| // Copyright 2014 The PDFium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com |
| |
| #include "core/fxcodec/flate/flatemodule.h" |
| |
| #include <stddef.h> |
| |
| #include <algorithm> |
| #include <limits> |
| #include <memory> |
| #include <optional> |
| #include <utility> |
| #include <vector> |
| |
| #include "core/fxcodec/data_and_bytes_consumed.h" |
| #include "core/fxcodec/scanlinedecoder.h" |
| #include "core/fxcrt/check.h" |
| #include "core/fxcrt/data_vector.h" |
| #include "core/fxcrt/fixed_size_data_vector.h" |
| #include "core/fxcrt/fx_2d_size.h" |
| #include "core/fxcrt/fx_extension.h" |
| #include "core/fxcrt/fx_memcpy_wrappers.h" |
| #include "core/fxcrt/fx_safe_types.h" |
| #include "core/fxcrt/notreached.h" |
| #include "core/fxcrt/numerics/safe_conversions.h" |
| #include "core/fxcrt/raw_span.h" |
| #include "core/fxcrt/span.h" |
| #include "core/fxcrt/span_util.h" |
| #include "core/fxcrt/stl_util.h" |
| #include "core/fxge/calculate_pitch.h" |
| |
| #if defined(USE_SYSTEM_ZLIB) |
| #include <zlib.h> |
| #else |
| #include "third_party/zlib/zlib.h" |
| #endif |
| |
| extern "C" { |
| |
| static void* my_alloc_func(void* opaque, |
| unsigned int items, |
| unsigned int size) { |
| return FX_Alloc2D(uint8_t, items, size); |
| } |
| |
| static void my_free_func(void* opaque, void* address) { |
| FX_Free(address); |
| } |
| |
| } // extern "C" |
| |
| namespace fxcodec { |
| |
| namespace { |
| |
| static constexpr uint32_t kMaxTotalOutSize = 1024 * 1024 * 1024; // 1 GiB |
| |
| uint32_t FlateGetPossiblyTruncatedTotalOut(z_stream* context) { |
| return std::min(pdfium::saturated_cast<uint32_t>(context->total_out), |
| kMaxTotalOutSize); |
| } |
| |
| uint32_t FlateGetPossiblyTruncatedTotalIn(z_stream* context) { |
| return pdfium::saturated_cast<uint32_t>(context->total_in); |
| } |
| |
| size_t FlateCompress(pdfium::span<const uint8_t> src_span, |
| pdfium::span<uint8_t> dest_span) { |
| const auto src_size = pdfium::checked_cast<unsigned long>(src_span.size()); |
| auto dest_size = pdfium::checked_cast<unsigned long>(dest_span.size()); |
| if (compress(dest_span.data(), &dest_size, src_span.data(), src_size) != |
| Z_OK) { |
| return 0; |
| } |
| return pdfium::checked_cast<size_t>(dest_size); |
| } |
| |
| z_stream* FlateInit() { |
| z_stream* p = FX_Alloc(z_stream, 1); |
| p->zalloc = my_alloc_func; |
| p->zfree = my_free_func; |
| inflateInit(p); |
| return p; |
| } |
| |
| void FlateInput(z_stream* context, pdfium::span<const uint8_t> src_buf) { |
| context->next_in = const_cast<unsigned char*>(src_buf.data()); |
| context->avail_in = static_cast<uint32_t>(src_buf.size()); |
| } |
| |
| bool FlateOutput(z_stream* context, pdfium::span<uint8_t> dest_span) { |
| context->next_out = dest_span.data(); |
| context->avail_out = pdfium::checked_cast<uint32_t>(dest_span.size()); |
| uint32_t pre_pos = FlateGetPossiblyTruncatedTotalOut(context); |
| bool ret = inflate(static_cast<z_stream*>(context), Z_SYNC_FLUSH) == Z_OK; |
| |
| uint32_t post_pos = FlateGetPossiblyTruncatedTotalOut(context); |
| CHECK_GE(post_pos, pre_pos); |
| fxcrt::Fill(dest_span.subspan(post_pos - pre_pos), 0); |
| |
| return ret; |
| } |
| |
| uint32_t FlateGetAvailOut(z_stream* context) { |
