blob: 53e99dca24003ab5a6e2c17c40686956ca40d147 [file] [log] [blame]
// Copyright 2016 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fxge/cfx_path.h"
#include <math.h>
#include <algorithm>
#include <iterator>
#include "core/fxcrt/fx_system.h"
#include "third_party/base/check_op.h"
namespace {
bool IsRectPreTransform(const std::vector<CFX_Path::Point>& points) {
if (points.size() != 5 && points.size() != 4)
return false;
if (points.size() == 5 && points[0].m_Point != points[4].m_Point)
return false;
if (points[0].m_Point == points[2].m_Point ||
points[1].m_Point == points[3].m_Point) {
return false;
}
for (size_t i = 1; i < points.size(); ++i) {
if (points[i].m_Type != CFX_Path::Point::Type::kLine)
return false;
}
return true;
}
bool XYBothNotEqual(const CFX_PointF& p1, const CFX_PointF& p2) {
return p1.x != p2.x && p1.y != p2.y;
}
bool IsRectImpl(const std::vector<CFX_Path::Point>& points) {
if (!IsRectPreTransform(points))
return false;
for (int i = 1; i < 4; i++) {
if (XYBothNotEqual(points[i].m_Point, points[i - 1].m_Point))
return false;
}
if (XYBothNotEqual(points[0].m_Point, points[3].m_Point))
return false;
return true;
}
CFX_FloatRect CreateRectFromPoints(const CFX_PointF& p1, const CFX_PointF& p2) {
CFX_FloatRect rect(p1.x, p1.y, p2.x, p2.y);
rect.Normalize();
return rect;
}
bool PathPointsNeedNormalization(const std::vector<CFX_Path::Point>& points) {
return points.size() > 5;
}
std::vector<CFX_Path::Point> GetNormalizedPoints(
const std::vector<CFX_Path::Point>& points) {
DCHECK(PathPointsNeedNormalization(points));
if (points[0].m_Point != points.back().m_Point)
return {};
std::vector<CFX_Path::Point> normalized;
normalized.reserve(6);
normalized.push_back(points[0]);
for (auto it = points.begin() + 1; it != points.end(); ++it) {
// Exactly 5 points left. Stop normalizing and take what is left.
if (normalized.size() + std::distance(it, points.end()) == 5) {
std::copy(it, points.end(), std::back_inserter(normalized));
break;
}
// If the line does not move, skip this point.
const auto& point = *it;
if (point.m_Type == CFX_Path::Point::Type::kLine && !point.m_CloseFigure &&
!normalized.back().m_CloseFigure &&
point.m_Point == normalized.back().m_Point) {
continue;
}
normalized.push_back(point);
// Too many points. Not considered as a rectangle.
if (normalized.size() > 5)
return {};
}
DCHECK_EQ(5u, normalized.size());
return normalized;
}
void UpdateLineEndPoints(CFX_FloatRect* rect,
const CFX_PointF& start_pos,
const CFX_PointF& end_pos,
float hw) {
if (start_pos.x == end_pos.x) {
if (start_pos.y == end_pos.y) {
rect->UpdateRect(end_pos + CFX_PointF(hw, hw));
rect->UpdateRect(end_pos - CFX_PointF(hw, hw));
return;
}
float point_y;
if (end_pos.y < start_pos.y)
point_y = end_pos.y - hw;
else
point_y = end_pos.y + hw;
rect->UpdateRect(CFX_PointF(end_pos.x + hw, point_y));
rect->UpdateRect(CFX_PointF(end_pos.x - hw, point_y));
return;
}
if (start_pos.y == end_pos.y) {
float point_x;
if (end_pos.x < start_pos.x)
point_x = end_pos.x - hw;
else
point_x = end_pos.x + hw;
rect->UpdateRect(CFX_PointF(point_x, end_pos.y + hw));
