| // Copyright 2019 The PDFium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com |
| |
| #include "core/fpdfapi/render/cpdf_rendershading.h" |
| |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <array> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "core/fpdfapi/page/cpdf_colorspace.h" |
| #include "core/fpdfapi/page/cpdf_dib.h" |
| #include "core/fpdfapi/page/cpdf_function.h" |
| #include "core/fpdfapi/page/cpdf_meshstream.h" |
| #include "core/fpdfapi/parser/cpdf_array.h" |
| #include "core/fpdfapi/parser/cpdf_dictionary.h" |
| #include "core/fpdfapi/parser/cpdf_stream.h" |
| #include "core/fpdfapi/parser/fpdf_parser_utility.h" |
| #include "core/fpdfapi/render/cpdf_devicebuffer.h" |
| #include "core/fpdfapi/render/cpdf_renderoptions.h" |
| #include "core/fxcrt/check.h" |
| #include "core/fxcrt/check_op.h" |
| #include "core/fxcrt/compiler_specific.h" |
| #include "core/fxcrt/fx_safe_types.h" |
| #include "core/fxcrt/fx_system.h" |
| #include "core/fxcrt/numerics/clamped_math.h" |
| #include "core/fxcrt/span.h" |
| #include "core/fxcrt/span_util.h" |
| #include "core/fxcrt/stl_util.h" |
| #include "core/fxcrt/unowned_ptr.h" |
| #include "core/fxge/cfx_defaultrenderdevice.h" |
| #include "core/fxge/cfx_fillrenderoptions.h" |
| #include "core/fxge/cfx_path.h" |
| #include "core/fxge/dib/cfx_dibitmap.h" |
| #include "core/fxge/dib/fx_dib.h" |
| |
| namespace { |
| |
| constexpr int kShadingSteps = 256; |
| |
| uint32_t CountOutputsFromFunctions( |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs) { |
| FX_SAFE_UINT32 total = 0; |
| for (const auto& func : funcs) { |
| if (func) { |
| total += func->OutputCount(); |
| } |
| } |
| return total.ValueOrDefault(0); |
| } |
| |
| uint32_t GetValidatedOutputsCount( |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS) { |
| uint32_t funcs_outputs = CountOutputsFromFunctions(funcs); |
| return funcs_outputs ? std::max(funcs_outputs, pCS->ComponentCount()) : 0; |
| } |
| |
| bool GetShadingSteps(float t_min, |
| float t_max, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha, |
| std::array<FX_ARGB, kShadingSteps>* output) { |
| const uint32_t results_count = GetValidatedOutputsCount(funcs, pCS); |
| if (results_count == 0) { |
| return false; |
| } |
| |
| CHECK_GE(results_count, CountOutputsFromFunctions(funcs)); |
| CHECK_GE(results_count, pCS->ComponentCount()); |
| std::array<FX_ARGB, kShadingSteps>& shading_steps = *output; |
| std::vector<float> result_array(results_count); |
| float diff = t_max - t_min; |
| for (int i = 0; i < kShadingSteps; ++i) { |
| float input = diff * i / kShadingSteps + t_min; |
| pdfium::span<float> result_span = pdfium::span(result_array); |
| for (const auto& func : funcs) { |
| if (!func) { |
| continue; |
| } |
| std::optional<uint32_t> nresults = |
| func->Call(pdfium::span_from_ref(input), result_span); |
| if (nresults.has_value()) { |
| result_span = result_span.subspan(nresults.value()); |
| } |
| } |
| auto rgb = pCS->GetRGBOrZerosOnError(result_array); |
| shading_steps[i] = |
| ArgbEncode(alpha, FXSYS_roundf(rgb.red * 255), |
| FXSYS_roundf(rgb.green * 255), FXSYS_roundf(rgb.blue * 255)); |
| } |
| return true; |
| } |
| |
| float ComponentToShadingIndex(float c, float c_min, float c_max) { |
| if (c_min == c_max) { |
| return 0; |
| } |
| return ((c - c_min) / (c_max - c_min)) * (kShadingSteps - 1); |
| } |
| |
