blob: e0d5c124a4ccace685f1a96a99a1e02e06314750 [file] [log] [blame]
//---------------------------------------------------------------------------------
//
// Little Color Management System
// Copyright (c) 1998-2020 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
// IT8.7 / CGATS.17-200x handling -----------------------------------------------------------------------------
#define MAXID 128 // Max length of identifier
#define MAXSTR 1024 // Max length of string
#define MAXTABLES 255 // Max Number of tables in a single stream
#define MAXINCLUDE 20 // Max number of nested includes
#define DEFAULT_DBL_FORMAT "%.10g" // Double formatting
#ifdef CMS_IS_WINDOWS_
//sunliang.liu modified 2010426 for wince error
# ifndef _WIN32_WCE
# include <io.h>
# endif
# define DIR_CHAR '\\'
#else
# define DIR_CHAR '/'
#endif
// Symbols
typedef enum {
SUNDEFINED,
SINUM, // Integer
SDNUM, // Real
SIDENT, // Identifier
SSTRING, // string
SCOMMENT, // comment
SEOLN, // End of line
SEOF, // End of stream
SSYNERROR, // Syntax error found on stream
// Keywords
SBEGIN_DATA,
SBEGIN_DATA_FORMAT,
SEND_DATA,
SEND_DATA_FORMAT,
SKEYWORD,
SDATA_FORMAT_ID,
SINCLUDE
} SYMBOL;
// How to write the value
typedef enum {
WRITE_UNCOOKED,
WRITE_STRINGIFY,
WRITE_HEXADECIMAL,
WRITE_BINARY,
WRITE_PAIR
} WRITEMODE;
// Linked list of variable names
typedef struct _KeyVal {
struct _KeyVal* Next;
char* Keyword; // Name of variable
struct _KeyVal* NextSubkey; // If key is a dictionary, points to the next item
char* Subkey; // If key is a dictionary, points to the subkey name
char* Value; // Points to value
WRITEMODE WriteAs; // How to write the value
} KEYVALUE;
// Linked list of memory chunks (Memory sink)
typedef struct _OwnedMem {
struct _OwnedMem* Next;
void * Ptr; // Point to value
} OWNEDMEM;
// Suballocator
typedef struct _SubAllocator {
cmsUInt8Number* Block;
cmsUInt32Number BlockSize;
cmsUInt32Number Used;
} SUBALLOCATOR;
// Table. Each individual table can hold properties and rows & cols
typedef struct _Table {
char SheetType[MAXSTR]; // The first row of the IT8 (the type)
int nSamples, nPatches; // Cols, Rows
int SampleID; // Pos of ID
KEYVALUE* HeaderList; // The properties
char** DataFormat; // The binary stream descriptor
char** Data; // The binary stream
} TABLE;
// File stream being parsed
typedef struct _FileContext {
char FileName[cmsMAX_PATH]; // File name if being read from file
FILE* Stream; // File stream or NULL if holded in memory
} FILECTX;
// This struct hold all information about an open IT8 handler.
typedef struct {
cmsUInt32Number TablesCount; // How many tables in this stream
cmsUInt32Number nTable; // The actual table
TABLE Tab[MAXTABLES];
// Memory management
OWNEDMEM* MemorySink; // The storage backend
SUBALLOCATOR Allocator; // String suballocator -- just to keep it fast
// Parser state machine
SYMBOL sy; // Current symbol
int ch; // Current character
cmsInt32Number inum; // integer value
cmsFloat64Number dnum; // real value
char id[MAXID]; // identifier
char str[MAXSTR]; // string
// Allowed keywords & datasets. They have visibility on whole stream
KEYVALUE* ValidKeywords;
KEYVALUE* ValidSampleID;
char* Source; // Points to loc. being parsed
cmsInt32Number lineno; // line counter for error reporting
FILECTX* FileStack[MAXINCLUDE]; // Stack of files being parsed
cmsInt32Number IncludeSP; // Include Stack Pointer
char* MemoryBlock; // The stream if holded in memory
char DoubleFormatter[MAXID];// Printf-like 'cmsFloat64Number' formatter
cmsContext ContextID; // The threading context
} cmsIT8;
// The stream for save operations
typedef struct {
FILE* stream; // For save-to-file behaviour
cmsUInt8Number* Base;
cmsUInt8Number* Ptr; // For save-to-mem behaviour
cmsUInt32Number Used;
cmsUInt32Number Max;
} SAVESTREAM;
// ------------------------------------------------------ cmsIT8 parsing routines
// A keyword
typedef struct {
const char *id;
SYMBOL sy;
} KEYWORD;
// The keyword->symbol translation table. Sorting is required.
static const KEYWORD TabKeys[] = {
{"$INCLUDE", SINCLUDE}, // This is an extension!
{".INCLUDE", SINCLUDE}, // This is an extension!
{"BEGIN_DATA", SBEGIN_DATA },
{"BEGIN_DATA_FORMAT", SBEGIN_DATA_FORMAT },
{"DATA_FORMAT_IDENTIFIER", SDATA_FORMAT_ID},
{"END_DATA", SEND_DATA},
{"END_DATA_FORMAT", SEND_DATA_FORMAT},
{"KEYWORD", SKEYWORD}
};
#define NUMKEYS (sizeof(TabKeys)/sizeof(KEYWORD))
// Predefined properties
// A property
typedef struct {
const char *id; // The identifier
WRITEMODE as; // How is supposed to be written
} PROPERTY;
static PROPERTY PredefinedProperties[] = {
{"NUMBER_OF_FIELDS", WRITE_UNCOOKED}, // Required - NUMBER OF FIELDS
{"NUMBER_OF_SETS", WRITE_UNCOOKED}, // Required - NUMBER OF SETS
{"ORIGINATOR", WRITE_STRINGIFY}, // Required - Identifies the specific system, organization or individual that created the data file.
{"FILE_DESCRIPTOR", WRITE_STRINGIFY}, // Required - Describes the purpose or contents of the data file.
{"CREATED", WRITE_STRINGIFY}, // Required - Indicates date of creation of the data file.
{"DESCRIPTOR", WRITE_STRINGIFY}, // Required - Describes the purpose or contents of the data file.
{"DIFFUSE_GEOMETRY", WRITE_STRINGIFY}, // The diffuse geometry used. Allowed values are "sphere" or "opal".
{"MANUFACTURER", WRITE_STRINGIFY},
{"MANUFACTURE", WRITE_STRINGIFY}, // Some broken Fuji targets does store this value
{"PROD_DATE", WRITE_STRINGIFY}, // Identifies year and month of production of the target in the form yyyy:mm.
{"SERIAL", WRITE_STRINGIFY}, // Uniquely identifies individual physical target.
{"MATERIAL", WRITE_STRINGIFY}, // Identifies the material on which the target was produced using a code
// uniquely identifying th e material. This is intend ed to be used for IT8.7
// physical targets only (i.e . IT8.7/1 a nd IT8.7/2).
{"INSTRUMENTATION", WRITE_STRINGIFY}, // Used to report the specific instrumentation used (manufacturer and
// model number) to generate the data reported. This data will often
// provide more information about the particular data collected than an
// extensive list of specific details. This is particularly important for
// spectral data or data derived from spectrophotometry.
{"MEASUREMENT_SOURCE", WRITE_STRINGIFY}, // Illumination used for spectral measurements. This data helps provide
// a guide to the potential for issues of paper fluorescence, etc.
{"PRINT_CONDITIONS", WRITE_STRINGIFY}, // Used to define the characteristics of the printed sheet being reported.
// Where standard conditions have been defined (e.g., SWOP at nominal)
// named conditions may suffice. Otherwise, detailed information is
// needed.
{"SAMPLE_BACKING", WRITE_STRINGIFY}, // Identifies the backing material used behind the sample during
// measurement. Allowed values are "black", "white", or {"na".
{"CHISQ_DOF", WRITE_STRINGIFY}, // Degrees of freedom associated with the Chi squared statistic
// below properties are new in recent specs:
{"MEASUREMENT_GEOMETRY", WRITE_STRINGIFY}, // The type of measurement, either reflection or transmission, should be indicated
// along with details of the geometry and the aperture size and shape. For example,
// for transmission measurements it is important to identify 0/diffuse, diffuse/0,
// opal or integrating sphere, etc. For reflection it is important to identify 0/45,
// 45/0, sphere (specular included or excluded), etc.
{"FILTER", WRITE_STRINGIFY}, // Identifies the use of physical filter(s) during measurement. Typically used to
// denote the use of filters such as none, D65, Red, Green or Blue.
{"POLARIZATION", WRITE_STRINGIFY}, // Identifies the use of a physical polarization filter during measurement. Allowed
// values are {"yes", "white", "none" or "na".
{"WEIGHTING_FUNCTION", WRITE_PAIR}, // Indicates such functions as: the CIE standard observer functions used in the
// calculation of various data parameters (2 degree and 10 degree), CIE standard
// illuminant functions used in the calculation of various data parameters (e.g., D50,
// D65, etc.), density status response, etc. If used there shall be at least one
// name-value pair following the WEIGHTING_FUNCTION tag/keyword. The first attribute
// in the set shall be {"name" and shall identify the particular parameter used.
