| // Copyright 2014 PDFium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com |
| |
| #include "core/fdrm/fx_crypt.h" |
| |
| #define SHA_GET_UINT32(n, b, i) \ |
| { \ |
| (n) = ((uint32_t)(b)[(i)] << 24) | ((uint32_t)(b)[(i) + 1] << 16) | \ |
| ((uint32_t)(b)[(i) + 2] << 8) | ((uint32_t)(b)[(i) + 3]); \ |
| } |
| #define SHA_PUT_UINT32(n, b, i) \ |
| { \ |
| (b)[(i)] = (uint8_t)((n) >> 24); \ |
| (b)[(i) + 1] = (uint8_t)((n) >> 16); \ |
| (b)[(i) + 2] = (uint8_t)((n) >> 8); \ |
| (b)[(i) + 3] = (uint8_t)((n)); \ |
| } |
| #define SHA_GET_UINT64(n, b, i) \ |
| { \ |
| (n) = ((uint64_t)(b)[(i)] << 56) | ((uint64_t)(b)[(i) + 1] << 48) | \ |
| ((uint64_t)(b)[(i) + 2] << 40) | ((uint64_t)(b)[(i) + 3] << 32) | \ |
| ((uint64_t)(b)[(i) + 4] << 24) | ((uint64_t)(b)[(i) + 5] << 16) | \ |
| ((uint64_t)(b)[(i) + 6] << 8) | ((uint64_t)(b)[(i) + 7]); \ |
| } |
| #define SHA_PUT_UINT64(n, b, i) \ |
| { \ |
| (b)[(i)] = (uint8_t)((n) >> 56); \ |
| (b)[(i) + 1] = (uint8_t)((n) >> 48); \ |
| (b)[(i) + 2] = (uint8_t)((n) >> 40); \ |
| (b)[(i) + 3] = (uint8_t)((n) >> 32); \ |
| (b)[(i) + 4] = (uint8_t)((n) >> 24); \ |
| (b)[(i) + 5] = (uint8_t)((n) >> 16); \ |
| (b)[(i) + 6] = (uint8_t)((n) >> 8); \ |
| (b)[(i) + 7] = (uint8_t)((n)); \ |
| } |
| |
| #define SHA384_F0(x, y, z) ((x & y) | (z & (x | y))) |
| #define SHA384_F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define SHA384_SHR(x, n) (x >> n) |
| #define SHA384_ROTR(x, n) (SHA384_SHR(x, n) | x << (64 - n)) |
| #define SHA384_S0(x) (SHA384_ROTR(x, 1) ^ SHA384_ROTR(x, 8) ^ SHA384_SHR(x, 7)) |
| #define SHA384_S1(x) \ |
| (SHA384_ROTR(x, 19) ^ SHA384_ROTR(x, 61) ^ SHA384_SHR(x, 6)) |
| #define SHA384_S2(x) \ |
| (SHA384_ROTR(x, 28) ^ SHA384_ROTR(x, 34) ^ SHA384_ROTR(x, 39)) |
| #define SHA384_S3(x) \ |
| (SHA384_ROTR(x, 14) ^ SHA384_ROTR(x, 18) ^ SHA384_ROTR(x, 41)) |
| #define SHA384_P(a, b, c, d, e, f, g, h, x, K) \ |
| { \ |
| temp1 = h + SHA384_S3(e) + SHA384_F1(e, f, g) + K + x; \ |
| temp2 = SHA384_S2(a) + SHA384_F0(a, b, c); \ |
| d += temp1; \ |
| h = temp1 + temp2; \ |
| } |
| #define SHA384_R(t) \ |
| (W[t] = SHA384_S1(W[t - 2]) + W[t - 7] + SHA384_S0(W[t - 15]) + W[t - 16]) |
| |
| #define rol(x, y) (((x) << (y)) | (((unsigned int)x) >> (32 - y))) |
| #define SHR(x, n) ((x & 0xFFFFFFFF) >> n) |
| #define ROTR(x, n) (SHR(x, n) | (x << (32 - n))) |
| #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) |
| #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) |
| #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
| #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
| #define F0(x, y, z) ((x & y) | (z & (x | y))) |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + S0(W[t - 15]) + W[t - 16]) |
| #define PS(a, b, c, d, e, f, g, h, x, K) \ |
| { \ |
| temp1 = h + S3(e) + F1(e, f, g) + K + x; \ |
| temp2 = S2(a) + F0(a, b, c); \ |
| d += temp1; \ |
| h = temp1 + temp2; \ |
| } |
| |
| namespace { |
| |
| void SHA_Core_Init(unsigned int h[5]) { |
| h[0] = 0x67452301; |
| h[1] = 0xefcdab89; |
| h[2] = 0x98badcfe; |
| h[3] = 0x10325476; |
| h[4] = 0xc3d2e1f0; |
| } |
| |