| void DrawAxialShading(const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Dictionary* dict, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha) { |
| DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra); |
| |
| RetainPtr<const CPDF_Array> pCoords = dict->GetArrayFor("Coords"); |
| if (!pCoords) { |
| return; |
| } |
| |
| float start_x = pCoords->GetFloatAt(0); |
| float start_y = pCoords->GetFloatAt(1); |
| float end_x = pCoords->GetFloatAt(2); |
| float end_y = pCoords->GetFloatAt(3); |
| float t_min = 0; |
| float t_max = 1.0f; |
| RetainPtr<const CPDF_Array> pArray = dict->GetArrayFor("Domain"); |
| if (pArray) { |
| t_min = pArray->GetFloatAt(0); |
| t_max = pArray->GetFloatAt(1); |
| } |
| pArray = dict->GetArrayFor("Extend"); |
| const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false); |
| const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false); |
| |
| int width = pBitmap->GetWidth(); |
| int height = pBitmap->GetHeight(); |
| float x_span = end_x - start_x; |
| float y_span = end_y - start_y; |
| float axis_len_square = (x_span * x_span) + (y_span * y_span); |
| |
| std::array<FX_ARGB, kShadingSteps> shading_steps; |
| if (!GetShadingSteps(t_min, t_max, funcs, pCS, alpha, &shading_steps)) { |
| return; |
| } |
| |
| CFX_Matrix matrix = mtObject2Bitmap.GetInverse(); |
| for (int row = 0; row < height; row++) { |
| auto dest_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row).first( |
| static_cast<size_t>(width)); |
| size_t column_counter = 0; |
| for (auto& pix : dest_buf) { |
| const float column = static_cast<float>(column_counter++); |
| const CFX_PointF pos = |
| matrix.Transform(CFX_PointF(column, static_cast<float>(row))); |
| float scale = |
| (((pos.x - start_x) * x_span) + ((pos.y - start_y) * y_span)) / |
| axis_len_square; |
| int index = static_cast<int32_t>(scale * (kShadingSteps - 1)); |
| if (index < 0) { |
| if (!bStartExtend) { |
| continue; |
| } |
| index = 0; |
| } else if (index >= kShadingSteps) { |
| if (!bEndExtend) { |
| continue; |
| } |
| index = kShadingSteps - 1; |
| } |
| pix = shading_steps[index]; |
| } |
| } |
| } |
| |
| void DrawRadialShading(const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Dictionary* dict, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha) { |
| DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra); |
| |
| RetainPtr<const CPDF_Array> pCoords = dict->GetArrayFor("Coords"); |
| if (!pCoords) { |
| return; |
| } |
| |
| float start_x = pCoords->GetFloatAt(0); |
| float start_y = pCoords->GetFloatAt(1); |
| float start_r = pCoords->GetFloatAt(2); |
| float end_x = pCoords->GetFloatAt(3); |
| float end_y = pCoords->GetFloatAt(4); |
| float end_r = pCoords->GetFloatAt(5); |
| float t_min = 0; |
| float t_max = 1.0f; |
| RetainPtr<const CPDF_Array> pArray = dict->GetArrayFor("Domain"); |
| if (pArray) { |
| t_min = pArray->GetFloatAt(0); |
| t_max = pArray->GetFloatAt(1); |
| } |
| pArray = dict->GetArrayFor("Extend"); |
| const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false); |
| const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false); |
| |
| std::array<FX_ARGB, kShadingSteps> shading_steps; |
| if (!GetShadingSteps(t_min, t_max, funcs, pCS, alpha, &shading_steps)) { |
| return; |
| } |
| |
| const float dx = end_x - start_x; |
| const float dy = end_y - start_y; |
| const float dr = end_r - start_r; |