// The second shall be {"value" and shall provide the value associated with that name.
// For ASCII data, a string containing the Name and Value attribute pairs shall follow
// the weighting function keyword. A semi-colon separates attribute pairs from each
// other and within the attribute the name and value are separated by a comma.
{"COMPUTATIONAL_PARAMETER", WRITE_PAIR}, // Parameter that is used in computing a value from measured data. Name is the name
// of the calculation, parameter is the name of the parameter used in the calculation
// and value is the value of the parameter.
{"TARGET_TYPE", WRITE_STRINGIFY}, // The type of target being measured, e.g. IT8.7/1, IT8.7/3, user defined, etc.
{"COLORANT", WRITE_STRINGIFY}, // Identifies the colorant(s) used in creating the target.
{"TABLE_DESCRIPTOR", WRITE_STRINGIFY}, // Describes the purpose or contents of a data table.
{"TABLE_NAME", WRITE_STRINGIFY} // Provides a short name for a data table.
};
#define NUMPREDEFINEDPROPS (sizeof(PredefinedProperties)/sizeof(PROPERTY))
// Predefined sample types on dataset
static const char* PredefinedSampleID[] = {
"SAMPLE_ID", // Identifies sample that data represents
"STRING", // Identifies label, or other non-machine readable value.
// Value must begin and end with a " symbol
"CMYK_C", // Cyan component of CMYK data expressed as a percentage
"CMYK_M", // Magenta component of CMYK data expressed as a percentage
"CMYK_Y", // Yellow component of CMYK data expressed as a percentage
"CMYK_K", // Black component of CMYK data expressed as a percentage
"D_RED", // Red filter density
"D_GREEN", // Green filter density
"D_BLUE", // Blue filter density
"D_VIS", // Visual filter density
"D_MAJOR_FILTER", // Major filter d ensity
"RGB_R", // Red component of RGB data
"RGB_G", // Green component of RGB data
"RGB_B", // Blue com ponent of RGB data
"SPECTRAL_NM", // Wavelength of measurement expressed in nanometers
"SPECTRAL_PCT", // Percentage reflectance/transmittance
"SPECTRAL_DEC", // Reflectance/transmittance
"XYZ_X", // X component of tristimulus data
"XYZ_Y", // Y component of tristimulus data
"XYZ_Z", // Z component of tristimulus data
"XYY_X", // x component of chromaticity data
"XYY_Y", // y component of chromaticity data
"XYY_CAPY", // Y component of tristimulus data
"LAB_L", // L* component of Lab data
"LAB_A", // a* component of Lab data
"LAB_B", // b* component of Lab data
"LAB_C", // C*ab component of Lab data
"LAB_H", // hab component of Lab data
"LAB_DE", // CIE dE
"LAB_DE_94", // CIE dE using CIE 94
"LAB_DE_CMC", // dE using CMC
"LAB_DE_2000", // CIE dE using CIE DE 2000
"MEAN_DE", // Mean Delta E (LAB_DE) of samples compared to batch average
// (Used for data files for ANSI IT8.7/1 and IT8.7/2 targets)
"STDEV_X", // Standard deviation of X (tristimulus data)
"STDEV_Y", // Standard deviation of Y (tristimulus data)
"STDEV_Z", // Standard deviation of Z (tristimulus data)
"STDEV_L", // Standard deviation of L*
"STDEV_A", // Standard deviation of a*
"STDEV_B", // Standard deviation of b*
"STDEV_DE", // Standard deviation of CIE dE
"CHI_SQD_PAR"}; // The average of the standard deviations of L*, a* and b*. It is
// used to derive an estimate of the chi-squared parameter which is
// recommended as the predictor of the variability of dE
#define NUMPREDEFINEDSAMPLEID (sizeof(PredefinedSampleID)/sizeof(char *))
//Forward declaration of some internal functions
static void* AllocChunk(cmsIT8* it8, cmsUInt32Number size);
// Checks whatever c is a separator
static
cmsBool isseparator(int c)
{
return (c == ' ') || (c == '\t') ;
}
// Checks whatever c is a valid identifier char
static
cmsBool ismiddle(int c)
{
return (!isseparator(c) && (c != '#') && (c !='\"') && (c != '\'') && (c > 32) && (c < 127));
}
// Checks whatsever c is a valid identifier middle char.
static
cmsBool isidchar(int c)
{
return isalnum(c) || ismiddle(c);
}
// Checks whatsever c is a valid identifier first char.
static
cmsBool isfirstidchar(int c)
{
return !isdigit(c) && ismiddle(c);
}
// Guess whether the supplied path looks like an absolute path
static
cmsBool isabsolutepath(const char *path)
{
char ThreeChars[4];
if(path == NULL)
return FALSE;
if (path[0] == 0)
return FALSE;
strncpy(ThreeChars, path, 3);
ThreeChars[3] = 0;
if(ThreeChars[0] == DIR_CHAR)
return TRUE;
#ifdef CMS_IS_WINDOWS_
if (isalpha((int) ThreeChars[0]) && ThreeChars[1] == ':')
return TRUE;
#endif
return FALSE;
}
// Makes a file path based on a given reference path
// NOTE: this function doesn't check if the path exists or even if it's legal
static
cmsBool BuildAbsolutePath(const char *relPath, const char *basePath, char *buffer, cmsUInt32Number MaxLen)
{
char *tail;
cmsUInt32Number len;
// Already absolute?
if (isabsolutepath(relPath)) {
strncpy(buffer, relPath, MaxLen);
buffer[MaxLen-1] = 0;
return TRUE;
}
// No, search for last
strncpy(buffer, basePath, MaxLen);
buffer[MaxLen-1] = 0;
tail = strrchr(buffer, DIR_CHAR);
if (tail == NULL) return FALSE; // Is not absolute and has no separators??
len = (cmsUInt32Number) (tail - buffer);
if (len >= MaxLen) return FALSE;
// No need to assure zero terminator over here
strncpy(tail + 1, relPath, MaxLen - len);
return TRUE;
}
// Make sure no exploit is being even tried
static
const char* NoMeta(const char* str)
{
if (strchr(str, '%') != NULL)
return "**** CORRUPTED FORMAT STRING ***";
return str;
}
// Syntax error
static
cmsBool SynError(cmsIT8* it8, const char *Txt, ...)
{
char Buffer[256], ErrMsg[1024];
va_list args;
va_start(args, Txt);
vsnprintf(Buffer, 255, Txt, args);
Buffer[255] = 0;
va_end(args);
snprintf(ErrMsg, 1023, "%s: Line %d, %s", it8->FileStack[it8 ->IncludeSP]->FileName, it8->lineno, Buffer);
ErrMsg[1023] = 0;
it8->sy = SSYNERROR;
cmsSignalError(it8 ->ContextID, cmsERROR_CORRUPTION_DETECTED, "%s", ErrMsg);
return FALSE;
}
// Check if current symbol is same as specified. issue an error else.
