainedCurves); | 
|  | ObtainedCurves = NULL; | 
|  |  | 
|  | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels))) | 
|  | goto Error; | 
|  |  | 
|  | *dwFlags |= cmsFLAGS_NOCACHE; | 
|  | _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL); | 
|  | } | 
|  |  | 
|  | // We are done. | 
|  | cmsPipelineFree(Src); | 
|  | *Lut = Dest; | 
|  | return TRUE; | 
|  |  | 
|  | Error: | 
|  |  | 
|  | if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves); | 
|  | if (GammaTables != NULL) { | 
|  | for (i=0; i < Src ->InputChannels; i++) { | 
|  | if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]); | 
|  | } | 
|  |  | 
|  | _cmsFree(Src ->ContextID, GammaTables); | 
|  | } | 
|  |  | 
|  | if (Dest != NULL) cmsPipelineFree(Dest); | 
|  | return FALSE; | 
|  |  | 
|  | cmsUNUSED_PARAMETER(Intent); | 
|  | cmsUNUSED_PARAMETER(InputFormat); | 
|  | cmsUNUSED_PARAMETER(OutputFormat); | 
|  | cmsUNUSED_PARAMETER(dwFlags); | 
|  | } | 
|  |  | 
|  | // ------------------------------------------------------------------------------------------------------------------------------------- | 
|  | // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles | 
|  |  | 
|  |  | 
|  | static | 
|  | void  FreeMatShaper(cmsContext ContextID, void* Data) | 
|  | { | 
|  | if (Data != NULL) _cmsFree(ContextID, Data); | 
|  | } | 
|  |  | 
|  | static | 
|  | void* DupMatShaper(cmsContext ContextID, const void* Data) | 
|  | { | 
|  | return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point | 
|  | // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits, | 
|  | // in total about 50K, and the performance boost is huge! | 
|  | static CMS_NO_SANITIZE | 
|  | void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[], | 
|  | CMSREGISTER cmsUInt16Number Out[], | 
|  | CMSREGISTER const void* D) | 
|  | { | 
|  | MatShaper8Data* p = (MatShaper8Data*) D; | 
|  | cmsS1Fixed14Number r, g, b; | 
|  | cmsInt64Number l1, l2, l3; | 
|  | cmsUInt32Number ri, gi, bi; | 
|  |  | 
|  | // In this case (and only in this case!) we can use this simplification since | 
|  | // In[] is assured to come from a 8 bit number. (a << 8 | a) | 
|  | ri = In[0] & 0xFFU; | 
|  | gi = In[1] & 0xFFU; | 
|  | bi = In[2] & 0xFFU; | 
|  |  | 
|  | // Across first shaper, which also converts to 1.14 fixed point | 
|  | r = _FixedClamp(p->Shaper1R[ri]); | 
|  | g = _FixedClamp(p->Shaper1G[gi]); | 
|  | b = _FixedClamp(p->Shaper1B[bi]); | 
|  |  | 
|  | // Evaluate the matrix in 1.14 fixed point | 
|  | l1 = _MatShaperEvaluateRow(p->Mat[0], p->Off[0], r, g, b); | 
|  | l2 = _MatShaperEvaluateRow(p->Mat[1], p->Off[1], r, g, b); | 
|  | l3 = _MatShaperEvaluateRow(p->Mat[2], p->Off[2], r, g, b); | 
|  |  | 
|  | // Now we have to clip to 0..1.0 range | 
|  | ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1); | 
|  | gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2); | 
|  | bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3); | 
|  |  | 
|  | // And across second shaper, | 
|  | Out[0] = p->Shaper2R[ri]; | 
|  | Out[1] = p->Shaper2G[gi]; | 
|  | Out[2] = p->Shaper2B[bi]; | 
|  |  | 
|  | } | 
|  |  | 
|  | // This table converts from 8 bits to 1.14 after applying the curve | 
|  | static | 
|  | void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve) | 
|  | { | 
|  | int i; | 
|  | cmsFloat32Number R, y; | 
|  |  | 
|  | for (i=0; i < 256; i++) { | 
|  |  | 
|  | R   = (cmsFloat32Number) (i / 255.0); | 
|  | y   = cmsEvalToneCurveFloat(Curve, R); | 
|  |  | 
|  | if (y < 131072.0) | 
|  | Table[i] = DOUBLE_TO_1FIXED14(y); | 
|  | else | 
|  | Table[i] = 0x7fffffff; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve | 
|  | static | 
|  | void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput) | 
|  | { | 
|  | int i; | 
|  | cmsFloat32Number R, Val; | 
|  |  | 
|  | for (i=0; i < 16385; i++) { | 
|  |  | 
|  | R   = (cmsFloat32Number) (i / 16384.0); | 
|  | Val = cmsEvalToneCurveFloat(Curve, R);    // Val comes 0..1.0 | 
|  |  | 
|  | if (Val < 0) | 