| return context->avail_out; |
| } |
| |
| void FlateEnd(z_stream* context) { |
| inflateEnd(context); |
| FX_Free(context); |
| } |
| |
| // For use with std::unique_ptr<z_stream>. |
| struct FlateDeleter { |
| inline void operator()(z_stream* context) { FlateEnd(context); } |
| }; |
| |
| class CLZWDecoder { |
| public: |
| CLZWDecoder(pdfium::span<const uint8_t> src_span, bool early_change); |
| |
| bool Decode(); |
| uint32_t GetSrcSize() const { return (src_bit_pos_ + 7) / 8; } |
| DataVector<uint8_t> TakeDestBuf() { |
| dest_buf_.resize(dest_byte_pos_); |
| return std::move(dest_buf_); |
| } |
| |
| private: |
| void AddCode(uint32_t prefix_code, uint8_t append_char); |
| void DecodeString(uint32_t code); |
| bool ExpandDestBuf(size_t additional_size); |
| |
| pdfium::raw_span<const uint8_t> const src_span_; |
| DataVector<uint8_t> dest_buf_; |
| uint32_t src_bit_pos_ = 0; |
| uint32_t dest_byte_pos_ = 0; // Size used. |
| uint32_t stack_len_ = 0; |
| FixedSizeDataVector<uint8_t> decode_stack_; |
| const uint8_t early_change_; |
| uint8_t code_len_ = 9; |
| uint32_t current_code_ = 0; |
| FixedSizeDataVector<uint32_t> codes_; |
| }; |
| |
| CLZWDecoder::CLZWDecoder(pdfium::span<const uint8_t> src_span, |
| bool early_change) |
| : src_span_(src_span), |
| decode_stack_(FixedSizeDataVector<uint8_t>::Zeroed(4000)), |
| early_change_(early_change ? 1 : 0), |
| codes_(FixedSizeDataVector<uint32_t>::Zeroed(5021)) {} |
| |
| void CLZWDecoder::AddCode(uint32_t prefix_code, uint8_t append_char) { |
| if (current_code_ + early_change_ == 4094) |
| return; |
| |
| pdfium::span<uint32_t> codes_span = codes_.span(); |
| codes_span[current_code_++] = (prefix_code << 16) | append_char; |
| if (current_code_ + early_change_ == 512 - 258) |
| code_len_ = 10; |
| else if (current_code_ + early_change_ == 1024 - 258) |
| code_len_ = 11; |
| else if (current_code_ + early_change_ == 2048 - 258) |
| code_len_ = 12; |
| } |
| |
| void CLZWDecoder::DecodeString(uint32_t code) { |
| pdfium::span<uint8_t> decode_span = decode_stack_.span(); |
| pdfium::span<const uint32_t> codes_span = codes_.span(); |
| while (true) { |
| int index = code - 258; |
| if (index < 0 || static_cast<uint32_t>(index) >= current_code_) |
| break; |
| |
| uint32_t data = codes_span[index]; |
| if (stack_len_ >= decode_span.size()) |
| return; |
| |
| decode_span[stack_len_++] = static_cast<uint8_t>(data); |
| code = data >> 16; |
| } |
| if (stack_len_ >= decode_span.size()) |
| return; |
| |
| decode_span[stack_len_++] = static_cast<uint8_t>(code); |
| } |
| |
| bool CLZWDecoder::ExpandDestBuf(size_t additional_size) { |
| FX_SAFE_SIZE_T new_size = std::max(dest_buf_.size() / 2, additional_size); |
| new_size += dest_buf_.size(); |
| if (!new_size.IsValid()) { |
| dest_buf_.clear(); |
| return false; |
| } |
| |
| dest_buf_.resize(new_size.ValueOrDie()); |
| return true; |
| } |
| |
| bool CLZWDecoder::Decode() { |
| pdfium::span<uint8_t> decode_span = decode_stack_.span(); |
| uint32_t old_code = 0xFFFFFFFF; |
| uint8_t last_char = 0; |
| |
| // In one PDF test set, 40% of Decode() calls did not need to realloc with |
| // this size. |
| dest_buf_.resize(512); |
| while (true) { |
| if (src_bit_pos_ + code_len_ > src_span_.size() * 8) |