static
cmsBool Check(cmsIT8* it8, SYMBOL sy, const char* Err)
{
if (it8 -> sy != sy)
return SynError(it8, NoMeta(Err));
return TRUE;
}
// Read Next character from stream
static
void NextCh(cmsIT8* it8)
{
if (it8 -> FileStack[it8 ->IncludeSP]->Stream) {
it8 ->ch = fgetc(it8 ->FileStack[it8 ->IncludeSP]->Stream);
if (feof(it8 -> FileStack[it8 ->IncludeSP]->Stream)) {
if (it8 ->IncludeSP > 0) {
fclose(it8 ->FileStack[it8->IncludeSP--]->Stream);
it8 -> ch = ' '; // Whitespace to be ignored
} else
it8 ->ch = 0; // EOF
}
}
else {
it8->ch = *it8->Source;
if (it8->ch) it8->Source++;
}
}
// Try to see if current identifier is a keyword, if so return the referred symbol
static
SYMBOL BinSrchKey(const char *id)
{
int l = 1;
int r = NUMKEYS;
int x, res;
while (r >= l)
{
x = (l+r)/2;
res = cmsstrcasecmp(id, TabKeys[x-1].id);
if (res == 0) return TabKeys[x-1].sy;
if (res < 0) r = x - 1;
else l = x + 1;
}
return SUNDEFINED;
}
// 10 ^n
static
cmsFloat64Number xpow10(int n)
{
return pow(10, (cmsFloat64Number) n);
}
// Reads a Real number, tries to follow from integer number
static
void ReadReal(cmsIT8* it8, cmsInt32Number inum)
{
it8->dnum = (cmsFloat64Number)inum;
while (isdigit(it8->ch)) {
it8->dnum = (cmsFloat64Number)it8->dnum * 10.0 + (cmsFloat64Number)(it8->ch - '0');
NextCh(it8);
}
if (it8->ch == '.') { // Decimal point
cmsFloat64Number frac = 0.0; // fraction
int prec = 0; // precision
NextCh(it8); // Eats dec. point
while (isdigit(it8->ch)) {
frac = frac * 10.0 + (cmsFloat64Number)(it8->ch - '0');
prec++;
NextCh(it8);
}
it8->dnum = it8->dnum + (frac / xpow10(prec));
}
// Exponent, example 34.00E+20
if (toupper(it8->ch) == 'E') {
cmsInt32Number e;
cmsInt32Number sgn;
NextCh(it8); sgn = 1;
if (it8->ch == '-') {
sgn = -1; NextCh(it8);
}
else
if (it8->ch == '+') {
sgn = +1;
NextCh(it8);
}
e = 0;
while (isdigit(it8->ch)) {
cmsInt32Number digit = (it8->ch - '0');
if ((cmsFloat64Number)e * 10.0 + (cmsFloat64Number)digit < (cmsFloat64Number)+2147483647.0)
e = e * 10 + digit;
NextCh(it8);
}
e = sgn*e;
it8->dnum = it8->dnum * xpow10(e);
}
}
// Parses a float number
// This can not call directly atof because it uses locale dependent
// parsing, while CCMX files always use . as decimal separator
static
cmsFloat64Number ParseFloatNumber(const char *Buffer)
{
cmsFloat64Number dnum = 0.0;
int sign = 1;
// keep safe
if (Buffer == NULL) return 0.0;
if (*Buffer == '-' || *Buffer == '+') {
sign = (*Buffer == '-') ? -1 : 1;
Buffer++;
}
while (*Buffer && isdigit((int)*Buffer)) {
dnum = dnum * 10.0 + (*Buffer - '0');
if (*Buffer) Buffer++;
}
if (*Buffer == '.') {
cmsFloat64Number frac = 0.0; // fraction
int prec = 0; // precision
if (*Buffer) Buffer++;
while (*Buffer && isdigit((int)*Buffer)) {
frac = frac * 10.0 + (*Buffer - '0');
prec++;
if (*Buffer) Buffer++;
}
dnum = dnum + (frac / xpow10(prec));
}
// Exponent, example 34.00E+20
if (*Buffer && toupper(*Buffer) == 'E') {
int e;
int sgn;
if (*Buffer) Buffer++;
sgn = 1;
if (*Buffer == '-') {
sgn = -1;
if (*Buffer) Buffer++;
}
else
if (*Buffer == '+') {
sgn = +1;
if (*Buffer) Buffer++;
}
e = 0;
while (*Buffer && isdigit((int)*Buffer)) {
cmsInt32Number digit = (*Buffer - '0');
if ((cmsFloat64Number)e * 10.0 + digit < (cmsFloat64Number)+2147483647.0)
e = e * 10 + digit;
if (*Buffer) Buffer++;
}
e = sgn*e;
dnum = dnum * xpow10(e);
}
return sign * dnum;
}
// Reads next symbol
static
void InSymbol(cmsIT8* it8)
{
CMSREGISTER char *idptr;
CMSREGISTER int k;
SYMBOL key;
int sng;
do {
while (isseparator(it8->ch))
NextCh(it8);
if (isfirstidchar(it8->ch)) { // Identifier
k = 0;
idptr = it8->id;
do {
if (++k < MAXID) *idptr++ = (char) it8->ch;
NextCh(it8);
} while (isidchar(it8->ch));
*idptr = '\0';
key = BinSrchKey(it8->id);
if (key == SUNDEFINED) it8->sy = SIDENT;
else it8->sy = key;
}
else // Is a number?
if (isdigit(it8->ch) || it8->ch == '.' || it8->ch == '-' || it8->ch == '+')
{
int sign = 1;
if (it8->ch == '-') {
sign = -1;
NextCh(it8);
}
it8->inum = 0;
it8->sy = SINUM;
if (it8->ch == '0') { // 0xnnnn (Hexa) or 0bnnnn (Binary)
NextCh(it8);
if (toupper(it8->ch) == 'X') {
int j;
NextCh(it8);
while (isxdigit(it8->ch))
{
it8->ch = toupper(it8->ch);
if (it8->ch >= 'A' && it8->ch <= 'F') j = it8->ch -'A'+10;
else j = it8->ch - '0';
if ((cmsFloat64Number) it8->inum * 16.0 + (cmsFloat64Number) j > (cmsFloat64Number)+2147483647.0)
{
SynError(it8, "Invalid hexadecimal number");
return;
}
it8->inum = it8->inum * 16 + j;
NextCh(it8);
}
return;
}
if (toupper(it8->ch) == 'B') { // Binary
int j;
NextCh(it8);
while (it8->ch == '0' || it8->ch == '1')
{
j = it8->ch - '0';
if ((cmsFloat64Number) it8->inum * 2.0 + j > (cmsFloat64Number)+2147483647.0)
{
SynError(it8, "Invalid binary number");
return;
}
it8->inum = it8->inum * 2 + j;
NextCh(it8);
}
return;
}
}
while (isdigit(it8->ch)) {
cmsInt32Number digit = (it8->ch - '0');
if ((cmsFloat64Number) it8->inum * 10.0 + (cmsFloat64Number) digit > (cmsFloat64Number) +2147483647.0) {
ReadReal(it8, it8->inum);
it8->sy = SDNUM;
it8->dnum *= sign;
return;
}
it8->inum = it8->inum * 10 + digit;
NextCh(it8);
}
if (it8->ch == '.') {
ReadReal(it8, it8->inum);
it8->sy = SDNUM;
it8->dnum *= sign;
return;
}
it8 -> inum *= sign;
// Special case. Numbers followed by letters are taken as identifiers
if (isidchar(it8 ->ch)) {
if (it8 ->sy == SINUM) {
snprintf(it8->id, 127, "%d", it8->inum);
}
else {
snprintf(it8->id, 127, it8 ->DoubleFormatter, it8->dnum);
}
k = (int) strlen(it8 ->id);
idptr = it8 ->id + k;
do {
if (++k < MAXID) *idptr++ = (char) it8->ch;
NextCh(it8);
} while (isidchar(it8->ch));
*idptr = '\0';
it8->sy = SIDENT;
}
return;
}
else
switch ((int) it8->ch) {
// EOF marker -- ignore it
case '\x1a':
NextCh(it8);
break;
// Eof stream markers
case 0:
case -1:
it8->sy = SEOF;
break;
// Next line
case '\r':
NextCh(it8);
if (it8 ->ch == '\n')
NextCh(it8);
it8->sy = SEOLN;
it8->lineno++;
break;
case '\n':
NextCh(it8);
it8->sy = SEOLN;
it8->lineno++;
break;
// Comment
case '#':
NextCh(it8);
while (it8->ch && it8->ch != '\n' && it8->ch != '\r')
NextCh(it8);
it8->sy = SCOMMENT;
break;
// String.
case '\'':
case '\"':
idptr = it8->str;
sng = it8->ch;
k = 0;
NextCh(it8);
while (k < (MAXSTR-1) && it8->ch != sng) {
if (it8->ch == '\n'|| it8->ch == '\r') k = MAXSTR+1;
else {
*idptr++ = (char) it8->ch;
NextCh(it8);
k++;
}
}
it8->sy = SSTRING;
*idptr = '\0';
NextCh(it8);
break;
default:
SynError(it8, "Unrecognized character: 0x%x", it8 ->ch);
return;
}
} while (it8->sy == SCOMMENT);
// Handle the include special token
if (it8 -> sy == SINCLUDE) {
FILECTX* FileNest;
if(it8 -> IncludeSP >= (MAXINCLUDE-1)) {
SynError(it8, "Too many recursion levels");
return;
}
InSymbol(it8);
if (!Check(it8, SSTRING, "Filename expected")) return;
FileNest = it8 -> FileStack[it8 -> IncludeSP + 1];
if(FileNest == NULL) {
FileNest = it8 ->FileStack[it8 -> IncludeSP + 1] = (FILECTX*)AllocChunk(it8, sizeof(FILECTX));
//if(FileNest == NULL)
// TODO: how to manage out-of-memory conditions?