| const float a = dx * dx + dy * dy - dr * dr; |
| const bool a_is_float_zero = FXSYS_IsFloatZero(a); |
| |
| int width = pBitmap->GetWidth(); |
| int height = pBitmap->GetHeight(); |
| bool bDecreasing = dr < 0 && static_cast<int>(hypotf(dx, dy)) < -dr; |
| |
| CFX_Matrix matrix = mtObject2Bitmap.GetInverse(); |
| for (int row = 0; row < height; row++) { |
| auto dest_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row).first( |
| static_cast<size_t>(width)); |
| size_t column_counter = 0; |
| for (auto& pix : dest_buf) { |
| const float column = static_cast<float>(column_counter++); |
| const CFX_PointF pos = |
| matrix.Transform(CFX_PointF(column, static_cast<float>(row))); |
| float pos_dx = pos.x - start_x; |
| float pos_dy = pos.y - start_y; |
| float b = -2 * (pos_dx * dx + pos_dy * dy + start_r * dr); |
| float c = pos_dx * pos_dx + pos_dy * pos_dy - start_r * start_r; |
| float s; |
| if (FXSYS_IsFloatZero(b)) { |
| s = sqrt(-c / a); |
| } else if (a_is_float_zero) { |
| s = -c / b; |
| } else { |
| float b2_4ac = (b * b) - 4 * (a * c); |
| if (b2_4ac < 0) { |
| continue; |
| } |
| float root = sqrt(b2_4ac); |
| float s1 = (-b - root) / (2 * a); |
| float s2 = (-b + root) / (2 * a); |
| if (a <= 0) { |
| std::swap(s1, s2); |
| } |
| if (bDecreasing) { |
| s = (s1 >= 0 || bStartExtend) ? s1 : s2; |
| } else { |
| s = (s2 <= 1.0f || bEndExtend) ? s2 : s1; |
| } |
| if (start_r + s * dr < 0) { |
| continue; |
| } |
| } |
| int index = static_cast<int32_t>(s * (kShadingSteps - 1)); |
| if (index < 0) { |
| if (!bStartExtend) { |
| continue; |
| } |
| index = 0; |
| } else if (index >= kShadingSteps) { |
| if (!bEndExtend) { |
| continue; |
| } |
| index = kShadingSteps - 1; |
| } |
| pix = shading_steps[index]; |
| } |
| } |
| } |
| |
| void DrawFuncShading(const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Dictionary* dict, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha) { |
| DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra); |
| |
| const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS); |
| if (total_results == 0) { |
| return; |
| } |
| |
| RetainPtr<const CPDF_Array> pDomain = dict->GetArrayFor("Domain"); |
| float xmin = 0.0f; |
| float ymin = 0.0f; |
| float xmax = 1.0f; |
| float ymax = 1.0f; |
| if (pDomain) { |
| xmin = pDomain->GetFloatAt(0); |
| xmax = pDomain->GetFloatAt(1); |
| ymin = pDomain->GetFloatAt(2); |
| ymax = pDomain->GetFloatAt(3); |
| } |
| CFX_Matrix mtDomain2Target = dict->GetMatrixFor("Matrix"); |
| CFX_Matrix matrix = |
| mtObject2Bitmap.GetInverse() * mtDomain2Target.GetInverse(); |
| int width = pBitmap->GetWidth(); |
| int height = pBitmap->GetHeight(); |
| |
| CHECK_GE(total_results, CountOutputsFromFunctions(funcs)); |
| CHECK_GE(total_results, pCS->ComponentCount()); |
| std::vector<float> result_array(total_results); |
| for (int row = 0; row < height; ++row) { |
| auto dib_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row); |
| for (int column = 0; column < width; column++) { |
| CFX_PointF pos = matrix.Transform( |
| CFX_PointF(static_cast<float>(column), static_cast<float>(row))); |
| if (pos.x < xmin || pos.x > xmax || pos.y < ymin || pos.y > ymax) { |
| continue; |
| } |
| |
| float input[2] = {pos.x, pos.y}; |
| pdfium::span<float> result_span = pdfium::span(result_array); |
| for (const auto& func : funcs) { |
| if (!func) { |
| continue; |
| } |