| break; |
| |
| int byte_pos = src_bit_pos_ / 8; |
| int bit_pos = src_bit_pos_ % 8; |
| uint8_t bit_left = code_len_; |
| uint32_t code = 0; |
| if (bit_pos) { |
| bit_left -= 8 - bit_pos; |
| code = (src_span_[byte_pos++] & ((1 << (8 - bit_pos)) - 1)) << bit_left; |
| } |
| if (bit_left < 8) { |
| code |= src_span_[byte_pos] >> (8 - bit_left); |
| } else { |
| bit_left -= 8; |
| code |= src_span_[byte_pos++] << bit_left; |
| if (bit_left) |
| code |= src_span_[byte_pos] >> (8 - bit_left); |
| } |
| src_bit_pos_ += code_len_; |
| |
| if (code < 256) { |
| if (dest_byte_pos_ >= dest_buf_.size()) { |
| if (!ExpandDestBuf(dest_byte_pos_ - dest_buf_.size() + 1)) { |
| return false; |
| } |
| } |
| |
| dest_buf_[dest_byte_pos_] = static_cast<uint8_t>(code); |
| dest_byte_pos_++; |
| last_char = (uint8_t)code; |
| if (old_code != 0xFFFFFFFF) |
| AddCode(old_code, last_char); |
| old_code = code; |
| continue; |
| } |
| if (code == 256) { |
| code_len_ = 9; |
| current_code_ = 0; |
| old_code = 0xFFFFFFFF; |
| continue; |
| } |
| if (code == 257) |
| break; |
| |
| // Case where |code| is 258 or greater. |
| if (old_code == 0xFFFFFFFF) |
| return false; |
| |
| DCHECK(old_code < 256 || old_code >= 258); |
| stack_len_ = 0; |
| if (code - 258 >= current_code_) { |
| if (stack_len_ < decode_stack_.size()) |
| decode_span[stack_len_++] = last_char; |
| DecodeString(old_code); |
| } else { |
| DecodeString(code); |
| } |
| |
| FX_SAFE_UINT32 safe_required_size = dest_byte_pos_; |
| safe_required_size += stack_len_; |
| if (!safe_required_size.IsValid()) |
| return false; |
| |
| uint32_t required_size = safe_required_size.ValueOrDie(); |
| if (required_size > dest_buf_.size()) { |
| if (!ExpandDestBuf(required_size - dest_buf_.size())) { |
| return false; |
| } |
| } |
| |
| for (uint32_t i = 0; i < stack_len_; i++) |
| dest_buf_[dest_byte_pos_ + i] = decode_span[stack_len_ - i - 1]; |
| dest_byte_pos_ += stack_len_; |
| last_char = decode_span[stack_len_ - 1]; |
| if (old_code >= 258 && old_code - 258 >= current_code_) |
| break; |
| |
| AddCode(old_code, last_char); |
| old_code = code; |
| } |
| return dest_byte_pos_ != 0; |
| } |
| |
| uint8_t GetLeftValue(pdfium::span<const uint8_t> span, |
| size_t i, |
| uint32_t bytes_per_pixel) { |
| return i >= bytes_per_pixel ? span[i - bytes_per_pixel] : 0; |
| } |
| |
| uint8_t GetUpValue(pdfium::span<const uint8_t> span, size_t i) { |
| return span.empty() ? 0 : span[i]; |
| } |
| |
| uint8_t GetUpperLeftValue(pdfium::span<const uint8_t> span, |
| size_t i, |
| uint32_t bytes_per_pixel) { |
| if (i >= bytes_per_pixel && !span.empty()) { |
| return span[i - bytes_per_pixel]; |
| } |
| return 0; |
| } |
| |
| uint8_t PathPredictor(uint8_t a, uint8_t b, uint8_t c) { |
| int p = static_cast<int>(a) + b - c; |
| int pa = abs(p - a); |
| int pb = abs(p - b); |
| int pc = abs(p - c); |
| if (pa <= pb && pa <= pc) { |
| return a; |
| } |
| return pb <= pc ? b : c; |
| } |
| |
| void PNG_PredictLine(pdfium::span<uint8_t> dest_span, |
| pdfium::span<const uint8_t> src_span, |
| pdfium::span<const uint8_t> last_span, |
| size_t row_size, |
| uint32_t bytes_per_pixel) { |
| const uint8_t tag = src_span.front(); |
| pdfium::span<const uint8_t> remaining_src_span = |