| void SHATransform(unsigned int* digest, unsigned int* block) { |
| unsigned int w[80]; |
| unsigned int a, b, c, d, e; |
| int t; |
| for (t = 0; t < 16; t++) { |
| w[t] = block[t]; |
| } |
| for (t = 16; t < 80; t++) { |
| unsigned int tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16]; |
| w[t] = rol(tmp, 1); |
| } |
| a = digest[0]; |
| b = digest[1]; |
| c = digest[2]; |
| d = digest[3]; |
| e = digest[4]; |
| for (t = 0; t < 20; t++) { |
| unsigned int tmp = rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999; |
| e = d; |
| d = c; |
| c = rol(b, 30); |
| b = a; |
| a = tmp; |
| } |
| for (t = 20; t < 40; t++) { |
| unsigned int tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1; |
| e = d; |
| d = c; |
| c = rol(b, 30); |
| b = a; |
| a = tmp; |
| } |
| for (t = 40; t < 60; t++) { |
| unsigned int tmp = |
| rol(a, 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] + 0x8f1bbcdc; |
| e = d; |
| d = c; |
| c = rol(b, 30); |
| b = a; |
| a = tmp; |
| } |
| for (t = 60; t < 80; t++) { |
| unsigned int tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6; |
| e = d; |
| d = c; |
| c = rol(b, 30); |
| b = a; |
| a = tmp; |
| } |
| digest[0] += a; |
| digest[1] += b; |
| digest[2] += c; |
| digest[3] += d; |
| digest[4] += e; |
| } |
| |
| void sha256_process(CRYPT_sha2_context* ctx, const uint8_t data[64]) { |
| uint32_t W[64]; |
| SHA_GET_UINT32(W[0], data, 0); |
| SHA_GET_UINT32(W[1], data, 4); |
| SHA_GET_UINT32(W[2], data, 8); |
| SHA_GET_UINT32(W[3], data, 12); |
| SHA_GET_UINT32(W[4], data, 16); |
| SHA_GET_UINT32(W[5], data, 20); |
| SHA_GET_UINT32(W[6], data, 24); |
| SHA_GET_UINT32(W[7], data, 28); |
| SHA_GET_UINT32(W[8], data, 32); |
| SHA_GET_UINT32(W[9], data, 36); |
| SHA_GET_UINT32(W[10], data, 40); |
| SHA_GET_UINT32(W[11], data, 44); |
| SHA_GET_UINT32(W[12], data, 48); |
| SHA_GET_UINT32(W[13], data, 52); |
| SHA_GET_UINT32(W[14], data, 56); |
| SHA_GET_UINT32(W[15], data, 60); |
| |
| uint32_t temp1; |
| uint32_t temp2; |
| uint32_t A = ctx->state[0]; |
| uint32_t B = ctx->state[1]; |
| uint32_t C = ctx->state[2]; |
| uint32_t D = ctx->state[3]; |
| uint32_t E = ctx->state[4]; |
| uint32_t F = ctx->state[5]; |
| uint32_t G = ctx->state[6]; |
| uint32_t H = ctx->state[7]; |
| PS(A, B, C, D, E, F, G, H, W[0], 0x428A2F98); |
| PS(H, A, B, C, D, E, F, G, W[1], 0x71374491); |
| PS(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF); |
| PS(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5); |
| PS(E, F, G, H, A, B, C, D, W[4], 0x3956C25B); |
| PS(D, E, F, G, H, A, B, C, W[5], 0x59F111F1); |
| PS(C, D, E, F, G, H, A, B, W[6], 0x923F82A4); |
| PS(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5); |
| PS(A, B, C, D, E, F, G, H, W[8], 0xD807AA98); |
| PS(H, A, B, C, D, E, F, G, W[9], 0x12835B01); |
| PS(G, H, A, B, C, D, E, F, W[10], 0x243185BE); |
| PS(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); |
| PS(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); |
| PS(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); |
| PS(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); |
