| //--------------------------------------------------------------------------------- |
| // |
| // Little Color Management System |
| // Copyright (c) 1998-2017 Marti Maria Saguer |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining |
| // a copy of this software and associated documentation files (the "Software"), |
| // to deal in the Software without restriction, including without limitation |
| // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| // and/or sell copies of the Software, and to permit persons to whom the Software |
| // is furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| // |
| //--------------------------------------------------------------------------------- |
| // |
| |
| #include "lcms2_internal.h" |
| |
| |
| // D50 - Widely used |
| const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void) |
| { |
| static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z}; |
| |
| return &D50XYZ; |
| } |
| |
| const cmsCIExyY* CMSEXPORT cmsD50_xyY(void) |
| { |
| static cmsCIExyY D50xyY; |
| |
| cmsXYZ2xyY(&D50xyY, cmsD50_XYZ()); |
| |
| return &D50xyY; |
| } |
| |
| // Obtains WhitePoint from Temperature |
| cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK) |
| { |
| cmsFloat64Number x, y; |
| cmsFloat64Number T, T2, T3; |
| // cmsFloat64Number M1, M2; |
| |
| _cmsAssert(WhitePoint != NULL); |
| |
| T = TempK; |
| T2 = T*T; // Square |
| T3 = T2*T; // Cube |
| |
| // For correlated color temperature (T) between 4000K and 7000K: |
| |
| if (T >= 4000. && T <= 7000.) |
| { |
| x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063; |
| } |
| else |
| // or for correlated color temperature (T) between 7000K and 25000K: |
| |
| if (T > 7000.0 && T <= 25000.0) |
| { |
| x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040; |
| } |
| else { |
| cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp"); |
| return FALSE; |
| } |
| |
| // Obtain y(x) |
| y = -3.000*(x*x) + 2.870*x - 0.275; |
| |
| // wave factors (not used, but here for futures extensions) |
| |
| // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y); |
| // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y); |
| |
| WhitePoint -> x = x; |
| WhitePoint -> y = y; |
| WhitePoint -> Y = 1.0; |
| |
| return TRUE; |
| } |
| |
| |
| |
| typedef struct { |
| |
| cmsFloat64Number mirek; // temp (in microreciprocal kelvin) |
| cmsFloat64Number ut; // u coord of intersection w/ blackbody locus |
| cmsFloat64Number vt; // v coord of intersection w/ blackbody locus |
| cmsFloat64Number tt; // slope of ISOTEMPERATURE. line |
| |
| } ISOTEMPERATURE; |
| |
| static const ISOTEMPERATURE isotempdata[] = { |
| // {Mirek, Ut, Vt, Tt } |
| {0, 0.18006, 0.26352, -0.24341}, |
| {10, 0.18066, 0.26589, -0.25479}, |
| {20, 0.18133, 0.26846, -0.26876}, |
| {30, 0.18208, 0.27119, -0.28539}, |
| {40, 0.18293, 0.27407, -0.30470}, |
| {50, 0.18388, 0.27709, -0.32675}, |
| {60, 0.18494, 0.28021, -0.35156}, |
| {70, 0.18611, 0.28342, -0.37915}, |
| {80, 0.18740, 0.28668, -0.40955}, |
| {90, 0.18880, 0.28997, -0.44278}, |
| {100, 0.19032, 0.29326, -0.47888}, |
| {125, 0.19462, 0.30141, -0.58204}, |
| {150, 0.19962, 0.30921, -0.70471}, |
| {175, 0.20525, 0.31647, -0.84901}, |
| {200, 0.21142, 0.32312, -1.0182 }, |
| {225, 0.21807, 0.32909, -1.2168 }, |
| {250, 0.22511, 0.33439, -1.4512 }, |
| {275, 0.23247, 0.33904, -1.7298 }, |
| {300, 0.24010, 0.34308, -2.0637 }, |
| {325, 0.24702, 0.34655, -2.4681 }, |
| {350, 0.25591, 0.34951, -2.9641 }, |
| {375, 0.26400, 0.35200, -3.5814 }, |
| {400, 0.27218, 0.35407, -4.3633 }, |
| {425, 0.28039, 0.35577, -5.3762 }, |
| {450, 0.28863, 0.35714, -6.7262 }, |
| {475, 0.29685, 0.35823, -8.5955 }, |
| {500, 0.30505, 0.35907, -11.324 }, |
| {525, 0.31320, 0.35968, -15.628 }, |
| {550, 0.32129, 0.36011, -23.325 }, |
| {575, 0.32931, 0.36038, -40.770 }, |
| {600, 0.33724, 0.36051, -116.45 } |
| }; |
| |
| #define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE) |
| |
| |
| // Robertson's method |
| cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint) |
| { |
| cmsUInt32Number j; |
| cmsFloat64Number us,vs; |
| cmsFloat64Number uj,vj,tj,di,dj,mi,mj; |
| cmsFloat64Number xs, ys; |
| |
| _cmsAssert(WhitePoint != NULL); |
| _cmsAssert(TempK != NULL); |
| |
| di = mi = 0; |
| xs = WhitePoint -> x; |
| ys = WhitePoint -> y; |
| |
| // convert (x,y) to CIE 1960 (u,WhitePoint) |
| |
| us = (2*xs) / (-xs + 6*ys + 1.5); |
| vs = (3*ys) / (-xs + 6*ys + 1.5); |
| |
| |
| for (j=0; j < NISO; j++) { |
| |
| uj = isotempdata[j].ut; |
| vj = isotempdata[j].vt; |
| tj = isotempdata[j].tt; |
| mj = isotempdata[j].mirek; |
| |
| dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj); |
| |
| if ((j != 0) && (di/dj < 0.0)) { |
| |
| // Found a match |
| *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi)); |
| return TRUE; |
| } |