| src_span.subspan(1, row_size); |
| switch (tag) { |
| case 1: { |
| for (size_t i = 0; i < remaining_src_span.size(); ++i) { |
| uint8_t left = GetLeftValue(dest_span, i, bytes_per_pixel); |
| dest_span[i] = remaining_src_span[i] + left; |
| } |
| break; |
| } |
| case 2: { |
| for (size_t i = 0; i < remaining_src_span.size(); ++i) { |
| uint8_t up = GetUpValue(last_span, i); |
| dest_span[i] = remaining_src_span[i] + up; |
| } |
| break; |
| } |
| case 3: { |
| for (size_t i = 0; i < remaining_src_span.size(); ++i) { |
| uint8_t left = GetLeftValue(dest_span, i, bytes_per_pixel); |
| uint8_t up = GetUpValue(last_span, i); |
| dest_span[i] = remaining_src_span[i] + (up + left) / 2; |
| } |
| break; |
| } |
| case 4: { |
| for (size_t i = 0; i < remaining_src_span.size(); ++i) { |
| uint8_t left = GetLeftValue(dest_span, i, bytes_per_pixel); |
| uint8_t up = GetUpValue(last_span, i); |
| uint8_t upper_left = GetUpperLeftValue(last_span, i, bytes_per_pixel); |
| dest_span[i] = |
| remaining_src_span[i] + PathPredictor(left, up, upper_left); |
| } |
| break; |
| } |
| default: { |
| fxcrt::Copy(remaining_src_span, dest_span); |
| break; |
| } |
| } |
| } |
| |
| std::optional<DataVector<uint8_t>> PNG_Predictor( |
| int Colors, |
| int BitsPerComponent, |
| int Columns, |
| pdfium::span<const uint8_t> src_span) { |
| const uint32_t row_size = |
| fxge::CalculatePitch8(BitsPerComponent, Colors, Columns).value_or(0); |
| if (row_size == 0) { |
| return std::nullopt; |
| } |
| |
| const uint32_t src_row_size = row_size + 1; |
| if (src_row_size == 0) { |
| // Avoid divide by 0. |
| return std::nullopt; |
| } |
| const size_t row_count = (src_span.size() + row_size) / src_row_size; |
| if (row_count == 0) { |
| return std::nullopt; |
| } |
| |
| const uint32_t last_row_size = src_span.size() % src_row_size; |
| size_t dest_size = Fx2DSizeOrDie(row_size, row_count); |
| if (last_row_size) { |
| dest_size -= src_row_size - last_row_size; |
| } |
| DataVector<uint8_t> dest_buf(dest_size); |
| pdfium::span<const uint8_t> remaining_src_span = src_span; |
| pdfium::span<uint8_t> remaining_dest_span = pdfium::make_span(dest_buf); |
| pdfium::span<uint8_t> prev_dest_span; |
| const uint32_t bytes_per_pixel = (Colors * BitsPerComponent + 7) / 8; |
| for (size_t row = 0; row < row_count; row++) { |
| const size_t remaining_row_size = |
| std::min<size_t>(row_size, remaining_src_span.size() - 1); |
| PNG_PredictLine(remaining_dest_span, remaining_src_span, prev_dest_span, |
| remaining_row_size, bytes_per_pixel); |
| remaining_src_span = remaining_src_span.subspan(remaining_row_size + 1); |
| prev_dest_span = remaining_dest_span; |
| remaining_dest_span = remaining_dest_span.subspan(remaining_row_size); |
| } |
| return dest_buf; |
| } |
| |
| void TIFF_PredictLine(pdfium::span<uint8_t> dest_span, |
| int BitsPerComponent, |
| int Colors, |
| int Columns) { |
| if (BitsPerComponent == 1) { |
| int row_bits = std::min(BitsPerComponent * Colors * Columns, |
| pdfium::checked_cast<int>(dest_span.size() * 8)); |
| int index_pre = 0; |
| int col_pre = 0; |
| for (int i = 1; i < row_bits; i++) { |
| int col = i % 8; |
| int index = i / 8; |
| if (((dest_span[index] >> (7 - col)) & 1) ^ |
