blob: abe833d9cfaa21a760e22adba46c02564f100e46 [file] [log] [blame]
// Copyright 2017 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fxcrt/fx_system.h"
#include <cmath>
#include <limits>
#include "build/build_config.h"
#include "core/fxcrt/fx_extension.h"
namespace {
template <typename IntType, typename CharType>
IntType FXSYS_StrToInt(const CharType* str) {
if (!str)
return 0;
// Process the sign.
bool neg = *str == '-';
if (neg || *str == '+')
str++;
IntType num = 0;
while (*str && FXSYS_IsDecimalDigit(*str)) {
IntType val = FXSYS_DecimalCharToInt(*str);
if (num > (std::numeric_limits<IntType>::max() - val) / 10) {
if (neg && std::numeric_limits<IntType>::is_signed) {
// Return MIN when the represented number is signed type and is smaller
// than the min value.
return std::numeric_limits<IntType>::min();
} else {
// Return MAX when the represented number is signed type and is larger
// than the max value, or the number is unsigned type and out of range.
return std::numeric_limits<IntType>::max();
}
}
num = num * 10 + val;
str++;
}
// When it is a negative value, -num should be returned. Since num may be of
// unsigned type, use ~num + 1 to avoid the warning of applying unary minus
// operator to unsigned type.
return neg ? ~num + 1 : num;
}
template <typename T, typename UT, typename STR_T>
STR_T FXSYS_IntToStr(T value, STR_T str, int radix) {
if (radix < 2 || radix > 16) {
str[0] = 0;
return str;
}
if (value == 0) {
str[0] = '0';
str[1] = 0;
return str;
}
int i = 0;
UT uvalue;
if (value < 0) {
str[i++] = '-';
// Standard trick to avoid undefined behaviour when negating INT_MIN.
uvalue = static_cast<UT>(-(value + 1)) + 1;
} else {
uvalue = value;
}
int digits = 1;
T order = uvalue / radix;
while (order > 0) {
digits++;
order = order / radix;
}
for (int d = digits - 1; d > -1; d--) {
str[d + i] = "0123456789abcdef"[uvalue % radix];
uvalue /= radix;
}
str[digits + i] = 0;
return str;
}
} // namespace
int FXSYS_round(float d) {
if (std::isnan(d))
return 0;
if (d < static_cast<float>(std::numeric_limits<int>::min()))
return std::numeric_limits<int>::min();
if (d > static_cast<float>(std::numeric_limits<int>::max()))
return std::numeric_limits<int>::max();
return static_cast<int>(round(d));
}
int32_t FXSYS_atoi(const char* str) {
return FXSYS_StrToInt<int32_t, char>(str);
}
uint32_t FXSYS_atoui(const char* str) {
return FXSYS_StrToInt<uint32_t>(str);
}
int32_t FXSYS_wtoi(const wchar_t* str) {
return FXSYS_StrToInt<int32_t, wchar_t>(str);
}
int64_t FXSYS_atoi64(const char* str) {
return FXSYS_StrToInt<int64_t, char>(str);
}
const char* FXSYS_i64toa(int64_t value, char* str, int radix) {
return FXSYS_IntToStr<int64_t, uint64_t, char*>(value, str, radix);
}
#if defined(OS_WIN)
size_t FXSYS_wcsftime(wchar_t* strDest,
size_t maxsize,
const wchar_t* format,
const struct tm* timeptr) {
// Avoid tripping an invalid parameter handler and crashing process.
// Note: leap seconds may cause tm_sec == 60.
if (timeptr->tm_year < -1900 || timeptr->tm_year > 8099 ||
timeptr->tm_mon < 0 || timeptr->tm_mon > 11 || timeptr->tm_mday < 1 ||
timeptr->tm_mday > 31 || timeptr->tm_hour < 0 || timeptr->tm_hour > 23 ||
timeptr->tm_min < 0 || timeptr->tm_min > 59 || timeptr->tm_sec < 0 ||
timeptr->tm_sec > 60 || timeptr->tm_wday < 0 || timeptr->tm_wday > 6 ||
timeptr->tm_yday < 0 || timeptr->tm_yday > 365) {
strDest[0] = L'\0';
return 0;
}
return wcsftime(strDest, maxsize, format, timeptr);
}
#else // defined(OS_WIN)
int FXSYS_GetACP() {
return 0;
}
char* FXSYS_strlwr(char* str) {
if (!str) {
return nullptr;
}
char* s = str;
while (*str) {
*str = tolower(*str);
str++;
}
return s;
}
char* FXSYS_strupr(char* str) {
if (!str) {
return nullptr;
}
char* s = str;
while (*str) {
*str = toupper(*str);
str++;
}
return s;
}
wchar_t* FXSYS_wcslwr(wchar_t* str) {
if (!str) {
return nullptr;
}
wchar_t* s = str;
while (*str) {
*str = FXSYS_towlower(*str);
str++;
}
return s;
}
wchar_t* FXSYS_wcsupr(wchar_t* str) {
if (!str) {
return nullptr;
}
wchar_t* s = str;
while (*str) {
*str = FXSYS_towupper(*str);
str++;
}
return s;
}
int FXSYS_stricmp(const char* dst, const char* src) {
int f;
int l;
do {
f = toupper(*dst);
l = toupper(*src);
++dst;
++src;
} while (f && f == l);
return f - l;
}
int FXSYS_wcsicmp(const wchar_t* dst, const wchar_t* src) {
wchar_t f;
wchar_t l;
do {
f = FXSYS_towupper(*dst);
l = FXSYS_towupper(*src);
++dst;
++src;
} while (f && f == l);
return f - l;
}
char* FXSYS_itoa(int value, char* str, int radix) {
return FXSYS_IntToStr<int32_t, uint32_t, char*>(value, str, radix);
}
int FXSYS_WideCharToMultiByte(uint32_t codepage,
uint32_t dwFlags,
const wchar_t* wstr,
int wlen,
char* buf,
int buflen,
const char* default_str,
int* pUseDefault) {
int len = 0;
for (int i = 0; i < wlen; i++) {
if (wstr[i] < 0x100) {
if (buf && len < buflen)
buf[len] = static_cast<char>(wstr[i]);
len++;
}
}
return len;
}
int FXSYS_MultiByteToWideChar(uint32_t codepage,
uint32_t dwFlags,
const char* bstr,
int blen,
wchar_t* buf,
int buflen) {
int wlen = 0;
for (int i = 0; i < blen; i++) {
if (buf && wlen < buflen)
buf[wlen] = reinterpret_cast<const uint8_t*>(bstr)[i];
wlen++;
}
return wlen;
}
#endif // defined(OS_WIN)