| std::optional<uint32_t> nresults = func->Call(input, result_span); |
| if (nresults.has_value()) { |
| result_span = result_span.subspan(nresults.value()); |
| } |
| } |
| auto rgb = pCS->GetRGBOrZerosOnError(result_array); |
| dib_buf[column] = ArgbEncode(alpha, static_cast<int32_t>(rgb.red * 255), |
| static_cast<int32_t>(rgb.green * 255), |
| static_cast<int32_t>(rgb.blue * 255)); |
| } |
| } |
| } |
| |
| bool GetScanlineIntersect(int y, |
| const CFX_PointF& first, |
| const CFX_PointF& second, |
| float* x) { |
| if (first.y == second.y) { |
| return false; |
| } |
| |
| if (first.y < second.y) { |
| if (y < first.y || y > second.y) { |
| return false; |
| } |
| } else if (y < second.y || y > first.y) { |
| return false; |
| } |
| *x = first.x + ((second.x - first.x) * (y - first.y) / (second.y - first.y)); |
| return true; |
| } |
| |
| void DrawGouraud(const RetainPtr<CFX_DIBitmap>& pBitmap, |
| int alpha, |
| pdfium::span<CPDF_MeshVertex, 3> triangle, |
| const std::array<FX_ARGB, kShadingSteps>* shading_steps) { |
| float min_y = triangle[0].position.y; |
| float max_y = triangle[0].position.y; |
| for (int i = 1; i < 3; i++) { |
| min_y = std::min(min_y, triangle[i].position.y); |
| max_y = std::max(max_y, triangle[i].position.y); |
| } |
| if (min_y == max_y) { |
| return; |
| } |
| |
| int min_yi = std::max(static_cast<int>(floorf(min_y)), 0); |
| int max_yi = static_cast<int>(ceilf(max_y)); |
| if (max_yi >= pBitmap->GetHeight()) { |
| max_yi = pBitmap->GetHeight() - 1; |
| } |
| |
| for (int y = min_yi; y <= max_yi; y++) { |
| int nIntersects = 0; |
| std::array<float, 3> inter_x; |
| std::array<float, 3> r; |
| std::array<float, 3> g; |
| std::array<float, 3> b; |
| for (int i = 0; i < 3; i++) { |
| const CPDF_MeshVertex& vertex1 = triangle[i]; |
| const CPDF_MeshVertex& vertex2 = triangle[(i + 1) % 3]; |
| const CFX_PointF& position1 = vertex1.position; |
| const CFX_PointF& position2 = vertex2.position; |
| bool bIntersect = |
| GetScanlineIntersect(y, position1, position2, &inter_x[nIntersects]); |
| if (!bIntersect) { |
| continue; |
| } |
| |
| float y_dist = (y - position1.y) / (position2.y - position1.y); |
| r[nIntersects] = |
| vertex1.rgb.red + ((vertex2.rgb.red - vertex1.rgb.red) * y_dist); |
| g[nIntersects] = vertex1.rgb.green + |
| ((vertex2.rgb.green - vertex1.rgb.green) * y_dist); |
| b[nIntersects] = |
| vertex1.rgb.blue + ((vertex2.rgb.blue - vertex1.rgb.blue) * y_dist); |
| nIntersects++; |
| } |
| if (nIntersects != 2) { |
| continue; |
| } |
| |
| int min_x; |
| int max_x; |
| int start_index; |
| int end_index; |
| if (inter_x[0] < inter_x[1]) { |
| min_x = static_cast<int>(floorf(inter_x[0])); |
| max_x = static_cast<int>(ceilf(inter_x[1])); |
| start_index = 0; |
| end_index = 1; |
| } else { |
| min_x = static_cast<int>(floorf(inter_x[1])); |
| max_x = static_cast<int>(ceilf(inter_x[0])); |
| start_index = 1; |
| end_index = 0; |
| } |
| |
| int start_x = std::clamp(min_x, 0, pBitmap->GetWidth()); |
| int end_x = std::clamp(max_x, 0, pBitmap->GetWidth()); |
| const int range_x = pdfium::ClampSub(max_x, min_x); |
| float r_unit = (r[end_index] - r[start_index]) / range_x; |
| float g_unit = (g[end_index] - g[start_index]) / range_x; |
| float b_unit = (b[end_index] - b[start_index]) / range_x; |
| const int diff_x = pdfium::ClampSub(start_x, min_x); |
| float r_result = r[start_index] + diff_x * r_unit; |
| float g_result = g[start_index] + diff_x * g_unit; |