| ((dest_span[index_pre] >> (7 - col_pre)) & 1)) { |
| dest_span[index] |= 1 << (7 - col); |
| } else { |
| dest_span[index] &= ~(1 << (7 - col)); |
| } |
| index_pre = index; |
| col_pre = col; |
| } |
| return; |
| } |
| int BytesPerPixel = BitsPerComponent * Colors / 8; |
| if (BitsPerComponent == 16) { |
| for (size_t i = BytesPerPixel; i + 1 < dest_span.size(); i += 2) { |
| uint16_t pixel = (dest_span[i - BytesPerPixel] << 8) | |
| dest_span[i - BytesPerPixel + 1]; |
| pixel += (dest_span[i] << 8) | dest_span[i + 1]; |
| dest_span[i] = pixel >> 8; |
| dest_span[i + 1] = (uint8_t)pixel; |
| } |
| } else { |
| for (size_t i = BytesPerPixel; i < dest_span.size(); i++) { |
| dest_span[i] += dest_span[i - BytesPerPixel]; |
| } |
| } |
| } |
| |
| bool TIFF_Predictor(int Colors, |
| int BitsPerComponent, |
| int Columns, |
| pdfium::span<uint8_t> data_span) { |
| const uint32_t row_size = |
| fxge::CalculatePitch8(BitsPerComponent, Colors, Columns).value_or(0); |
| if (row_size == 0) { |
| return false; |
| } |
| |
| while (!data_span.empty()) { |
| auto row_span = |
| data_span.first(std::min<size_t>(row_size, data_span.size())); |
| TIFF_PredictLine(row_span, BitsPerComponent, Colors, Columns); |
| data_span = data_span.subspan(row_span.size()); |
| } |
| return true; |
| } |
| |
| uint32_t EstimateFlateUncompressBufferSize(uint32_t orig_size, |
| size_t src_size) { |
| constexpr uint32_t kMaxInitialAllocSize = 10000000; |
| uint32_t guess_size = |
| orig_size ? orig_size : pdfium::checked_cast<uint32_t>(src_size * 2); |
| return std::min(guess_size, kMaxInitialAllocSize); |
| } |
| |
| DataAndBytesConsumed FlateUncompress(pdfium::span<const uint8_t> src_buf, |
| uint32_t orig_size) { |
| std::unique_ptr<z_stream, FlateDeleter> context(FlateInit()); |
| if (!context) { |
| return {DataVector<uint8_t>(), 0u}; |
| } |
| |
| FlateInput(context.get(), src_buf); |
| |
| const uint32_t buf_size = |
| EstimateFlateUncompressBufferSize(orig_size, src_buf.size()); |
| uint32_t last_buf_size = buf_size; |
| DataVector<uint8_t> guess_buf(buf_size); |
| std::vector<DataVector<uint8_t>> result_tmp_bufs; |
| { |
| DataVector<uint8_t> cur_buf = std::move(guess_buf); |
| while (true) { |
| bool ret = FlateOutput(context.get(), cur_buf); |
| uint32_t avail_buf_size = FlateGetAvailOut(context.get()); |
| if (!ret || avail_buf_size != 0) { |
| last_buf_size = buf_size - avail_buf_size; |
| result_tmp_bufs.push_back(std::move(cur_buf)); |
| break; |
| } |
| result_tmp_bufs.push_back(std::move(cur_buf)); |
| cur_buf = DataVector<uint8_t>(buf_size); |
| } |
| } |
| |
| // The TotalOut size returned from the library may not be big enough to |
| // handle the content the library returns. We can only handle items |
| // up to 4GB in size. |
| const uint32_t dest_size = FlateGetPossiblyTruncatedTotalOut(context.get()); |
| const uint32_t bytes_consumed = |
| FlateGetPossiblyTruncatedTotalIn(context.get()); |
| if (result_tmp_bufs.size() == 1) { |
| CHECK_LE(dest_size, buf_size); |
| result_tmp_bufs.front().resize(dest_size); |
| return {std::move(result_tmp_bufs.front()), bytes_consumed}; |
| } |
| |
| DataVector<uint8_t> result_buf(dest_size); |
| auto result_span = pdfium::make_span(result_buf); |
| for (size_t i = 0; i < result_tmp_bufs.size(); i++) { |