}
if (BuildAbsolutePath(it8->str,
it8->FileStack[it8->IncludeSP]->FileName,
FileNest->FileName, cmsMAX_PATH-1) == FALSE) {
SynError(it8, "File path too long");
return;
}
FileNest->Stream = fopen(FileNest->FileName, "rt");
if (FileNest->Stream == NULL) {
SynError(it8, "File %s not found", FileNest->FileName);
return;
}
it8->IncludeSP++;
it8 ->ch = ' ';
InSymbol(it8);
}
}
// Checks end of line separator
static
cmsBool CheckEOLN(cmsIT8* it8)
{
if (!Check(it8, SEOLN, "Expected separator")) return FALSE;
while (it8 -> sy == SEOLN)
InSymbol(it8);
return TRUE;
}
// Skip a symbol
static
void Skip(cmsIT8* it8, SYMBOL sy)
{
if (it8->sy == sy && it8->sy != SEOF)
InSymbol(it8);
}
// Skip multiple EOLN
static
void SkipEOLN(cmsIT8* it8)
{
while (it8->sy == SEOLN) {
InSymbol(it8);
}
}
// Returns a string holding current value
static
cmsBool GetVal(cmsIT8* it8, char* Buffer, cmsUInt32Number max, const char* ErrorTitle)
{
switch (it8->sy) {
case SEOLN: // Empty value
Buffer[0]=0;
break;
case SIDENT: strncpy(Buffer, it8->id, max);
Buffer[max-1]=0;
break;
case SINUM: snprintf(Buffer, max, "%d", it8 -> inum); break;
case SDNUM: snprintf(Buffer, max, it8->DoubleFormatter, it8 -> dnum); break;
case SSTRING: strncpy(Buffer, it8->str, max);
Buffer[max-1] = 0;
break;
default:
return SynError(it8, "%s", ErrorTitle);
}
Buffer[max] = 0;
return TRUE;
}
// ---------------------------------------------------------- Table
static
TABLE* GetTable(cmsIT8* it8)
{
if ((it8 -> nTable >= it8 ->TablesCount)) {
SynError(it8, "Table %d out of sequence", it8 -> nTable);
return it8 -> Tab;
}
return it8 ->Tab + it8 ->nTable;
}
// ---------------------------------------------------------- Memory management
// Frees an allocator and owned memory
void CMSEXPORT cmsIT8Free(cmsHANDLE hIT8)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
if (it8 == NULL)
return;
if (it8->MemorySink) {
OWNEDMEM* p;
OWNEDMEM* n;
for (p = it8->MemorySink; p != NULL; p = n) {
n = p->Next;
if (p->Ptr) _cmsFree(it8 ->ContextID, p->Ptr);
_cmsFree(it8 ->ContextID, p);
}
}
if (it8->MemoryBlock)
_cmsFree(it8 ->ContextID, it8->MemoryBlock);
_cmsFree(it8 ->ContextID, it8);
}
// Allocates a chunk of data, keep linked list
static
void* AllocBigBlock(cmsIT8* it8, cmsUInt32Number size)
{
OWNEDMEM* ptr1;
void* ptr = _cmsMallocZero(it8->ContextID, size);
if (ptr != NULL) {
ptr1 = (OWNEDMEM*) _cmsMallocZero(it8 ->ContextID, sizeof(OWNEDMEM));
if (ptr1 == NULL) {
_cmsFree(it8 ->ContextID, ptr);
return NULL;
}
ptr1-> Ptr = ptr;
ptr1-> Next = it8 -> MemorySink;
it8 -> MemorySink = ptr1;
}
return ptr;
}
// Suballocator.
static
void* AllocChunk(cmsIT8* it8, cmsUInt32Number size)
{
cmsUInt32Number Free = it8 ->Allocator.BlockSize - it8 ->Allocator.Used;
cmsUInt8Number* ptr;
size = _cmsALIGNMEM(size);
if (size > Free) {
if (it8 -> Allocator.BlockSize == 0)
it8 -> Allocator.BlockSize = 20*1024;
else
it8 ->Allocator.BlockSize *= 2;
if (it8 ->Allocator.BlockSize < size)
it8 ->Allocator.BlockSize = size;
it8 ->Allocator.Used = 0;
it8 ->Allocator.Block = (cmsUInt8Number*) AllocBigBlock(it8, it8 ->Allocator.BlockSize);
}
ptr = it8 ->Allocator.Block + it8 ->Allocator.Used;
it8 ->Allocator.Used += size;
return (void*) ptr;
}
// Allocates a string
static
char *AllocString(cmsIT8* it8, const char* str)
{
cmsUInt32Number Size = (cmsUInt32Number) strlen(str)+1;
char *ptr;
ptr = (char *) AllocChunk(it8, Size);
if (ptr) strncpy (ptr, str, Size-1);
return ptr;
}
// Searches through linked list
static
cmsBool IsAvailableOnList(KEYVALUE* p, const char* Key, const char* Subkey, KEYVALUE** LastPtr)
{
if (LastPtr) *LastPtr = p;
for (; p != NULL; p = p->Next) {
if (LastPtr) *LastPtr = p;
if (*Key != '#') { // Comments are ignored
if (cmsstrcasecmp(Key, p->Keyword) == 0)
break;
}
}
if (p == NULL)
return FALSE;
if (Subkey == 0)
return TRUE;
for (; p != NULL; p = p->NextSubkey) {
if (p ->Subkey == NULL) continue;
if (LastPtr) *LastPtr = p;
if (cmsstrcasecmp(Subkey, p->Subkey) == 0)
return TRUE;
}
return FALSE;
}
// Add a property into a linked list
static
KEYVALUE* AddToList(cmsIT8* it8, KEYVALUE** Head, const char *Key, const char *Subkey, const char* xValue, WRITEMODE WriteAs)
{
KEYVALUE* p;
KEYVALUE* last;
// Check if property is already in list
if (IsAvailableOnList(*Head, Key, Subkey, &p)) {
// This may work for editing properties
// return SynError(it8, "duplicate key <%s>", Key);
}
else {
last = p;
// Allocate the container
p = (KEYVALUE*) AllocChunk(it8, sizeof(KEYVALUE));
if (p == NULL)
{
SynError(it8, "AddToList: out of memory");
return NULL;
}
// Store name and value
p->Keyword = AllocString(it8, Key);
p->Subkey = (Subkey == NULL) ? NULL : AllocString(it8, Subkey);
// Keep the container in our list
if (*Head == NULL) {
*Head = p;
}
else
{
if (Subkey != NULL && last != NULL) {
last->NextSubkey = p;
// If Subkey is not null, then last is the last property with the same key,
// but not necessarily is the last property in the list, so we need to move
// to the actual list end
while (last->Next != NULL)
last = last->Next;
}
if (last != NULL) last->Next = p;
}
p->Next = NULL;
p->NextSubkey = NULL;
}
p->WriteAs = WriteAs;
if (xValue != NULL) {
p->Value = AllocString(it8, xValue);
}
else {
p->Value = NULL;
}
return p;
}
static
KEYVALUE* AddAvailableProperty(cmsIT8* it8, const char* Key, WRITEMODE as)
{
return AddToList(it8, &it8->ValidKeywords, Key, NULL, NULL, as);
}
static
KEYVALUE* AddAvailableSampleID(cmsIT8* it8, const char* Key)
{
return AddToList(it8, &it8->ValidSampleID, Key, NULL, NULL, WRITE_UNCOOKED);
}
static
void AllocTable(cmsIT8* it8)
{
TABLE* t;
t = it8 ->Tab + it8 ->TablesCount;
t->HeaderList = NULL;
t->DataFormat = NULL;
t->Data = NULL;
it8 ->TablesCount++;
}
cmsInt32Number CMSEXPORT cmsIT8SetTable(cmsHANDLE IT8, cmsUInt32Number nTable)
{
cmsIT8* it8 = (cmsIT8*) IT8;
if (nTable >= it8 ->TablesCount) {
if (nTable == it8 ->TablesCount) {
AllocTable(it8);
}
else {
SynError(it8, "Table %d is out of sequence", nTable);
return -1;
}
}
it8 ->nTable = nTable;
return (cmsInt32Number) nTable;
}
// Init an empty container
cmsHANDLE CMSEXPORT cmsIT8Alloc(cmsContext ContextID)
{
cmsIT8* it8;
cmsUInt32Number i;
it8 = (cmsIT8*) _cmsMallocZero(ContextID, sizeof(cmsIT8));
if (it8 == NULL) return NULL;
AllocTable(it8);
it8->MemoryBlock = NULL;
it8->MemorySink = NULL;
it8 ->nTable = 0;
it8->ContextID = ContextID;
it8->Allocator.Used = 0;
it8->Allocator.Block = NULL;
it8->Allocator.BlockSize = 0;
it8->ValidKeywords = NULL;
it8->ValidSampleID = NULL;
it8 -> sy = SUNDEFINED;
it8 -> ch = ' ';
it8 -> Source = NULL;
it8 -> inum = 0;
it8 -> dnum = 0.0;
it8->FileStack[0] = (FILECTX*)AllocChunk(it8, sizeof(FILECTX));
it8->IncludeSP = 0;
it8 -> lineno = 1;