rect->UpdateRect(CFX_PointF(point_x, end_pos.y - hw));
return;
}
CFX_PointF diff = end_pos - start_pos;
float ll = FXSYS_sqrt2(diff.x, diff.y);
float mx = end_pos.x + hw * diff.x / ll;
float my = end_pos.y + hw * diff.y / ll;
float dx1 = hw * diff.y / ll;
float dy1 = hw * diff.x / ll;
rect->UpdateRect(CFX_PointF(mx - dx1, my + dy1));
rect->UpdateRect(CFX_PointF(mx + dx1, my - dy1));
}
void UpdateLineJoinPoints(CFX_FloatRect* rect,
const CFX_PointF& start_pos,
const CFX_PointF& mid_pos,
const CFX_PointF& end_pos,
float half_width,
float miter_limit) {
float start_k = 0;
float start_c = 0;
float end_k = 0;
float end_c = 0;
float start_len = 0;
float start_dc = 0;
float end_len = 0;
float end_dc = 0;
float one_twentieth = 1.0f / 20;
bool bStartVert = fabs(start_pos.x - mid_pos.x) < one_twentieth;
bool bEndVert = fabs(mid_pos.x - end_pos.x) < one_twentieth;
if (bStartVert && bEndVert) {
int start_dir = mid_pos.y > start_pos.y ? 1 : -1;
float point_y = mid_pos.y + half_width * start_dir;
rect->UpdateRect(CFX_PointF(mid_pos.x + half_width, point_y));
rect->UpdateRect(CFX_PointF(mid_pos.x - half_width, point_y));
return;
}
if (!bStartVert) {
CFX_PointF start_to_mid = start_pos - mid_pos;
start_k = (mid_pos.y - start_pos.y) / (mid_pos.x - start_pos.x);
start_c = mid_pos.y - (start_k * mid_pos.x);
start_len = FXSYS_sqrt2(start_to_mid.x, start_to_mid.y);
start_dc = fabsf(half_width * start_len / start_to_mid.x);
}
if (!bEndVert) {
CFX_PointF end_to_mid = end_pos - mid_pos;
end_k = end_to_mid.y / end_to_mid.x;
end_c = mid_pos.y - (end_k * mid_pos.x);
end_len = FXSYS_sqrt2(end_to_mid.x, end_to_mid.y);
end_dc = fabs(half_width * end_len / end_to_mid.x);
}
if (bStartVert) {
CFX_PointF outside(start_pos.x, 0);
if (end_pos.x < start_pos.x)
outside.x += half_width;
else
outside.x -= half_width;
if (start_pos.y < (end_k * start_pos.x) + end_c)
outside.y = (end_k * outside.x) + end_c + end_dc;
else
outside.y = (end_k * outside.x) + end_c - end_dc;
rect->UpdateRect(outside);
return;
}
if (bEndVert) {
CFX_PointF outside(end_pos.x, 0);
if (start_pos.x < end_pos.x)
outside.x += half_width;
else
outside.x -= half_width;
if (end_pos.y < (start_k * end_pos.x) + start_c)
outside.y = (start_k * outside.x) + start_c + start_dc;
else
outside.y = (start_k * outside.x) + start_c - start_dc;
rect->UpdateRect(outside);
return;
}
if (fabs(start_k - end_k) < one_twentieth) {
int start_dir = mid_pos.x > start_pos.x ? 1 : -1;
int end_dir = end_pos.x > mid_pos.x ? 1 : -1;
if (start_dir == end_dir)
UpdateLineEndPoints(rect, mid_pos, end_pos, half_width);
else
UpdateLineEndPoints(rect, start_pos, mid_pos, half_width);
return;
}
float start_outside_c = start_c;
if (end_pos.y < (start_k * end_pos.x) + start_c)
start_outside_c += start_dc;
else
start_outside_c -= start_dc;
float end_outside_c = end_c;
if (start_pos.y < (end_k * start_pos.x) + end_c)
end_outside_c += end_dc;
else
end_outside_c -= end_dc;
float join_x = (end_outside_c - start_outside_c) / (start_k - end_k);
float join_y = start_k * join_x + start_outside_c;