| PS(B, C, D, E, F, G, H, A, W[15], 0xC19BF174); |
| PS(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); |
| PS(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); |
| PS(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); |
| PS(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); |
| PS(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); |
| PS(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); |
| PS(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); |
| PS(B, C, D, E, F, G, H, A, R(23), 0x76F988DA); |
| PS(A, B, C, D, E, F, G, H, R(24), 0x983E5152); |
| PS(H, A, B, C, D, E, F, G, R(25), 0xA831C66D); |
| PS(G, H, A, B, C, D, E, F, R(26), 0xB00327C8); |
| PS(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); |
| PS(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); |
| PS(D, E, F, G, H, A, B, C, R(29), 0xD5A79147); |
| PS(C, D, E, F, G, H, A, B, R(30), 0x06CA6351); |
| PS(B, C, D, E, F, G, H, A, R(31), 0x14292967); |
| PS(A, B, C, D, E, F, G, H, R(32), 0x27B70A85); |
| PS(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); |
| PS(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); |
| PS(F, G, H, A, B, C, D, E, R(35), 0x53380D13); |
| PS(E, F, G, H, A, B, C, D, R(36), 0x650A7354); |
| PS(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); |
| PS(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); |
| PS(B, C, D, E, F, G, H, A, R(39), 0x92722C85); |
| PS(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); |
| PS(H, A, B, C, D, E, F, G, R(41), 0xA81A664B); |
| PS(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); |
| PS(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); |
| PS(E, F, G, H, A, B, C, D, R(44), 0xD192E819); |
| PS(D, E, F, G, H, A, B, C, R(45), 0xD6990624); |
| PS(C, D, E, F, G, H, A, B, R(46), 0xF40E3585); |
| PS(B, C, D, E, F, G, H, A, R(47), 0x106AA070); |
| PS(A, B, C, D, E, F, G, H, R(48), 0x19A4C116); |
| PS(H, A, B, C, D, E, F, G, R(49), 0x1E376C08); |
| PS(G, H, A, B, C, D, E, F, R(50), 0x2748774C); |
| PS(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); |
| PS(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); |
| PS(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); |
| PS(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); |
| PS(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); |
| PS(A, B, C, D, E, F, G, H, R(56), 0x748F82EE); |
| PS(H, A, B, C, D, E, F, G, R(57), 0x78A5636F); |
| PS(G, H, A, B, C, D, E, F, R(58), 0x84C87814); |
| PS(F, G, H, A, B, C, D, E, R(59), 0x8CC70208); |
| PS(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); |
| PS(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); |
| PS(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); |
| PS(B, C, D, E, F, G, H, A, R(63), 0xC67178F2); |
| ctx->state[0] += A; |
| ctx->state[1] += B; |
| ctx->state[2] += C; |
| ctx->state[3] += D; |
| ctx->state[4] += E; |
| ctx->state[5] += F; |
| ctx->state[6] += G; |
| ctx->state[7] += H; |
| } |
| |
| const uint8_t sha256_padding[64] = { |
| 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| |