| DataVector<uint8_t> tmp_buf = std::move(result_tmp_bufs[i]); |
| const uint32_t tmp_buf_size = |
| i + 1 < result_tmp_bufs.size() ? buf_size : last_buf_size; |
| size_t cp_size = std::min<size_t>(tmp_buf_size, result_span.size()); |
| result_span = |
| fxcrt::spancpy(result_span, pdfium::make_span(tmp_buf).first(cp_size)); |
| } |
| return {std::move(result_buf), bytes_consumed}; |
| } |
| |
| enum class PredictorType : uint8_t { kNone, kFlate, kPng }; |
| static PredictorType GetPredictor(int predictor) { |
| if (predictor >= 10) |
| return PredictorType::kPng; |
| if (predictor == 2) |
| return PredictorType::kFlate; |
| return PredictorType::kNone; |
| } |
| |
| class FlateScanlineDecoder : public ScanlineDecoder { |
| public: |
| FlateScanlineDecoder(pdfium::span<const uint8_t> src_span, |
| int width, |
| int height, |
| int nComps, |
| int bpc); |
| ~FlateScanlineDecoder() override; |
| |
| // ScanlineDecoder: |
| bool Rewind() override; |
| pdfium::span<uint8_t> GetNextLine() override; |
| uint32_t GetSrcOffset() override; |
| |
| protected: |
| std::unique_ptr<z_stream, FlateDeleter> m_pFlate; |
| const pdfium::raw_span<const uint8_t> m_SrcBuf; |
| FixedSizeDataVector<uint8_t> m_Scanline; |
| }; |
| |
| FlateScanlineDecoder::FlateScanlineDecoder(pdfium::span<const uint8_t> src_span, |
| int width, |
| int height, |
| int nComps, |
| int bpc) |
| : ScanlineDecoder(width, |
| height, |
| width, |
| height, |
| nComps, |
| bpc, |
| fxge::CalculatePitch8OrDie(bpc, nComps, width)), |
| m_SrcBuf(src_span), |
| m_Scanline(FixedSizeDataVector<uint8_t>::Zeroed(m_Pitch)) {} |
| |
| FlateScanlineDecoder::~FlateScanlineDecoder() { |
| // Span in superclass can't outlive our buffer. |
| m_pLastScanline = pdfium::span<uint8_t>(); |
| } |
| |
| bool FlateScanlineDecoder::Rewind() { |
| m_pFlate.reset(FlateInit()); |
| if (!m_pFlate) |
| return false; |
| |
| FlateInput(m_pFlate.get(), m_SrcBuf); |
| return true; |
| } |
| |
| pdfium::span<uint8_t> FlateScanlineDecoder::GetNextLine() { |
| FlateOutput(m_pFlate.get(), m_Scanline); |
| return m_Scanline; |
| } |
| |
| uint32_t FlateScanlineDecoder::GetSrcOffset() { |
| return FlateGetPossiblyTruncatedTotalIn(m_pFlate.get()); |
| } |
| |
| class FlatePredictorScanlineDecoder final : public FlateScanlineDecoder { |
| public: |
| FlatePredictorScanlineDecoder(pdfium::span<const uint8_t> src_span, |
| int width, |
| int height, |
| int comps, |
| int bpc, |
| PredictorType predictor, |
| int Colors, |
| int BitsPerComponent, |
| int Columns); |
| ~FlatePredictorScanlineDecoder() override; |
| |
| // ScanlineDecoder: |
| bool Rewind() override; |
| pdfium::span<uint8_t> GetNextLine() override; |
| |
| private: |
| void GetNextLineWithPredictedPitch(); |
| void GetNextLineWithoutPredictedPitch(); |
| size_t CopyAndAdvanceLine(size_t bytes_to_go); |
| |
| const PredictorType m_Predictor; |
| int m_Colors = 0; |
| int m_BitsPerComponent = 0; |
| int m_Columns = 0; |
| uint32_t m_PredictPitch = 0; |
| size_t m_LeftOver = 0; |
| FixedSizeDataVector<uint8_t> m_LastLine; |
| FixedSizeDataVector<uint8_t> m_PredictBuffer; |
| FixedSizeDataVector<uint8_t> m_PredictRaw; |
| }; |
| |
| FlatePredictorScanlineDecoder::FlatePredictorScanlineDecoder( |