strcpy(it8->DoubleFormatter, DEFAULT_DBL_FORMAT);
cmsIT8SetSheetType((cmsHANDLE) it8, "CGATS.17");
// Initialize predefined properties & data
for (i=0; i < NUMPREDEFINEDPROPS; i++)
AddAvailableProperty(it8, PredefinedProperties[i].id, PredefinedProperties[i].as);
for (i=0; i < NUMPREDEFINEDSAMPLEID; i++)
AddAvailableSampleID(it8, PredefinedSampleID[i]);
return (cmsHANDLE) it8;
}
const char* CMSEXPORT cmsIT8GetSheetType(cmsHANDLE hIT8)
{
return GetTable((cmsIT8*) hIT8)->SheetType;
}
cmsBool CMSEXPORT cmsIT8SetSheetType(cmsHANDLE hIT8, const char* Type)
{
TABLE* t = GetTable((cmsIT8*) hIT8);
strncpy(t ->SheetType, Type, MAXSTR-1);
t ->SheetType[MAXSTR-1] = 0;
return TRUE;
}
cmsBool CMSEXPORT cmsIT8SetComment(cmsHANDLE hIT8, const char* Val)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
if (!Val) return FALSE;
if (!*Val) return FALSE;
return AddToList(it8, &GetTable(it8)->HeaderList, "# ", NULL, Val, WRITE_UNCOOKED) != NULL;
}
// Sets a property
cmsBool CMSEXPORT cmsIT8SetPropertyStr(cmsHANDLE hIT8, const char* Key, const char *Val)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
if (!Val) return FALSE;
if (!*Val) return FALSE;
return AddToList(it8, &GetTable(it8)->HeaderList, Key, NULL, Val, WRITE_STRINGIFY) != NULL;
}
cmsBool CMSEXPORT cmsIT8SetPropertyDbl(cmsHANDLE hIT8, const char* cProp, cmsFloat64Number Val)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
char Buffer[1024];
snprintf(Buffer, 1023, it8->DoubleFormatter, Val);
return AddToList(it8, &GetTable(it8)->HeaderList, cProp, NULL, Buffer, WRITE_UNCOOKED) != NULL;
}
cmsBool CMSEXPORT cmsIT8SetPropertyHex(cmsHANDLE hIT8, const char* cProp, cmsUInt32Number Val)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
char Buffer[1024];
snprintf(Buffer, 1023, "%u", Val);
return AddToList(it8, &GetTable(it8)->HeaderList, cProp, NULL, Buffer, WRITE_HEXADECIMAL) != NULL;
}
cmsBool CMSEXPORT cmsIT8SetPropertyUncooked(cmsHANDLE hIT8, const char* Key, const char* Buffer)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
return AddToList(it8, &GetTable(it8)->HeaderList, Key, NULL, Buffer, WRITE_UNCOOKED) != NULL;
}
cmsBool CMSEXPORT cmsIT8SetPropertyMulti(cmsHANDLE hIT8, const char* Key, const char* SubKey, const char *Buffer)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
return AddToList(it8, &GetTable(it8)->HeaderList, Key, SubKey, Buffer, WRITE_PAIR) != NULL;
}
// Gets a property
const char* CMSEXPORT cmsIT8GetProperty(cmsHANDLE hIT8, const char* Key)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
KEYVALUE* p;
if (IsAvailableOnList(GetTable(it8) -> HeaderList, Key, NULL, &p))
{
return p -> Value;
}
return NULL;
}
cmsFloat64Number CMSEXPORT cmsIT8GetPropertyDbl(cmsHANDLE hIT8, const char* cProp)
{
const char *v = cmsIT8GetProperty(hIT8, cProp);
if (v == NULL) return 0.0;
return ParseFloatNumber(v);
}
const char* CMSEXPORT cmsIT8GetPropertyMulti(cmsHANDLE hIT8, const char* Key, const char *SubKey)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
KEYVALUE* p;
if (IsAvailableOnList(GetTable(it8) -> HeaderList, Key, SubKey, &p)) {
return p -> Value;
}
return NULL;
}
// ----------------------------------------------------------------- Datasets
static
void AllocateDataFormat(cmsIT8* it8)
{
TABLE* t = GetTable(it8);
if (t -> DataFormat) return; // Already allocated
t -> nSamples = (int) cmsIT8GetPropertyDbl(it8, "NUMBER_OF_FIELDS");
if (t -> nSamples <= 0) {
SynError(it8, "AllocateDataFormat: Unknown NUMBER_OF_FIELDS");
t -> nSamples = 10;
}
t -> DataFormat = (char**) AllocChunk (it8, ((cmsUInt32Number) t->nSamples + 1) * sizeof(char *));
if (t->DataFormat == NULL) {
SynError(it8, "AllocateDataFormat: Unable to allocate dataFormat array");
}
}
static
const char *GetDataFormat(cmsIT8* it8, int n)
{
TABLE* t = GetTable(it8);
if (t->DataFormat)
return t->DataFormat[n];
return NULL;
}
static
cmsBool SetDataFormat(cmsIT8* it8, int n, const char *label)
{
TABLE* t = GetTable(it8);
if (!t->DataFormat)
AllocateDataFormat(it8);
if (n > t -> nSamples) {
SynError(it8, "More than NUMBER_OF_FIELDS fields.");
return FALSE;
}
if (t->DataFormat) {
t->DataFormat[n] = AllocString(it8, label);
}
return TRUE;
}
cmsBool CMSEXPORT cmsIT8SetDataFormat(cmsHANDLE h, int n, const char *Sample)
{
cmsIT8* it8 = (cmsIT8*)h;
return SetDataFormat(it8, n, Sample);
}
// A safe atoi that returns 0 when NULL input is given
static
cmsInt32Number satoi(const char* b)
{
if (b == NULL) return 0;
return atoi(b);
}
static
void AllocateDataSet(cmsIT8* it8)
{
TABLE* t = GetTable(it8);
if (t -> Data) return; // Already allocated
t-> nSamples = satoi(cmsIT8GetProperty(it8, "NUMBER_OF_FIELDS"));
t-> nPatches = satoi(cmsIT8GetProperty(it8, "NUMBER_OF_SETS"));
if (t -> nSamples < 0 || t->nSamples > 0x7ffe || t->nPatches < 0 || t->nPatches > 0x7ffe)
{
SynError(it8, "AllocateDataSet: too much data");
}
else {
// Some dumb analizers warns of possible overflow here, just take a look couple of lines above.
t->Data = (char**)AllocChunk(it8, ((cmsUInt32Number)t->nSamples + 1) * ((cmsUInt32Number)t->nPatches + 1) * sizeof(char*));
if (t->Data == NULL) {
SynError(it8, "AllocateDataSet: Unable to allocate data array");
}
}
}
static
char* GetData(cmsIT8* it8, int nSet, int nField)
{
TABLE* t = GetTable(it8);
int nSamples = t -> nSamples;
int nPatches = t -> nPatches;
if (nSet >= nPatches || nField >= nSamples)
return NULL;
if (!t->Data) return NULL;
return t->Data [nSet * nSamples + nField];
}
static
cmsBool SetData(cmsIT8* it8, int nSet, int nField, const char *Val)
{
TABLE* t = GetTable(it8);
if (!t->Data)
AllocateDataSet(it8);
if (!t->Data) return FALSE;
if (nSet > t -> nPatches || nSet < 0) {
return SynError(it8, "Patch %d out of range, there are %d patches", nSet, t -> nPatches);
}
if (nField > t ->nSamples || nField < 0) {
return SynError(it8, "Sample %d out of range, there are %d samples", nField, t ->nSamples);
}
t->Data [nSet * t -> nSamples + nField] = AllocString(it8, Val);
return TRUE;
}
// --------------------------------------------------------------- File I/O
// Writes a string to file
static
void WriteStr(SAVESTREAM* f, const char *str)
{
cmsUInt32Number len;
if (str == NULL)
str = " ";
// Length to write
len = (cmsUInt32Number) strlen(str);
f ->Used += len;
if (f ->stream) { // Should I write it to a file?
if (fwrite(str, 1, len, f->stream) != len) {
cmsSignalError(0, cmsERROR_WRITE, "Write to file error in CGATS parser");
return;
}
}
else { // Or to a memory block?
if (f ->Base) { // Am I just counting the bytes?
if (f ->Used > f ->Max) {
cmsSignalError(0, cmsERROR_WRITE, "Write to memory overflows in CGATS parser");
return;
}
memmove(f ->Ptr, str, len);
f->Ptr += len;
}
}
}
// Write formatted
static
void Writef(SAVESTREAM* f, const char* frm, ...)