| const uint8_t sha384_padding[128] = { |
| 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| |
| uint64_t const constants[] = { |
| 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, |
| 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
| 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, |
| 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
| 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, |
| 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
| 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, |
| 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
| 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, |
| 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
| 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, |
| 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
| 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, |
| 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
| 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, |
| 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
| 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, |
| 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
| 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, |
| 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
| 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, |
| 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
| 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, |
| 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
| 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, |
| 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
| 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, |
| }; |
| |
| void sha384_process(CRYPT_sha2_context* ctx, const uint8_t data[128]) { |
| uint64_t temp1, temp2; |
| uint64_t A, B, C, D, E, F, G, H; |
| uint64_t W[80]; |
| SHA_GET_UINT64(W[0], data, 0); |
| SHA_GET_UINT64(W[1], data, 8); |
| SHA_GET_UINT64(W[2], data, 16); |
| SHA_GET_UINT64(W[3], data, 24); |
| SHA_GET_UINT64(W[4], data, 32); |
| SHA_GET_UINT64(W[5], data, 40); |
| SHA_GET_UINT64(W[6], data, 48); |
| SHA_GET_UINT64(W[7], data, 56); |
| SHA_GET_UINT64(W[8], data, 64); |
| SHA_GET_UINT64(W[9], data, 72); |
| SHA_GET_UINT64(W[10], data, 80); |
| SHA_GET_UINT64(W[11], data, 88); |
| SHA_GET_UINT64(W[12], data, 96); |
| SHA_GET_UINT64(W[13], data, 104); |
| SHA_GET_UINT64(W[14], data, 112); |
| SHA_GET_UINT64(W[15], data, 120); |
| A = ctx->state[0]; |
| B = ctx->state[1]; |
| C = ctx->state[2]; |
| D = ctx->state[3]; |
| E = ctx->state[4]; |
| F = ctx->state[5]; |
| G = ctx->state[6]; |
| H = ctx->state[7]; |
| for (int i = 0; i < 10; ++i) { |
| uint64_t temp[8]; |
| if (i < 2) { |
| temp[0] = W[i * 8]; |
| temp[1] = W[i * 8 + 1]; |
| temp[2] = W[i * 8 + 2]; |
| temp[3] = W[i * 8 + 3]; |
| temp[4] = W[i * 8 + 4]; |
| temp[5] = W[i * 8 + 5]; |
| temp[6] = W[i * 8 + 6]; |
| temp[7] = W[i * 8 + 7]; |
| } else { |
| temp[0] = SHA384_R(i * 8); |
| temp[1] = SHA384_R(i * 8 + 1); |
| temp[2] = SHA384_R(i * 8 + 2); |
| temp[3] = SHA384_R(i * 8 + 3); |
| temp[4] = SHA384_R(i * 8 + 4); |