| |
| di = dj; |
| mi = mj; |
| } |
| |
| // Not found |
| return FALSE; |
| } |
| |
| |
| // Compute chromatic adaptation matrix using Chad as cone matrix |
| |
| static |
| cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion, |
| const cmsCIEXYZ* SourceWhitePoint, |
| const cmsCIEXYZ* DestWhitePoint, |
| const cmsMAT3* Chad) |
| |
| { |
| |
| cmsMAT3 Chad_Inv; |
| cmsVEC3 ConeSourceXYZ, ConeSourceRGB; |
| cmsVEC3 ConeDestXYZ, ConeDestRGB; |
| cmsMAT3 Cone, Tmp; |
| |
| |
| Tmp = *Chad; |
| if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE; |
| |
| _cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X, |
| SourceWhitePoint -> Y, |
| SourceWhitePoint -> Z); |
| |
| _cmsVEC3init(&ConeDestXYZ, DestWhitePoint -> X, |
| DestWhitePoint -> Y, |
| DestWhitePoint -> Z); |
| |
| _cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ); |
| _cmsMAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ); |
| |
| // Build matrix |
| _cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0); |
| _cmsVEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0); |
| _cmsVEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]); |
| |
| |
| // Normalize |
| _cmsMAT3per(&Tmp, &Cone, Chad); |
| _cmsMAT3per(Conversion, &Chad_Inv, &Tmp); |
| |
| return TRUE; |
| } |
| |
| // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll |
| // The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed |
| cmsBool _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll) |
| { |
| cmsMAT3 LamRigg = {{ // Bradford matrix |
| {{ 0.8951, 0.2664, -0.1614 }}, |
| {{ -0.7502, 1.7135, 0.0367 }}, |
| {{ 0.0389, -0.0685, 1.0296 }} |
| }}; |
| |
| if (ConeMatrix == NULL) |
| ConeMatrix = &LamRigg; |
| |
| return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix); |
| } |
| |
| // Same as anterior, but assuming D50 destination. White point is given in xyY |
| static |
| cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt) |
| { |
| cmsCIEXYZ Dn; |
| cmsMAT3 Bradford; |
| cmsMAT3 Tmp; |
| |
| cmsxyY2XYZ(&Dn, SourceWhitePt); |
| |
| if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE; |
| |
| Tmp = *r; |
| _cmsMAT3per(r, &Bradford, &Tmp); |
| |
| return TRUE; |
| } |
| |
| // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ |
| // This is just an approximation, I am not handling all the non-linear |
| // aspects of the RGB to XYZ process, and assumming that the gamma correction |
| // has transitive property in the transformation chain. |
| // |
| // the alghoritm: |
| // |
| // - First I build the absolute conversion matrix using |
| // primaries in XYZ. This matrix is next inverted |
| // - Then I eval the source white point across this matrix |
| // obtaining the coeficients of the transformation |
| // - Then, I apply these coeficients to the original matrix |
| // |
| cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs) |
| { |
| cmsVEC3 WhitePoint, Coef; |
| cmsMAT3 Result, Primaries; |
| cmsFloat64Number xn, yn; |
| cmsFloat64Number xr, yr; |
| cmsFloat64Number xg, yg; |
| cmsFloat64Number xb, yb; |
| |
| xn = WhitePt -> x; |
| yn = WhitePt -> y; |
| xr = Primrs -> Red.x; |
| yr = Primrs -> Red.y; |
| xg = Primrs -> Green.x; |
| yg = Primrs -> Green.y; |
| xb = Primrs -> Blue.x; |
| yb = Primrs -> Blue.y; |
| |
| // Build Primaries matrix |
| _cmsVEC3init(&Primaries.v[0], xr, xg, xb); |
| _cmsVEC3init(&Primaries.v[1], yr, yg, yb); |
| _cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb)); |
| |
| |
| // Result = Primaries ^ (-1) inverse matrix |
| if (!_cmsMAT3inverse(&Primaries, &Result)) |
| return FALSE; |
| |
| |
| _cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn); |
| |
| // Across inverse primaries ... |
| _cmsMAT3eval(&Coef, &Result, &WhitePoint); |
| |
| // Give us the Coefs, then I build transformation matrix |
| _cmsVEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb); |
| _cmsVEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb); |
| _cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb)); |
| |
| |
| return _cmsAdaptMatrixToD50(r, WhitePt); |
| |
| } |
| |
| |
| // Adapts a color to a given illuminant. Original color is expected to have |
| // a SourceWhitePt white point. |
| cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result, |
| const cmsCIEXYZ* SourceWhitePt, |
| const cmsCIEXYZ* Illuminant, |
| const cmsCIEXYZ* Value) |
| { |
| cmsMAT3 Bradford; |
| cmsVEC3 In, Out; |
| |
| _cmsAssert(Result != NULL); |
| _cmsAssert(SourceWhitePt != NULL); |
| _cmsAssert(Illuminant != NULL); |
| _cmsAssert(Value != NULL); |
| |
| if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE; |
| |
| _cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z); |
| _cmsMAT3eval(&Out, &Bradford, &In); |
| |
| Result -> X = Out.n[0]; |
| Result -> Y = Out.n[1]; |
| Result -> Z = Out.n[2]; |
| |
| return TRUE; |
| } |
| |
| |