| float b_result = b[start_index] + diff_x * b_unit; |
| auto dib_span = pBitmap->GetWritableScanlineAs<FX_ARGB>(y).subspan( |
| static_cast<size_t>(start_x)); |
| |
| for (int x = start_x; x < end_x; x++) { |
| r_result += r_unit; |
| if (shading_steps) { |
| int index = static_cast<int32_t>(r_result); |
| if (index < 0) { |
| index = 0; |
| } else if (index >= kShadingSteps) { |
| index = kShadingSteps - 1; |
| } |
| dib_span.front() = (*shading_steps)[index]; |
| } else { |
| g_result += g_unit; |
| b_result += b_unit; |
| dib_span.front() = ArgbEncode(alpha, static_cast<int>(r_result * 255), |
| static_cast<int>(g_result * 255), |
| static_cast<int>(b_result * 255)); |
| } |
| dib_span = dib_span.subspan<1u>(); |
| } |
| } |
| } |
| |
| void DrawFreeGouraudShading( |
| const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| RetainPtr<const CPDF_Stream> pShadingStream, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| RetainPtr<CPDF_ColorSpace> pCS, |
| int alpha) { |
| DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra); |
| |
| CPDF_MeshStream stream(kFreeFormGouraudTriangleMeshShading, funcs, |
| std::move(pShadingStream), pCS); |
| if (!stream.Load()) { |
| return; |
| } |
| |
| std::array<FX_ARGB, kShadingSteps> shading_steps; |
| if (!funcs.empty()) { |
| if (!GetShadingSteps(stream.component_min(0), stream.component_max(0), |
| funcs, pCS, alpha, &shading_steps)) { |
| return; |
| } |
| } |
| float c0_min = stream.component_min(0); |
| float c0_max = stream.component_max(0); |
| |
| std::array<CPDF_MeshVertex, 3> triangle; |
| while (!stream.IsEOF()) { |
| CPDF_MeshVertex vertex; |
| uint32_t flag; |
| if (!stream.ReadVertex(mtObject2Bitmap, &vertex, &flag)) { |
| return; |
| } |
| if (!funcs.empty()) { |
| vertex.rgb.red = ComponentToShadingIndex(vertex.rgb.red, c0_min, c0_max); |
| } |
| |
| if (flag == 0) { |
| triangle[0] = vertex; |
| for (int i = 1; i < 3; ++i) { |
| uint32_t dummy_flag; |
| if (!stream.ReadVertex(mtObject2Bitmap, &triangle[i], &dummy_flag)) { |
| return; |
| } |
| if (!funcs.empty()) { |
| triangle[i].rgb.red = |
| ComponentToShadingIndex(triangle[i].rgb.red, c0_min, c0_max); |
| } |
| } |
| } else { |
| if (flag == 1) { |
| triangle[0] = triangle[1]; |
| } |
| |
| triangle[1] = triangle[2]; |
| triangle[2] = vertex; |
| } |
| DrawGouraud(pBitmap, alpha, triangle, |
| funcs.empty() ? nullptr : &shading_steps); |
| } |
| } |
| |
| void DrawLatticeGouraudShading( |
| const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| RetainPtr<const CPDF_Stream> pShadingStream, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| RetainPtr<CPDF_ColorSpace> pCS, |
| int alpha) { |
| DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra); |
| |
| int row_verts = pShadingStream->GetDict()->GetIntegerFor("VerticesPerRow"); |
| if (row_verts < 2) { |
| return; |
| } |
| |
| CPDF_MeshStream stream(kLatticeFormGouraudTriangleMeshShading, funcs, |
| std::move(pShadingStream), pCS); |
| if (!stream.Load()) { |
| return; |
| } |
| |
| std::array<FX_ARGB, kShadingSteps> shading_steps; |
| if (!funcs.empty()) { |
| if (!GetShadingSteps(stream.component_min(0), stream.component_max(0), |
| funcs, pCS, alpha, &shading_steps)) { |
| return; |
| } |
| } |
| float c0_min = stream.component_min(0); |
| float c0_max = stream.component_max(0); |
| |
| std::array<std::vector<CPDF_MeshVertex>, 2> vertices; |