rect->UpdateRect(CFX_PointF(join_x, join_y));
}
} // namespace
CFX_Path::Point::Point() = default;
CFX_Path::Point::Point(const CFX_PointF& point, Type type, bool close)
: m_Point(point), m_Type(type), m_CloseFigure(close) {}
CFX_Path::Point::Point(const Point& other) = default;
CFX_Path::Point::~Point() = default;
CFX_Path::CFX_Path() = default;
CFX_Path::CFX_Path(const CFX_Path& src) = default;
CFX_Path::CFX_Path(CFX_Path&& src) noexcept = default;
CFX_Path::~CFX_Path() = default;
void CFX_Path::Clear() {
m_Points.clear();
}
void CFX_Path::ClosePath() {
if (m_Points.empty())
return;
m_Points.back().m_CloseFigure = true;
}
void CFX_Path::Append(const CFX_Path& src, const CFX_Matrix* matrix) {
if (src.m_Points.empty())
return;
size_t cur_size = m_Points.size();
m_Points.insert(m_Points.end(), src.m_Points.begin(), src.m_Points.end());
if (!matrix)
return;
for (size_t i = cur_size; i < m_Points.size(); i++)
m_Points[i].m_Point = matrix->Transform(m_Points[i].m_Point);
}
void CFX_Path::AppendPoint(const CFX_PointF& point, Point::Type type) {
m_Points.emplace_back(point, type, /*close=*/false);
}
void CFX_Path::AppendPointAndClose(const CFX_PointF& point, Point::Type type) {
m_Points.emplace_back(point, type, /*close=*/true);
}
void CFX_Path::AppendLine(const CFX_PointF& pt1, const CFX_PointF& pt2) {
if (m_Points.empty() || fabs(m_Points.back().m_Point.x - pt1.x) > 0.001 ||
fabs(m_Points.back().m_Point.y - pt1.y) > 0.001) {
AppendPoint(pt1, CFX_Path::Point::Type::kMove);
}
AppendPoint(pt2, CFX_Path::Point::Type::kLine);
}
void CFX_Path::AppendFloatRect(const CFX_FloatRect& rect) {
return AppendRect(rect.left, rect.bottom, rect.right, rect.top);
}
void CFX_Path::AppendRect(float left, float bottom, float right, float top) {
CFX_PointF left_bottom(left, bottom);
CFX_PointF left_top(left, top);
CFX_PointF right_top(right, top);
CFX_PointF right_bottom(right, bottom);
AppendLine(left_bottom, left_top);
AppendLine(left_top, right_top);
AppendLine(right_top, right_bottom);
AppendLine(right_bottom, left_bottom);
ClosePath();
}
CFX_FloatRect CFX_Path::GetBoundingBox() const {
if (m_Points.empty())
return CFX_FloatRect();
CFX_FloatRect rect(m_Points[0].m_Point);
for (size_t i = 1; i < m_Points.size(); ++i)
rect.UpdateRect(m_Points[i].m_Point);
return rect;
}
CFX_FloatRect CFX_Path::GetBoundingBoxForStrokePath(float line_width,
float miter_limit) const {
CFX_FloatRect rect(100000.0f, 100000.0f, -100000.0f, -100000.0f);
size_t iPoint = 0;
float half_width = line_width;
size_t iStartPoint = 0;
size_t iEndPoint = 0;
size_t iMiddlePoint = 0;
bool bJoin;
while (iPoint < m_Points.size()) {
if (m_Points[iPoint].m_Type == CFX_Path::Point::Type::kMove) {
if (iPoint + 1 == m_Points.size()) {
if (m_Points[iPoint].m_CloseFigure) {
// Update `rect` right away since this is the final point to be drawn.
rect.UpdateRect(m_Points[iPoint].m_Point);
}
break;
}
iStartPoint = iPoint + 1;
iEndPoint = iPoint;
bJoin = false;
} else {
if (m_Points[iPoint].IsTypeAndOpen(CFX_Path::Point::Type::kBezier)) {
// Callers are responsible for adding Beziers in sets of 3.