{
char Buffer[4096];
va_list args;
va_start(args, frm);
vsnprintf(Buffer, 4095, frm, args);
Buffer[4095] = 0;
WriteStr(f, Buffer);
va_end(args);
}
// Writes full header
static
void WriteHeader(cmsIT8* it8, SAVESTREAM* fp)
{
KEYVALUE* p;
TABLE* t = GetTable(it8);
// Writes the type
WriteStr(fp, t->SheetType);
WriteStr(fp, "\n");
for (p = t->HeaderList; (p != NULL); p = p->Next)
{
if (*p ->Keyword == '#') {
char* Pt;
WriteStr(fp, "#\n# ");
for (Pt = p ->Value; *Pt; Pt++) {
Writef(fp, "%c", *Pt);
if (*Pt == '\n') {
WriteStr(fp, "# ");
}
}
WriteStr(fp, "\n#\n");
continue;
}
if (!IsAvailableOnList(it8-> ValidKeywords, p->Keyword, NULL, NULL)) {
#ifdef CMS_STRICT_CGATS
WriteStr(fp, "KEYWORD\t\"");
WriteStr(fp, p->Keyword);
WriteStr(fp, "\"\n");
#endif
AddAvailableProperty(it8, p->Keyword, WRITE_UNCOOKED);
}
WriteStr(fp, p->Keyword);
if (p->Value) {
switch (p ->WriteAs) {
case WRITE_UNCOOKED:
Writef(fp, "\t%s", p ->Value);
break;
case WRITE_STRINGIFY:
Writef(fp, "\t\"%s\"", p->Value );
break;
case WRITE_HEXADECIMAL:
Writef(fp, "\t0x%X", satoi(p ->Value));
break;
case WRITE_BINARY:
Writef(fp, "\t0x%B", satoi(p ->Value));
break;
case WRITE_PAIR:
Writef(fp, "\t\"%s,%s\"", p->Subkey, p->Value);
break;
default: SynError(it8, "Unknown write mode %d", p ->WriteAs);
return;
}
}
WriteStr (fp, "\n");
}
}
// Writes the data format
static
void WriteDataFormat(SAVESTREAM* fp, cmsIT8* it8)
{
int i, nSamples;
TABLE* t = GetTable(it8);
if (!t -> DataFormat) return;
WriteStr(fp, "BEGIN_DATA_FORMAT\n");
WriteStr(fp, " ");
nSamples = satoi(cmsIT8GetProperty(it8, "NUMBER_OF_FIELDS"));
for (i = 0; i < nSamples; i++) {
WriteStr(fp, t->DataFormat[i]);
WriteStr(fp, ((i == (nSamples-1)) ? "\n" : "\t"));
}
WriteStr (fp, "END_DATA_FORMAT\n");
}
// Writes data array
static
void WriteData(SAVESTREAM* fp, cmsIT8* it8)
{
int i, j;
TABLE* t = GetTable(it8);
if (!t->Data) return;
WriteStr (fp, "BEGIN_DATA\n");
t->nPatches = satoi(cmsIT8GetProperty(it8, "NUMBER_OF_SETS"));
for (i = 0; i < t-> nPatches; i++) {
WriteStr(fp, " ");
for (j = 0; j < t->nSamples; j++) {
char *ptr = t->Data[i*t->nSamples+j];
if (ptr == NULL) WriteStr(fp, "\"\"");
else {
// If value contains whitespace, enclose within quote
if (strchr(ptr, ' ') != NULL) {
WriteStr(fp, "\"");
WriteStr(fp, ptr);
WriteStr(fp, "\"");
}
else
WriteStr(fp, ptr);
}
WriteStr(fp, ((j == (t->nSamples-1)) ? "\n" : "\t"));
}
}
WriteStr (fp, "END_DATA\n");
}
// Saves whole file
cmsBool CMSEXPORT cmsIT8SaveToFile(cmsHANDLE hIT8, const char* cFileName)
{
SAVESTREAM sd;
cmsUInt32Number i;
cmsIT8* it8 = (cmsIT8*) hIT8;
memset(&sd, 0, sizeof(sd));
sd.stream = fopen(cFileName, "wt");
if (!sd.stream) return FALSE;
for (i=0; i < it8 ->TablesCount; i++) {
cmsIT8SetTable(hIT8, i);
WriteHeader(it8, &sd);
WriteDataFormat(&sd, it8);
WriteData(&sd, it8);
}
if (fclose(sd.stream) != 0) return FALSE;
return TRUE;
}
// Saves to memory
cmsBool CMSEXPORT cmsIT8SaveToMem(cmsHANDLE hIT8, void *MemPtr, cmsUInt32Number* BytesNeeded)
{
SAVESTREAM sd;
cmsUInt32Number i;
cmsIT8* it8 = (cmsIT8*) hIT8;
memset(&sd, 0, sizeof(sd));
sd.stream = NULL;
sd.Base = (cmsUInt8Number*) MemPtr;
sd.Ptr = sd.Base;
sd.Used = 0;
if (sd.Base)
sd.Max = *BytesNeeded; // Write to memory?
else
sd.Max = 0; // Just counting the needed bytes
for (i=0; i < it8 ->TablesCount; i++) {
cmsIT8SetTable(hIT8, i);
WriteHeader(it8, &sd);
WriteDataFormat(&sd, it8);
WriteData(&sd, it8);
}
sd.Used++; // The \0 at the very end
if (sd.Base)
*sd.Ptr = 0;
*BytesNeeded = sd.Used;
return TRUE;
}
// -------------------------------------------------------------- Higher level parsing
static
cmsBool DataFormatSection(cmsIT8* it8)
{
int iField = 0;
TABLE* t = GetTable(it8);
InSymbol(it8); // Eats "BEGIN_DATA_FORMAT"
CheckEOLN(it8);
while (it8->sy != SEND_DATA_FORMAT &&
it8->sy != SEOLN &&
it8->sy != SEOF &&
it8->sy != SSYNERROR) {
if (it8->sy != SIDENT) {
return SynError(it8, "Sample type expected");
}
if (!SetDataFormat(it8, iField, it8->id)) return FALSE;
iField++;
InSymbol(it8);
SkipEOLN(it8);
}
SkipEOLN(it8);
Skip(it8, SEND_DATA_FORMAT);
SkipEOLN(it8);
if (iField != t ->nSamples) {
SynError(it8, "Count mismatch. NUMBER_OF_FIELDS was %d, found %d\n", t ->nSamples, iField);
}
return TRUE;
}
static
cmsBool DataSection (cmsIT8* it8)
{
int iField = 0;
int iSet = 0;
char Buffer[256];
TABLE* t = GetTable(it8);
InSymbol(it8); // Eats "BEGIN_DATA"
CheckEOLN(it8);
if (!t->Data)
AllocateDataSet(it8);
while (it8->sy != SEND_DATA && it8->sy != SEOF)
{
if (iField >= t -> nSamples) {
iField = 0;
iSet++;
}
if (it8->sy != SEND_DATA && it8->sy != SEOF) {
if (!GetVal(it8, Buffer, 255, "Sample data expected"))
return FALSE;
if (!SetData(it8, iSet, iField, Buffer))
return FALSE;
iField++;
InSymbol(it8);
SkipEOLN(it8);
}
}
SkipEOLN(it8);
Skip(it8, SEND_DATA);
SkipEOLN(it8);
// Check for data completion.
if ((iSet+1) != t -> nPatches)
return SynError(it8, "Count mismatch. NUMBER_OF_SETS was %d, found %d\n", t ->nPatches, iSet+1);
return TRUE;
}
static
cmsBool HeaderSection(cmsIT8* it8)
{
char VarName[MAXID];
char Buffer[MAXSTR];
KEYVALUE* Key;
while (it8->sy != SEOF &&
it8->sy != SSYNERROR &&
it8->sy != SBEGIN_DATA_FORMAT &&
it8->sy != SBEGIN_DATA) {
switch (it8 -> sy) {
case SKEYWORD:
InSymbol(it8);
if (!GetVal(it8, Buffer, MAXSTR-1, "Keyword expected")) return FALSE;
if (!AddAvailableProperty(it8, Buffer, WRITE_UNCOOKED)) return FALSE;
InSymbol(it8);
break;
case SDATA_FORMAT_ID:
InSymbol(it8);
if (!GetVal(it8, Buffer, MAXSTR-1, "Keyword expected")) return FALSE;
if (!AddAvailableSampleID(it8, Buffer)) return FALSE;
InSymbol(it8);
break;
case SIDENT:
strncpy(VarName, it8->id, MAXID - 1);
VarName[MAXID - 1] = 0;
if (!IsAvailableOnList(it8->ValidKeywords, VarName, NULL, &Key)) {
#ifdef CMS_STRICT_CGATS
return SynError(it8, "Undefined keyword '%s'", VarName);
#else
Key = AddAvailableProperty(it8, VarName, WRITE_UNCOOKED);
if (Key == NULL) return FALSE;
#endif
}
InSymbol(it8);
if (!GetVal(it8, Buffer, MAXSTR - 1, "Property data expected")) return FALSE;
if (Key->WriteAs != WRITE_PAIR) {
AddToList(it8, &GetTable(it8)->HeaderList, VarName, NULL, Buffer,
(it8->sy == SSTRING) ? WRITE_STRINGIFY : WRITE_UNCOOKED);
}
else {
const char *Subkey;
char *Nextkey;
if (it8->sy != SSTRING)
return SynError(it8, "Invalid value '%s' for property '%s'.", Buffer, VarName);
// chop the string as a list of "subkey, value" pairs, using ';' as a separator
for (Subkey = Buffer; Subkey != NULL; Subkey = Nextkey)
{
char *Value, *temp;
// identify token pair boundary
Nextkey = (char*)strchr(Subkey, ';');
if (Nextkey)
*Nextkey++ = '\0';
// for each pair, split the subkey and the value
Value = (char*)strrchr(Subkey, ',');
if (Value == NULL)
return SynError(it8, "Invalid value for property '%s'.", VarName);
// gobble the spaces before the coma, and the coma itself
temp = Value++;
do *temp-- = '\0'; while (temp >= Subkey && *temp == ' ');
// gobble any space at the right
temp = Value + strlen(Value) - 1;
while (*temp == ' ') *temp-- = '\0';
// trim the strings from the left
Subkey += strspn(Subkey, " ");
Value += strspn(Value, " ");
if (Subkey[0] == 0 || Value[0] == 0)
return SynError(it8, "Invalid value for property '%s'.", VarName);
AddToList(it8, &GetTable(it8)->HeaderList, VarName, Subkey, Value, WRITE_PAIR);
}
}
InSymbol(it8);
break;
case SEOLN: break;
default:
return SynError(it8, "expected keyword or identifier");
}
SkipEOLN(it8);
}
return TRUE;
}
static
void ReadType(cmsIT8* it8, char* SheetTypePtr)
{
cmsInt32Number cnt = 0;
// First line is a very special case.