|  | Val = 0; | 
|  |  | 
|  | if (Val > 1.0) | 
|  | Val = 1.0; | 
|  |  | 
|  | if (Is8BitsOutput) { | 
|  |  | 
|  | // If 8 bits output, we can optimize further by computing the / 257 part. | 
|  | // first we compute the resulting byte and then we store the byte times | 
|  | // 257. This quantization allows to round very quick by doing a >> 8, but | 
|  | // since the low byte is always equal to msb, we can do a & 0xff and this works! | 
|  | cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0); | 
|  | cmsUInt8Number  b = FROM_16_TO_8(w); | 
|  |  | 
|  | Table[i] = FROM_8_TO_16(b); | 
|  | } | 
|  | else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the matrix-shaper structure | 
|  | static | 
|  | cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat) | 
|  | { | 
|  | MatShaper8Data* p; | 
|  | int i, j; | 
|  | cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat); | 
|  |  | 
|  | // Allocate a big chuck of memory to store precomputed tables | 
|  | p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data)); | 
|  | if (p == NULL) return FALSE; | 
|  |  | 
|  | p -> ContextID = Dest -> ContextID; | 
|  |  | 
|  | // Precompute tables | 
|  | FillFirstShaper(p ->Shaper1R, Curve1[0]); | 
|  | FillFirstShaper(p ->Shaper1G, Curve1[1]); | 
|  | FillFirstShaper(p ->Shaper1B, Curve1[2]); | 
|  |  | 
|  | FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits); | 
|  | FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits); | 
|  | FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits); | 
|  |  | 
|  | // Convert matrix to nFixed14. Note that those values may take more than 16 bits | 
|  | for (i=0; i < 3; i++) { | 
|  | for (j=0; j < 3; j++) { | 
|  | p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i=0; i < 3; i++) { | 
|  |  | 
|  | if (Off == NULL) { | 
|  | p ->Off[i] = 0; | 
|  | } | 
|  | else { | 
|  | p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mark as optimized for faster formatter | 
|  | if (Is8Bits) | 
|  | *OutputFormat |= OPTIMIZED_SH(1); | 
|  |  | 
|  | // Fill function pointers | 
|  | _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | //  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast! | 
|  | static | 
|  | cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | 
|  | { | 
|  | cmsStage* Curve1, *Curve2; | 
|  | cmsStage* Matrix1, *Matrix2; | 
|  | cmsMAT3 res; | 
|  | cmsBool IdentityMat; | 
|  | cmsPipeline* Dest, *Src; | 
|  | cmsFloat64Number* Offset; | 
|  |  | 
|  | // Only works on RGB to RGB | 
|  | if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE; | 
|  |  | 
|  | // Only works on 8 bit input | 
|  | if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE; | 
|  |  | 
|  | // Seems suitable, proceed | 
|  | Src = *Lut; | 
|  |  | 
|  | // Check for: | 
|  | // | 
|  | //    shaper-matrix-matrix-shaper | 
|  | //    shaper-matrix-shaper | 
|  | // | 
|  | // Both of those constructs are possible (first because abs. colorimetric). | 
|  | // additionally, In the first case, the input matrix offset should be zero. | 
|  |  | 
|  | IdentityMat = FALSE; | 
|  | if (cmsPipelineCheckAndRetreiveStages(Src, 4, | 
|  | cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, | 
|  | &Curve1, &Matrix1, &Matrix2, &Curve2)) { | 
|  |  | 
|  | // Get both matrices | 
|  | _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1); | 
|  | _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2); | 
|  |  | 
|  | // Only RGB to RGB | 
|  | if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 || | 
|  | Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE; | 
|  |  | 
|  | // Input offset should be zero | 
|  | if (Data1->Offset != NULL) return FALSE; | 
|  |  | 
|  | // Multiply both matrices to get the result | 
|  | _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double); | 
|  |  | 
|  | // Only 2nd matrix has offset, or it is zero | 
|  | Offset = Data2->Offset; | 
|  |  | 
|  | // Now the result is in res + Data2 -> Offset. Maybe is a plain identity? | 