| pdfium::span<const uint8_t> src_span, |
| int width, |
| int height, |
| int comps, |
| int bpc, |
| PredictorType predictor, |
| int Colors, |
| int BitsPerComponent, |
| int Columns) |
| : FlateScanlineDecoder(src_span, width, height, comps, bpc), |
| m_Predictor(predictor) { |
| DCHECK(m_Predictor != PredictorType::kNone); |
| if (BitsPerComponent * Colors * Columns == 0) { |
| BitsPerComponent = m_bpc; |
| Colors = m_nComps; |
| Columns = m_OrigWidth; |
| } |
| m_Colors = Colors; |
| m_BitsPerComponent = BitsPerComponent; |
| m_Columns = Columns; |
| m_PredictPitch = |
| fxge::CalculatePitch8OrDie(m_BitsPerComponent, m_Colors, m_Columns); |
| m_LastLine = FixedSizeDataVector<uint8_t>::Zeroed(m_PredictPitch); |
| m_PredictBuffer = FixedSizeDataVector<uint8_t>::Zeroed(m_PredictPitch); |
| m_PredictRaw = FixedSizeDataVector<uint8_t>::Zeroed(m_PredictPitch + 1); |
| } |
| |
| FlatePredictorScanlineDecoder::~FlatePredictorScanlineDecoder() { |
| // Span in superclass can't outlive our buffer. |
| m_pLastScanline = pdfium::span<uint8_t>(); |
| } |
| |
| bool FlatePredictorScanlineDecoder::Rewind() { |
| if (!FlateScanlineDecoder::Rewind()) |
| return false; |
| |
| m_LeftOver = 0; |
| return true; |
| } |
| |
| pdfium::span<uint8_t> FlatePredictorScanlineDecoder::GetNextLine() { |
| if (m_Pitch == m_PredictPitch) |
| GetNextLineWithPredictedPitch(); |
| else |
| GetNextLineWithoutPredictedPitch(); |
| return m_Scanline; |
| } |
| |
| void FlatePredictorScanlineDecoder::GetNextLineWithPredictedPitch() { |
| switch (m_Predictor) { |
| case PredictorType::kPng: { |
| const uint32_t row_size = |
| fxge::CalculatePitch8OrDie(m_BitsPerComponent, m_Colors, m_Columns); |
| const uint32_t bytes_per_pixel = (m_BitsPerComponent * m_Colors + 7) / 8; |
| FlateOutput(m_pFlate.get(), m_PredictRaw); |
| PNG_PredictLine(m_Scanline, m_PredictRaw, m_LastLine, row_size, |
| bytes_per_pixel); |
| fxcrt::Copy(m_Scanline.first(m_PredictPitch), m_LastLine.span()); |
| break; |
| } |
| case PredictorType::kFlate: { |
| FlateOutput(m_pFlate.get(), m_Scanline); |
| TIFF_PredictLine(m_Scanline.first(m_PredictPitch), m_bpc, m_nComps, |
| m_OutputWidth); |
| break; |
| } |
| case PredictorType::kNone: { |
| NOTREACHED_NORETURN(); |
| } |
| } |
| } |
| |
| void FlatePredictorScanlineDecoder::GetNextLineWithoutPredictedPitch() { |
| size_t bytes_to_go = m_Pitch; |
| size_t read_leftover = m_LeftOver > bytes_to_go ? bytes_to_go : m_LeftOver; |
| if (read_leftover) { |
| fxcrt::Copy( |
| m_PredictBuffer.subspan(m_PredictPitch - m_LeftOver, read_leftover), |
| m_Scanline.span()); |
| m_LeftOver -= read_leftover; |
| bytes_to_go -= read_leftover; |
| } |
| const uint32_t row_size = |
| fxge::CalculatePitch8OrDie(m_BitsPerComponent, m_Colors, m_Columns); |
| const uint32_t bytes_per_pixel = (m_BitsPerComponent * m_Colors + 7) / 8; |
| switch (m_Predictor) { |
| case PredictorType::kPng: { |
| while (bytes_to_go) { |
| FlateOutput(m_pFlate.get(), m_PredictRaw); |
| PNG_PredictLine(m_PredictBuffer, m_PredictRaw, m_LastLine, row_size, |
| bytes_per_pixel); |
| fxcrt::Copy(m_PredictBuffer.span(), m_LastLine.span()); |
| bytes_to_go = CopyAndAdvanceLine(bytes_to_go); |
| } |
| break; |
| } |
| case PredictorType::kFlate: { |