while (isseparator(it8->ch))
NextCh(it8);
while (it8->ch != '\r' && it8 ->ch != '\n' && it8->ch != '\t' && it8 -> ch != 0) {
if (cnt++ < MAXSTR)
*SheetTypePtr++= (char) it8 ->ch;
NextCh(it8);
}
*SheetTypePtr = 0;
}
static
cmsBool ParseIT8(cmsIT8* it8, cmsBool nosheet)
{
char* SheetTypePtr = it8 ->Tab[0].SheetType;
if (nosheet == 0) {
ReadType(it8, SheetTypePtr);
}
InSymbol(it8);
SkipEOLN(it8);
while (it8-> sy != SEOF &&
it8-> sy != SSYNERROR) {
switch (it8 -> sy) {
case SBEGIN_DATA_FORMAT:
if (!DataFormatSection(it8)) return FALSE;
break;
case SBEGIN_DATA:
if (!DataSection(it8)) return FALSE;
if (it8 -> sy != SEOF) {
AllocTable(it8);
it8 ->nTable = it8 ->TablesCount - 1;
// Read sheet type if present. We only support identifier and string.
// <ident> <eoln> is a type string
// anything else, is not a type string
if (nosheet == 0) {
if (it8 ->sy == SIDENT) {
// May be a type sheet or may be a prop value statement. We cannot use insymbol in
// this special case...
while (isseparator(it8->ch))
NextCh(it8);
// If a newline is found, then this is a type string
if (it8 ->ch == '\n' || it8->ch == '\r') {
cmsIT8SetSheetType(it8, it8 ->id);
InSymbol(it8);
}
else
{
// It is not. Just continue
cmsIT8SetSheetType(it8, "");
}
}
else
// Validate quoted strings
if (it8 ->sy == SSTRING) {
cmsIT8SetSheetType(it8, it8 ->str);
InSymbol(it8);
}
}
}
break;
case SEOLN:
SkipEOLN(it8);
break;
default:
if (!HeaderSection(it8)) return FALSE;
}
}
return (it8 -> sy != SSYNERROR);
}
// Init useful pointers
static
void CookPointers(cmsIT8* it8)
{
int idField, i;
char* Fld;
cmsUInt32Number j;
cmsUInt32Number nOldTable = it8 ->nTable;
for (j=0; j < it8 ->TablesCount; j++) {
TABLE* t = it8 ->Tab + j;
t -> SampleID = 0;
it8 ->nTable = j;
for (idField = 0; idField < t -> nSamples; idField++)
{
if (t ->DataFormat == NULL){
SynError(it8, "Undefined DATA_FORMAT");
return;
}
Fld = t->DataFormat[idField];
if (!Fld) continue;
if (cmsstrcasecmp(Fld, "SAMPLE_ID") == 0) {
t -> SampleID = idField;
}
// "LABEL" is an extension. It keeps references to forward tables
if ((cmsstrcasecmp(Fld, "LABEL") == 0) || Fld[0] == '$') {
// Search for table references...
for (i = 0; i < t->nPatches; i++) {
char* Label = GetData(it8, i, idField);
if (Label) {
cmsUInt32Number k;
// This is the label, search for a table containing
// this property
for (k = 0; k < it8->TablesCount; k++) {
TABLE* Table = it8->Tab + k;
KEYVALUE* p;
if (IsAvailableOnList(Table->HeaderList, Label, NULL, &p)) {
// Available, keep type and table
char Buffer[256];
char* Type = p->Value;
int nTable = (int)k;
snprintf(Buffer, 255, "%s %d %s", Label, nTable, Type);
SetData(it8, i, idField, Buffer);
}
}
}
}
}
}
}
it8 ->nTable = nOldTable;
}
// Try to infere if the file is a CGATS/IT8 file at all. Read first line
// that should be something like some printable characters plus a \n
// returns 0 if this is not like a CGATS, or an integer otherwise. This integer is the number of words in first line?
static
int IsMyBlock(const cmsUInt8Number* Buffer, cmsUInt32Number n)
{
int words = 1, space = 0, quot = 0;
cmsUInt32Number i;
if (n < 10) return 0; // Too small
if (n > 132)
n = 132;
for (i = 1; i < n; i++) {
switch(Buffer[i])
{
case '\n':
case '\r':
return ((quot == 1) || (words > 2)) ? 0 : words;
case '\t':
case ' ':
if(!quot && !space)
space = 1;
break;
case '\"':
quot = !quot;
break;
default:
if (Buffer[i] < 32) return 0;
if (Buffer[i] > 127) return 0;
words += space;
space = 0;
break;
}
}
return 0;
}
static
cmsBool IsMyFile(const char* FileName)
{
FILE *fp;
cmsUInt32Number Size;
cmsUInt8Number Ptr[133];
fp = fopen(FileName, "rt");
if (!fp) {
cmsSignalError(0, cmsERROR_FILE, "File '%s' not found", FileName);
return FALSE;
}
Size = (cmsUInt32Number) fread(Ptr, 1, 132, fp);
if (fclose(fp) != 0)
return FALSE;
Ptr[Size] = '\0';
return IsMyBlock(Ptr, Size);
}
// ---------------------------------------------------------- Exported routines
cmsHANDLE CMSEXPORT cmsIT8LoadFromMem(cmsContext ContextID, const void *Ptr, cmsUInt32Number len)
{
cmsHANDLE hIT8;
cmsIT8* it8;
int type;
_cmsAssert(Ptr != NULL);
_cmsAssert(len != 0);
type = IsMyBlock((const cmsUInt8Number*)Ptr, len);
if (type == 0) return NULL;
hIT8 = cmsIT8Alloc(ContextID);
if (!hIT8) return NULL;
it8 = (cmsIT8*) hIT8;
it8 ->MemoryBlock = (char*) _cmsMalloc(ContextID, len + 1);
if (it8->MemoryBlock == NULL)
{
cmsIT8Free(hIT8);
return FALSE;
}
strncpy(it8 ->MemoryBlock, (const char*) Ptr, len);
it8 ->MemoryBlock[len] = 0;
strncpy(it8->FileStack[0]->FileName, "", cmsMAX_PATH-1);
it8-> Source = it8 -> MemoryBlock;
if (!ParseIT8(it8, type-1)) {
cmsIT8Free(hIT8);
return FALSE;
}
CookPointers(it8);
it8 ->nTable = 0;
_cmsFree(ContextID, it8->MemoryBlock);
it8 -> MemoryBlock = NULL;
return hIT8;
}
cmsHANDLE CMSEXPORT cmsIT8LoadFromFile(cmsContext ContextID, const char* cFileName)
{
cmsHANDLE hIT8;
cmsIT8* it8;
int type;
_cmsAssert(cFileName != NULL);
type = IsMyFile(cFileName);
if (type == 0) return NULL;
hIT8 = cmsIT8Alloc(ContextID);
it8 = (cmsIT8*) hIT8;
if (!hIT8) return NULL;
it8 ->FileStack[0]->Stream = fopen(cFileName, "rt");
if (!it8 ->FileStack[0]->Stream) {
cmsIT8Free(hIT8);
return NULL;
}
strncpy(it8->FileStack[0]->FileName, cFileName, cmsMAX_PATH-1);
it8->FileStack[0]->FileName[cmsMAX_PATH-1] = 0;
if (!ParseIT8(it8, type-1)) {
fclose(it8 ->FileStack[0]->Stream);
cmsIT8Free(hIT8);
return NULL;
}
CookPointers(it8);
it8 ->nTable = 0;
if (fclose(it8 ->FileStack[0]->Stream)!= 0) {
cmsIT8Free(hIT8);
return NULL;
}
return hIT8;
}
int CMSEXPORT cmsIT8EnumDataFormat(cmsHANDLE hIT8, char ***SampleNames)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
TABLE* t;
_cmsAssert(hIT8 != NULL);
t = GetTable(it8);
if (SampleNames)
*SampleNames = t -> DataFormat;
return t -> nSamples;
}
cmsUInt32Number CMSEXPORT cmsIT8EnumProperties(cmsHANDLE hIT8, char ***PropertyNames)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
KEYVALUE* p;
cmsUInt32Number n;
char **Props;
TABLE* t;
_cmsAssert(hIT8 != NULL);
t = GetTable(it8);
// Pass#1 - count properties
n = 0;
for (p = t -> HeaderList; p != NULL; p = p->Next) {
n++;
}
Props = (char **) AllocChunk(it8, sizeof(char *) * n);
// Pass#2 - Fill pointers
n = 0;
for (p = t -> HeaderList; p != NULL; p = p->Next) {
Props[n++] = p -> Keyword;
}