| temp[5] = SHA384_R(i * 8 + 5); |
| temp[6] = SHA384_R(i * 8 + 6); |
| temp[7] = SHA384_R(i * 8 + 7); |
| } |
| SHA384_P(A, B, C, D, E, F, G, H, temp[0], constants[i * 8]); |
| SHA384_P(H, A, B, C, D, E, F, G, temp[1], constants[i * 8 + 1]); |
| SHA384_P(G, H, A, B, C, D, E, F, temp[2], constants[i * 8 + 2]); |
| SHA384_P(F, G, H, A, B, C, D, E, temp[3], constants[i * 8 + 3]); |
| SHA384_P(E, F, G, H, A, B, C, D, temp[4], constants[i * 8 + 4]); |
| SHA384_P(D, E, F, G, H, A, B, C, temp[5], constants[i * 8 + 5]); |
| SHA384_P(C, D, E, F, G, H, A, B, temp[6], constants[i * 8 + 6]); |
| SHA384_P(B, C, D, E, F, G, H, A, temp[7], constants[i * 8 + 7]); |
| } |
| ctx->state[0] += A; |
| ctx->state[1] += B; |
| ctx->state[2] += C; |
| ctx->state[3] += D; |
| ctx->state[4] += E; |
| ctx->state[5] += F; |
| ctx->state[6] += G; |
| ctx->state[7] += H; |
| } |
| |
| } // namespace |
| |
| void CRYPT_SHA1Start(CRYPT_sha1_context* context) { |
| SHA_Core_Init(context->h); |
| context->total_bytes = 0; |
| context->blkused = 0; |
| } |
| |
| void CRYPT_SHA1Update(CRYPT_sha1_context* context, |
| const uint8_t* data, |
| uint32_t size) { |
| context->total_bytes += size; |
| if (context->blkused && size < 64 - context->blkused) { |
| memcpy(context->block + context->blkused, data, size); |
| context->blkused += size; |
| return; |
| } |
| uint32_t wordblock[16]; |
| while (size >= 64 - context->blkused) { |
| memcpy(context->block + context->blkused, data, 64 - context->blkused); |
| data += 64 - context->blkused; |
| size -= 64 - context->blkused; |
| for (int i = 0; i < 16; i++) { |
| wordblock[i] = (((uint32_t)context->block[i * 4 + 0]) << 24) | |
| (((uint32_t)context->block[i * 4 + 1]) << 16) | |
| (((uint32_t)context->block[i * 4 + 2]) << 8) | |
| (((uint32_t)context->block[i * 4 + 3]) << 0); |
| } |
| SHATransform(context->h, wordblock); |
| context->blkused = 0; |
| } |
| memcpy(context->block, data, size); |
| context->blkused = size; |
| } |
| |
| void CRYPT_SHA1Finish(CRYPT_sha1_context* context, uint8_t digest[20]) { |
| uint64_t total_bits = 8 * context->total_bytes; // Prior to padding. |
| uint8_t c[64]; |
| uint8_t pad; |
| if (context->blkused >= 56) { |
| pad = 56 + 64 - context->blkused; |
| } else { |
| pad = 56 - context->blkused; |
| } |
| memset(c, 0, pad); |
| c[0] = 0x80; |
| CRYPT_SHA1Update(context, c, pad); |
| c[0] = (total_bits >> 56) & 0xFF; |
| c[1] = (total_bits >> 48) & 0xFF; |
| c[2] = (total_bits >> 40) & 0xFF; |
| c[3] = (total_bits >> 32) & 0xFF; |
| c[4] = (total_bits >> 24) & 0xFF; |
| c[5] = (total_bits >> 16) & 0xFF; |
| c[6] = (total_bits >> 8) & 0xFF; |
| c[7] = (total_bits >> 0) & 0xFF; |
| CRYPT_SHA1Update(context, c, 8); |
| for (int i = 0; i < 5; i++) { |
| digest[i * 4] = (context->h[i] >> 24) & 0xFF; |
| digest[i * 4 + 1] = (context->h[i] >> 16) & 0xFF; |
| digest[i * 4 + 2] = (context->h[i] >> 8) & 0xFF; |
| digest[i * 4 + 3] = (context->h[i]) & 0xFF; |
| } |
| } |
| |
| void CRYPT_SHA1Generate(const uint8_t* data, |
| uint32_t size, |
| uint8_t digest[20]) { |
| CRYPT_sha1_context s; |
| CRYPT_SHA1Start(&s); |