| while (bytes_to_go) { |
| FlateOutput(m_pFlate.get(), m_PredictBuffer); |
| TIFF_PredictLine(m_PredictBuffer, m_BitsPerComponent, m_Colors, |
| m_Columns); |
| bytes_to_go = CopyAndAdvanceLine(bytes_to_go); |
| } |
| break; |
| } |
| case PredictorType::kNone: { |
| NOTREACHED_NORETURN(); |
| } |
| } |
| } |
| |
| size_t FlatePredictorScanlineDecoder::CopyAndAdvanceLine(size_t bytes_to_go) { |
| size_t read_bytes = std::min<size_t>(m_PredictPitch, bytes_to_go); |
| fxcrt::Copy(m_PredictBuffer.first(read_bytes), |
| m_Scanline.subspan(m_Pitch - bytes_to_go)); |
| m_LeftOver += m_PredictPitch - read_bytes; |
| return bytes_to_go - read_bytes; |
| } |
| |
| } // namespace |
| |
| // static |
| std::unique_ptr<ScanlineDecoder> FlateModule::CreateDecoder( |
| pdfium::span<const uint8_t> src_span, |
| int width, |
| int height, |
| int nComps, |
| int bpc, |
| int predictor, |
| int Colors, |
| int BitsPerComponent, |
| int Columns) { |
| PredictorType predictor_type = GetPredictor(predictor); |
| if (predictor_type == PredictorType::kNone) { |
| return std::make_unique<FlateScanlineDecoder>(src_span, width, height, |
| nComps, bpc); |
| } |
| return std::make_unique<FlatePredictorScanlineDecoder>( |
| src_span, width, height, nComps, bpc, predictor_type, Colors, |
| BitsPerComponent, Columns); |
| } |
| |
| // static |
| DataAndBytesConsumed FlateModule::FlateOrLZWDecode( |
| bool bLZW, |
| pdfium::span<const uint8_t> src_span, |
| bool bEarlyChange, |
| int predictor, |
| int Colors, |
| int BitsPerComponent, |
| int Columns, |
| uint32_t estimated_size) { |
| DataVector<uint8_t> dest_buf; |
| uint32_t bytes_consumed = FX_INVALID_OFFSET; |
| PredictorType predictor_type = GetPredictor(predictor); |
| |
| if (bLZW) { |
| auto decoder = std::make_unique<CLZWDecoder>(src_span, bEarlyChange); |
| if (!decoder->Decode()) { |
| return {std::move(dest_buf), bytes_consumed}; |
| } |
| |
| dest_buf = decoder->TakeDestBuf(); |
| bytes_consumed = decoder->GetSrcSize(); |
| } else { |
| DataAndBytesConsumed result = FlateUncompress(src_span, estimated_size); |
| dest_buf = std::move(result.data); |
| bytes_consumed = result.bytes_consumed; |
| } |
| |
| switch (predictor_type) { |
| case PredictorType::kNone: { |
| return {std::move(dest_buf), bytes_consumed}; |
| } |
| case PredictorType::kPng: { |
| std::optional<DataVector<uint8_t>> result = |
| PNG_Predictor(Colors, BitsPerComponent, Columns, dest_buf); |
| if (!result.has_value()) { |
| return {std::move(dest_buf), FX_INVALID_OFFSET}; |
| } |
| return {std::move(result.value()), bytes_consumed}; |
| } |
| case PredictorType::kFlate: { |
| bool ret = TIFF_Predictor(Colors, BitsPerComponent, Columns, dest_buf); |
| return {std::move(dest_buf), ret ? bytes_consumed : FX_INVALID_OFFSET}; |
| } |
| } |
| } |
| |
| // static |
| DataVector<uint8_t> FlateModule::Encode(pdfium::span<const uint8_t> src_span) { |
| FX_SAFE_SIZE_T safe_dest_size = src_span.size(); |
| safe_dest_size += src_span.size() / 1000; |
| safe_dest_size += 12; |
| DataVector<uint8_t> dest_buf(safe_dest_size.ValueOrDie()); |
| size_t compressed_size = FlateCompress(src_span, dest_buf); |
| dest_buf.resize(compressed_size); |
| return dest_buf; |
| } |
| |
| } // namespace fxcodec |