CHECK_LT(iPoint + 2, m_Points.size());
DCHECK_EQ(m_Points[iPoint + 1].m_Type, CFX_Path::Point::Type::kBezier);
DCHECK_EQ(m_Points[iPoint + 2].m_Type, CFX_Path::Point::Type::kBezier);
rect.UpdateRect(m_Points[iPoint].m_Point);
rect.UpdateRect(m_Points[iPoint + 1].m_Point);
iPoint += 2;
}
if (iPoint == m_Points.size() - 1 ||
m_Points[iPoint + 1].m_Type == CFX_Path::Point::Type::kMove) {
iStartPoint = iPoint - 1;
iEndPoint = iPoint;
bJoin = false;
} else {
iStartPoint = iPoint - 1;
iMiddlePoint = iPoint;
iEndPoint = iPoint + 1;
bJoin = true;
}
}
CHECK_LT(iStartPoint, m_Points.size());
CHECK_LT(iEndPoint, m_Points.size());
if (bJoin) {
CHECK_LT(iMiddlePoint, m_Points.size());
UpdateLineJoinPoints(
&rect, m_Points[iStartPoint].m_Point, m_Points[iMiddlePoint].m_Point,
m_Points[iEndPoint].m_Point, half_width, miter_limit);
} else {
UpdateLineEndPoints(&rect, m_Points[iStartPoint].m_Point,
m_Points[iEndPoint].m_Point, half_width);
}
++iPoint;
}
return rect;
}
void CFX_Path::Transform(const CFX_Matrix& matrix) {
for (auto& point : m_Points)
point.m_Point = matrix.Transform(point.m_Point);
}
bool CFX_Path::IsRect() const {
if (PathPointsNeedNormalization(m_Points))
return IsRectImpl(GetNormalizedPoints(m_Points));
return IsRectImpl(m_Points);
}
absl::optional<CFX_FloatRect> CFX_Path::GetRect(
const CFX_Matrix* matrix) const {
bool do_normalize = PathPointsNeedNormalization(m_Points);
std::vector<Point> normalized;
if (do_normalize)
normalized = GetNormalizedPoints(m_Points);
const std::vector<Point>& path_points = do_normalize ? normalized : m_Points;
if (!matrix) {
if (!IsRectImpl(path_points))
return absl::nullopt;
return CreateRectFromPoints(path_points[0].m_Point, path_points[2].m_Point);
}
if (!IsRectPreTransform(path_points))
return absl::nullopt;
CFX_PointF points[5];
for (size_t i = 0; i < path_points.size(); ++i) {
points[i] = matrix->Transform(path_points[i].m_Point);
if (i == 0)
continue;
if (XYBothNotEqual(points[i], points[i - 1]))
return absl::nullopt;
}
if (XYBothNotEqual(points[0], points[3]))
return absl::nullopt;
return CreateRectFromPoints(points[0], points[2]);
}
CFX_RetainablePath::CFX_RetainablePath() = default;
// Note: can't default the copy constructor since Retainable<> has a deleted
// copy constructor (as it should). Instead, we want the default Retainable<>
// constructor to be invoked so as to create a copy with a ref-count of 1 as
// of the time it is created, then populate the remainder of the members from
// the |src| object.
CFX_RetainablePath::CFX_RetainablePath(const CFX_RetainablePath& src)
: CFX_Path(src) {}
CFX_RetainablePath::~CFX_RetainablePath() = default;
RetainPtr<CFX_RetainablePath> CFX_RetainablePath::Clone() const {
return pdfium::MakeRetain<CFX_RetainablePath>(*this);
}