|  | if (_cmsMAT3isIdentity(&res) && Offset == NULL) { | 
|  |  | 
|  | // We can get rid of full matrix | 
|  | IdentityMat = TRUE; | 
|  | } | 
|  |  | 
|  | } | 
|  | else { | 
|  |  | 
|  | if (cmsPipelineCheckAndRetreiveStages(Src, 3, | 
|  | cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, | 
|  | &Curve1, &Matrix1, &Curve2)) { | 
|  |  | 
|  | _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1); | 
|  |  | 
|  | // Copy the matrix to our result | 
|  | memcpy(&res, Data->Double, sizeof(res)); | 
|  |  | 
|  | // Preserve the Odffset (may be NULL as a zero offset) | 
|  | Offset = Data->Offset; | 
|  |  | 
|  | if (_cmsMAT3isIdentity(&res) && Offset == NULL) { | 
|  |  | 
|  | // We can get rid of full matrix | 
|  | IdentityMat = TRUE; | 
|  | } | 
|  | } | 
|  | else | 
|  | return FALSE; // Not optimizeable this time | 
|  |  | 
|  | } | 
|  |  | 
|  | // Allocate an empty LUT | 
|  | Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); | 
|  | if (!Dest) return FALSE; | 
|  |  | 
|  | // Assamble the new LUT | 
|  | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1))) | 
|  | goto Error; | 
|  |  | 
|  | if (!IdentityMat) { | 
|  |  | 
|  | if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset))) | 
|  | goto Error; | 
|  | } | 
|  |  | 
|  | if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2))) | 
|  | goto Error; | 
|  |  | 
|  | // If identity on matrix, we can further optimize the curves, so call the join curves routine | 
|  | if (IdentityMat) { | 
|  |  | 
|  | OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags); | 
|  | } | 
|  | else { | 
|  | _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1); | 
|  | _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2); | 
|  |  | 
|  | // In this particular optimization, cache does not help as it takes more time to deal with | 
|  | // the cache that with the pixel handling | 
|  | *dwFlags |= cmsFLAGS_NOCACHE; | 
|  |  | 
|  | // Setup the optimizarion routines | 
|  | SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat); | 
|  | } | 
|  |  | 
|  | cmsPipelineFree(Src); | 
|  | *Lut = Dest; | 
|  | return TRUE; | 
|  | Error: | 
|  | // Leave Src unchanged | 
|  | cmsPipelineFree(Dest); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  |  | 
|  | // ------------------------------------------------------------------------------------------------------------------------------------- | 
|  | // Optimization plug-ins | 
|  |  | 
|  | // List of optimizations | 
|  | typedef struct _cmsOptimizationCollection_st { | 
|  |  | 
|  | _cmsOPToptimizeFn  OptimizePtr; | 
|  |  | 
|  | struct _cmsOptimizationCollection_st *Next; | 
|  |  | 
|  | } _cmsOptimizationCollection; | 
|  |  | 
|  |  | 
|  | // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling | 
|  | static _cmsOptimizationCollection DefaultOptimization[] = { | 
|  |  | 
|  | { OptimizeByJoiningCurves,            &DefaultOptimization[1] }, | 
|  | { OptimizeMatrixShaper,               &DefaultOptimization[2] }, | 
|  | { OptimizeByComputingLinearization,   &DefaultOptimization[3] }, | 
|  | { OptimizeByResampling,               NULL } | 
|  | }; | 
|  |  | 
|  | // The linked list head | 
|  | _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL }; | 
|  |  | 
|  |  | 
|  | // Duplicates the zone of memory used by the plug-in in the new context | 
|  | static | 
|  | void DupPluginOptimizationList(struct _cmsContext_struct* ctx, | 
|  | const struct _cmsContext_struct* src) | 
|  | { | 
|  | _cmsOptimizationPluginChunkType newHead = { NULL }; | 
|  | _cmsOptimizationCollection*  entry; | 
|  | _cmsOptimizationCollection*  Anterior = NULL; | 
|  | _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin]; | 
|  |  | 
|  | _cmsAssert(ctx != NULL); | 
|  | _cmsAssert(head != NULL); | 
|  |  | 
|  | // Walk the list copying all nodes | 
|  | for (entry = head->OptimizationCollection; | 
|  | entry != NULL; | 
|  | entry = entry ->Next) { | 
|  |  | 