| CRYPT_SHA1Update(&s, data, size); |
| CRYPT_SHA1Finish(&s, digest); |
| } |
| |
| void CRYPT_SHA256Start(CRYPT_sha2_context* context) { |
| context->total_bytes = 0; |
| context->state[0] = 0x6A09E667; |
| context->state[1] = 0xBB67AE85; |
| context->state[2] = 0x3C6EF372; |
| context->state[3] = 0xA54FF53A; |
| context->state[4] = 0x510E527F; |
| context->state[5] = 0x9B05688C; |
| context->state[6] = 0x1F83D9AB; |
| context->state[7] = 0x5BE0CD19; |
| memset(context->buffer, 0, sizeof(context->buffer)); |
| } |
| |
| void CRYPT_SHA256Update(CRYPT_sha2_context* context, |
| const uint8_t* data, |
| uint32_t size) { |
| if (!size) |
| return; |
| |
| uint32_t left = context->total_bytes & 0x3F; |
| uint32_t fill = 64 - left; |
| context->total_bytes += size; |
| if (left && size >= fill) { |
| memcpy(context->buffer + left, data, fill); |
| sha256_process(context, context->buffer); |
| size -= fill; |
| data += fill; |
| left = 0; |
| } |
| while (size >= 64) { |
| sha256_process(context, data); |
| size -= 64; |
| data += 64; |
| } |
| if (size) |
| memcpy(context->buffer + left, data, size); |
| } |
| |
| void CRYPT_SHA256Finish(CRYPT_sha2_context* context, uint8_t digest[32]) { |
| uint8_t msglen[8]; |
| uint64_t total_bits = 8 * context->total_bytes; // Prior to padding. |
| SHA_PUT_UINT64(total_bits, msglen, 0); |
| uint32_t last = context->total_bytes & 0x3F; |
| uint32_t padn = (last < 56) ? (56 - last) : (120 - last); |
| CRYPT_SHA256Update(context, sha256_padding, padn); |
| CRYPT_SHA256Update(context, msglen, 8); |
| SHA_PUT_UINT32(context->state[0], digest, 0); |
| SHA_PUT_UINT32(context->state[1], digest, 4); |
| SHA_PUT_UINT32(context->state[2], digest, 8); |
| SHA_PUT_UINT32(context->state[3], digest, 12); |
| SHA_PUT_UINT32(context->state[4], digest, 16); |
| SHA_PUT_UINT32(context->state[5], digest, 20); |
| SHA_PUT_UINT32(context->state[6], digest, 24); |
| SHA_PUT_UINT32(context->state[7], digest, 28); |
| } |
| |
| void CRYPT_SHA256Generate(const uint8_t* data, |
| uint32_t size, |
| uint8_t digest[32]) { |
| CRYPT_sha2_context ctx; |
| CRYPT_SHA256Start(&ctx); |
| CRYPT_SHA256Update(&ctx, data, size); |
| CRYPT_SHA256Finish(&ctx, digest); |
| } |
| |
| void CRYPT_SHA384Start(CRYPT_sha2_context* context) { |
| context->total_bytes = 0; |
| context->state[0] = 0xcbbb9d5dc1059ed8ULL; |
| context->state[1] = 0x629a292a367cd507ULL; |
| context->state[2] = 0x9159015a3070dd17ULL; |
| context->state[3] = 0x152fecd8f70e5939ULL; |
| context->state[4] = 0x67332667ffc00b31ULL; |
| context->state[5] = 0x8eb44a8768581511ULL; |
| context->state[6] = 0xdb0c2e0d64f98fa7ULL; |
| context->state[7] = 0x47b5481dbefa4fa4ULL; |
| memset(context->buffer, 0, sizeof(context->buffer)); |
| } |
| |
| void CRYPT_SHA384Update(CRYPT_sha2_context* context, |
| const uint8_t* data, |
| uint32_t size) { |
| if (!size) |
| return; |
| |
| uint32_t left = context->total_bytes & 0x7F; |
| uint32_t fill = 128 - left; |
| context->total_bytes += size; |
| if (left && size >= fill) { |
| memcpy(context->buffer + left, data, fill); |
| sha384_process(context, context->buffer); |