*PropertyNames = Props;
return n;
}
cmsUInt32Number CMSEXPORT cmsIT8EnumPropertyMulti(cmsHANDLE hIT8, const char* cProp, const char ***SubpropertyNames)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
KEYVALUE *p, *tmp;
cmsUInt32Number n;
const char **Props;
TABLE* t;
_cmsAssert(hIT8 != NULL);
t = GetTable(it8);
if(!IsAvailableOnList(t->HeaderList, cProp, NULL, &p)) {
*SubpropertyNames = 0;
return 0;
}
// Pass#1 - count properties
n = 0;
for (tmp = p; tmp != NULL; tmp = tmp->NextSubkey) {
if(tmp->Subkey != NULL)
n++;
}
Props = (const char **) AllocChunk(it8, sizeof(char *) * n);
// Pass#2 - Fill pointers
n = 0;
for (tmp = p; tmp != NULL; tmp = tmp->NextSubkey) {
if(tmp->Subkey != NULL)
Props[n++] = p ->Subkey;
}
*SubpropertyNames = Props;
return n;
}
static
int LocatePatch(cmsIT8* it8, const char* cPatch)
{
int i;
const char *data;
TABLE* t = GetTable(it8);
for (i=0; i < t-> nPatches; i++) {
data = GetData(it8, i, t->SampleID);
if (data != NULL) {
if (cmsstrcasecmp(data, cPatch) == 0)
return i;
}
}
// SynError(it8, "Couldn't find patch '%s'\n", cPatch);
return -1;
}
static
int LocateEmptyPatch(cmsIT8* it8)
{
int i;
const char *data;
TABLE* t = GetTable(it8);
for (i=0; i < t-> nPatches; i++) {
data = GetData(it8, i, t->SampleID);
if (data == NULL)
return i;
}
return -1;
}
static
int LocateSample(cmsIT8* it8, const char* cSample)
{
int i;
const char *fld;
TABLE* t = GetTable(it8);
for (i=0; i < t->nSamples; i++) {
fld = GetDataFormat(it8, i);
if (fld != NULL) {
if (cmsstrcasecmp(fld, cSample) == 0)
return i;
}
}
return -1;
}
int CMSEXPORT cmsIT8FindDataFormat(cmsHANDLE hIT8, const char* cSample)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
_cmsAssert(hIT8 != NULL);
return LocateSample(it8, cSample);
}
const char* CMSEXPORT cmsIT8GetDataRowCol(cmsHANDLE hIT8, int row, int col)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
_cmsAssert(hIT8 != NULL);
return GetData(it8, row, col);
}
cmsFloat64Number CMSEXPORT cmsIT8GetDataRowColDbl(cmsHANDLE hIT8, int row, int col)
{
const char* Buffer;
Buffer = cmsIT8GetDataRowCol(hIT8, row, col);
if (Buffer == NULL) return 0.0;
return ParseFloatNumber(Buffer);
}
cmsBool CMSEXPORT cmsIT8SetDataRowCol(cmsHANDLE hIT8, int row, int col, const char* Val)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
_cmsAssert(hIT8 != NULL);
return SetData(it8, row, col, Val);
}
cmsBool CMSEXPORT cmsIT8SetDataRowColDbl(cmsHANDLE hIT8, int row, int col, cmsFloat64Number Val)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
char Buff[256];
_cmsAssert(hIT8 != NULL);
snprintf(Buff, 255, it8->DoubleFormatter, Val);
return SetData(it8, row, col, Buff);
}
const char* CMSEXPORT cmsIT8GetData(cmsHANDLE hIT8, const char* cPatch, const char* cSample)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
int iField, iSet;
_cmsAssert(hIT8 != NULL);
iField = LocateSample(it8, cSample);
if (iField < 0) {
return NULL;
}
iSet = LocatePatch(it8, cPatch);
if (iSet < 0) {
return NULL;
}
return GetData(it8, iSet, iField);
}
cmsFloat64Number CMSEXPORT cmsIT8GetDataDbl(cmsHANDLE it8, const char* cPatch, const char* cSample)
{
const char* Buffer;
Buffer = cmsIT8GetData(it8, cPatch, cSample);
return ParseFloatNumber(Buffer);
}
cmsBool CMSEXPORT cmsIT8SetData(cmsHANDLE hIT8, const char* cPatch, const char* cSample, const char *Val)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
int iField, iSet;
TABLE* t;
_cmsAssert(hIT8 != NULL);
t = GetTable(it8);
iField = LocateSample(it8, cSample);
if (iField < 0)
return FALSE;
if (t-> nPatches == 0) {
AllocateDataFormat(it8);
AllocateDataSet(it8);
CookPointers(it8);
}
if (cmsstrcasecmp(cSample, "SAMPLE_ID") == 0) {
iSet = LocateEmptyPatch(it8);
if (iSet < 0) {
return SynError(it8, "Couldn't add more patches '%s'\n", cPatch);
}
iField = t -> SampleID;
}
else {
iSet = LocatePatch(it8, cPatch);
if (iSet < 0) {
return FALSE;
}
}
return SetData(it8, iSet, iField, Val);
}
cmsBool CMSEXPORT cmsIT8SetDataDbl(cmsHANDLE hIT8, const char* cPatch,
const char* cSample,
cmsFloat64Number Val)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
char Buff[256];
_cmsAssert(hIT8 != NULL);
snprintf(Buff, 255, it8->DoubleFormatter, Val);
return cmsIT8SetData(hIT8, cPatch, cSample, Buff);
}
// Buffer should get MAXSTR at least
const char* CMSEXPORT cmsIT8GetPatchName(cmsHANDLE hIT8, int nPatch, char* buffer)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
TABLE* t;
char* Data;
_cmsAssert(hIT8 != NULL);
t = GetTable(it8);
Data = GetData(it8, nPatch, t->SampleID);
if (!Data) return NULL;
if (!buffer) return Data;
strncpy(buffer, Data, MAXSTR-1);
buffer[MAXSTR-1] = 0;
return buffer;
}
int CMSEXPORT cmsIT8GetPatchByName(cmsHANDLE hIT8, const char *cPatch)
{
_cmsAssert(hIT8 != NULL);
return LocatePatch((cmsIT8*)hIT8, cPatch);
}
cmsUInt32Number CMSEXPORT cmsIT8TableCount(cmsHANDLE hIT8)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
_cmsAssert(hIT8 != NULL);
return it8 ->TablesCount;
}
// This handles the "LABEL" extension.
// Label, nTable, Type
int CMSEXPORT cmsIT8SetTableByLabel(cmsHANDLE hIT8, const char* cSet, const char* cField, const char* ExpectedType)
{
const char* cLabelFld;
char Type[256], Label[256];
cmsUInt32Number nTable;
_cmsAssert(hIT8 != NULL);
if (cField != NULL && *cField == 0)
cField = "LABEL";
if (cField == NULL)
cField = "LABEL";
cLabelFld = cmsIT8GetData(hIT8, cSet, cField);
if (!cLabelFld) return -1;
if (sscanf(cLabelFld, "%255s %u %255s", Label, &nTable, Type) != 3)
return -1;
if (ExpectedType != NULL && *ExpectedType == 0)
ExpectedType = NULL;
if (ExpectedType) {
if (cmsstrcasecmp(Type, ExpectedType) != 0) return -1;
}
return cmsIT8SetTable(hIT8, nTable);
}
cmsBool CMSEXPORT cmsIT8SetIndexColumn(cmsHANDLE hIT8, const char* cSample)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
int pos;
_cmsAssert(hIT8 != NULL);
pos = LocateSample(it8, cSample);
if(pos == -1)
return FALSE;
it8->Tab[it8->nTable].SampleID = pos;
return TRUE;
}
void CMSEXPORT cmsIT8DefineDblFormat(cmsHANDLE hIT8, const char* Formatter)
{
cmsIT8* it8 = (cmsIT8*) hIT8;
_cmsAssert(hIT8 != NULL);
if (Formatter == NULL)
strcpy(it8->DoubleFormatter, DEFAULT_DBL_FORMAT);
else
strncpy(it8->DoubleFormatter, Formatter, sizeof(it8->DoubleFormatter));
it8 ->DoubleFormatter[sizeof(it8 ->DoubleFormatter)-1] = 0;
}