|  | _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection)); | 
|  |  | 
|  | if (newEntry == NULL) | 
|  | return; | 
|  |  | 
|  | // We want to keep the linked list order, so this is a little bit tricky | 
|  | newEntry -> Next = NULL; | 
|  | if (Anterior) | 
|  | Anterior -> Next = newEntry; | 
|  |  | 
|  | Anterior = newEntry; | 
|  |  | 
|  | if (newHead.OptimizationCollection == NULL) | 
|  | newHead.OptimizationCollection = newEntry; | 
|  | } | 
|  |  | 
|  | ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType)); | 
|  | } | 
|  |  | 
|  | void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx, | 
|  | const struct _cmsContext_struct* src) | 
|  | { | 
|  | if (src != NULL) { | 
|  |  | 
|  | // Copy all linked list | 
|  | DupPluginOptimizationList(ctx, src); | 
|  | } | 
|  | else { | 
|  | static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL }; | 
|  | ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Register new ways to optimize | 
|  | cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data) | 
|  | { | 
|  | cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data; | 
|  | _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); | 
|  | _cmsOptimizationCollection* fl; | 
|  |  | 
|  | if (Data == NULL) { | 
|  |  | 
|  | ctx->OptimizationCollection = NULL; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Optimizer callback is required | 
|  | if (Plugin ->OptimizePtr == NULL) return FALSE; | 
|  |  | 
|  | fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection)); | 
|  | if (fl == NULL) return FALSE; | 
|  |  | 
|  | // Copy the parameters | 
|  | fl ->OptimizePtr = Plugin ->OptimizePtr; | 
|  |  | 
|  | // Keep linked list | 
|  | fl ->Next = ctx->OptimizationCollection; | 
|  |  | 
|  | // Set the head | 
|  | ctx ->OptimizationCollection = fl; | 
|  |  | 
|  | // All is ok | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // The entry point for LUT optimization | 
|  | cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID, | 
|  | cmsPipeline**    PtrLut, | 
|  | cmsUInt32Number  Intent, | 
|  | cmsUInt32Number* InputFormat, | 
|  | cmsUInt32Number* OutputFormat, | 
|  | cmsUInt32Number* dwFlags) | 
|  | { | 
|  | _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); | 
|  | _cmsOptimizationCollection* Opts; | 
|  | cmsBool AnySuccess = FALSE; | 
|  | cmsStage* mpe; | 
|  |  | 
|  | // A CLUT is being asked, so force this specific optimization | 
|  | if (*dwFlags & cmsFLAGS_FORCE_CLUT) { | 
|  |  | 
|  | PreOptimize(*PtrLut); | 
|  | return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags); | 
|  | } | 
|  |  | 
|  | // Anything to optimize? | 
|  | if ((*PtrLut) ->Elements == NULL) { | 
|  | _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Named color pipelines cannot be optimized | 
|  | for (mpe = cmsPipelineGetPtrToFirstStage(*PtrLut); | 
|  | mpe != NULL; | 
|  | mpe = cmsStageNext(mpe)) { | 
|  | if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE; | 
|  | } | 
|  |  | 
|  | // Try to get rid of identities and trivial conversions. | 
|  | AnySuccess = PreOptimize(*PtrLut); | 
|  |  | 
|  | // After removal do we end with an identity? | 
|  | if ((*PtrLut) ->Elements == NULL) { | 
|  | _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // Do not optimize, keep all precision | 
|  | if (*dwFlags & cmsFLAGS_NOOPTIMIZE) | 
|  | return FALSE; | 
|  |  | 
|  | // Try plug-in optimizations | 
|  | for (Opts = ctx->OptimizationCollection; | 
|  | Opts != NULL; | 
|  | Opts = Opts ->Next) { | 
|  |  | 
|  | // If one schema succeeded, we are done | 
|  | if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { | 
|  |  | 
|  | return TRUE;    // Optimized! | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try built-in optimizations | 
|  | for (Opts = DefaultOptimization; | 
|  | Opts != NULL; | 
|  | Opts = Opts ->Next) { | 
|  |  | 
|  | if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only simple optimizations succeeded | 
|  | return AnySuccess; | 
|  | } | 
|  |  | 
|  |  | 
|  |  |