| size -= fill; |
| data += fill; |
| left = 0; |
| } |
| while (size >= 128) { |
| sha384_process(context, data); |
| size -= 128; |
| data += 128; |
| } |
| if (size) |
| memcpy(context->buffer + left, data, size); |
| } |
| |
| void CRYPT_SHA384Finish(CRYPT_sha2_context* context, uint8_t digest[48]) { |
| uint8_t msglen[16]; |
| uint64_t total_bits = 8 * context->total_bytes; // Prior to padding. |
| SHA_PUT_UINT64(0ULL, msglen, 0); |
| SHA_PUT_UINT64(total_bits, msglen, 8); |
| uint32_t last = context->total_bytes & 0x7F; |
| uint32_t padn = (last < 112) ? (112 - last) : (240 - last); |
| CRYPT_SHA384Update(context, sha384_padding, padn); |
| CRYPT_SHA384Update(context, msglen, 16); |
| SHA_PUT_UINT64(context->state[0], digest, 0); |
| SHA_PUT_UINT64(context->state[1], digest, 8); |
| SHA_PUT_UINT64(context->state[2], digest, 16); |
| SHA_PUT_UINT64(context->state[3], digest, 24); |
| SHA_PUT_UINT64(context->state[4], digest, 32); |
| SHA_PUT_UINT64(context->state[5], digest, 40); |
| } |
| |
| void CRYPT_SHA384Generate(const uint8_t* data, |
| uint32_t size, |
| uint8_t digest[64]) { |
| CRYPT_sha2_context context; |
| CRYPT_SHA384Start(&context); |
| CRYPT_SHA384Update(&context, data, size); |
| CRYPT_SHA384Finish(&context, digest); |
| } |
| |
| void CRYPT_SHA512Start(CRYPT_sha2_context* context) { |
| context->total_bytes = 0; |
| context->state[0] = 0x6a09e667f3bcc908ULL; |
| context->state[1] = 0xbb67ae8584caa73bULL; |
| context->state[2] = 0x3c6ef372fe94f82bULL; |
| context->state[3] = 0xa54ff53a5f1d36f1ULL; |
| context->state[4] = 0x510e527fade682d1ULL; |
| context->state[5] = 0x9b05688c2b3e6c1fULL; |
| context->state[6] = 0x1f83d9abfb41bd6bULL; |
| context->state[7] = 0x5be0cd19137e2179ULL; |
| memset(context->buffer, 0, sizeof(context->buffer)); |
| } |
| |
| void CRYPT_SHA512Update(CRYPT_sha2_context* context, |
| const uint8_t* data, |
| uint32_t size) { |
| CRYPT_SHA384Update(context, data, size); |
| } |
| |
| void CRYPT_SHA512Finish(CRYPT_sha2_context* context, uint8_t digest[64]) { |
| uint8_t msglen[16]; |
| uint64_t total_bits = 8 * context->total_bytes; |
| SHA_PUT_UINT64(0ULL, msglen, 0); |
| SHA_PUT_UINT64(total_bits, msglen, 8); |
| uint32_t last = context->total_bytes & 0x7F; |
| uint32_t padn = (last < 112) ? (112 - last) : (240 - last); |
| CRYPT_SHA512Update(context, sha384_padding, padn); |
| CRYPT_SHA512Update(context, msglen, 16); |
| SHA_PUT_UINT64(context->state[0], digest, 0); |
| SHA_PUT_UINT64(context->state[1], digest, 8); |
| SHA_PUT_UINT64(context->state[2], digest, 16); |
| SHA_PUT_UINT64(context->state[3], digest, 24); |
| SHA_PUT_UINT64(context->state[4], digest, 32); |
| SHA_PUT_UINT64(context->state[5], digest, 40); |
| SHA_PUT_UINT64(context->state[6], digest, 48); |
| SHA_PUT_UINT64(context->state[7], digest, 56); |
| } |
| |
| void CRYPT_SHA512Generate(const uint8_t* data, |
| uint32_t size, |
| uint8_t digest[64]) { |
| CRYPT_sha2_context context; |
| CRYPT_SHA512Start(&context); |
| CRYPT_SHA512Update(&context, data, size); |
| CRYPT_SHA512Finish(&context, digest); |
| } |