| vertices[0] = stream.ReadVertexRow(mtObject2Bitmap, row_verts); |
| if (vertices[0].empty()) { |
| return; |
| } |
| for (auto& vertex : vertices[0]) { |
| if (!funcs.empty()) { |
| vertex.rgb.red = ComponentToShadingIndex(vertex.rgb.red, c0_min, c0_max); |
| } |
| } |
| |
| int last_index = 0; |
| while (true) { |
| vertices[1 - last_index] = stream.ReadVertexRow(mtObject2Bitmap, row_verts); |
| if (vertices[1 - last_index].empty()) { |
| return; |
| } |
| for (auto& vertex : vertices[1 - last_index]) { |
| if (!funcs.empty()) { |
| vertex.rgb.red = |
| ComponentToShadingIndex(vertex.rgb.red, c0_min, c0_max); |
| } |
| } |
| |
| CPDF_MeshVertex triangle[3]; |
| for (int i = 1; i < row_verts; ++i) { |
| triangle[0] = vertices[last_index][i]; |
| triangle[1] = vertices[1 - last_index][i - 1]; |
| triangle[2] = vertices[last_index][i - 1]; |
| DrawGouraud(pBitmap, alpha, triangle, |
| funcs.empty() ? nullptr : &shading_steps); |
| triangle[2] = vertices[1 - last_index][i]; |
| DrawGouraud(pBitmap, alpha, triangle, |
| funcs.empty() ? nullptr : &shading_steps); |
| } |
| last_index = 1 - last_index; |
| } |
| } |
| |
| struct CubicBezierPatch { |
| bool IsSmall() const { |
| CFX_FloatRect bbox = CFX_FloatRect::GetBBox( |
| fxcrt::reinterpret_span<const CFX_PointF>(pdfium::span(points))); |
| return bbox.Width() < 2 && bbox.Height() < 2; |
| } |
| |
| void GetBoundary(pdfium::span<CFX_Path::Point> boundary) { |
| // Returns a cubic bezier path consisting of the outer control points. |
| // Note that patch boundary does not always contain all patch points, |
| // but for "small" patches it's reasonably close. |
| // TODO(thakis): The outer control points don't always contain all |
| // points in the patch, e.g. for a single-color tensor product patch |
| // where the "inner" control points (points[1][1], points[2][1], |
| // points[1][2], points[2][2]) are far outside the "outer" ones. |
| // Make a bezier patch stress test and fix this by continuing to |
| // subdivide if the inner points are outside. |
| boundary[0].point_ = points[0][0]; |
| boundary[1].point_ = points[0][1]; |
| boundary[2].point_ = points[0][2]; |
| boundary[3].point_ = points[0][3]; |
| boundary[4].point_ = points[1][3]; |
| boundary[5].point_ = points[2][3]; |
| boundary[6].point_ = points[3][3]; |
| boundary[7].point_ = points[3][2]; |
| boundary[8].point_ = points[3][1]; |
| boundary[9].point_ = points[3][0]; |
| boundary[10].point_ = points[2][0]; |
| boundary[11].point_ = points[1][0]; |
| boundary[12].point_ = points[0][0]; |
| } |
| |
| void SubdivideVertical(CubicBezierPatch& top, CubicBezierPatch& bottom) { |
| for (int x = 0; x < 4; ++x) { |
| std::array<CFX_PointF, 3> level1 = { |
| 0.5f * (points[x][0] + points[x][1]), |
| 0.5f * (points[x][1] + points[x][2]), |
| 0.5f * (points[x][2] + points[x][3]), |
| }; |
| std::array<CFX_PointF, 2> level2 = { |
| 0.5f * (level1[0] + level1[1]), |
| 0.5f * (level1[1] + level1[2]), |
| }; |
| CFX_PointF level3 = 0.5f * (level2[0] + level2[1]); |
| |
| top.points[x][0] = points[x][0]; |
| top.points[x][1] = level1[0]; |
| top.points[x][2] = level2[0]; |
| top.points[x][3] = level3; |
| |
| bottom.points[x][0] = level3; |
| bottom.points[x][1] = level2[1]; |
| bottom.points[x][2] = level1[2]; |
| bottom.points[x][3] = points[x][3]; |
| } |
| } |
| |
| void SubdivideHorizontal(CubicBezierPatch& left, CubicBezierPatch& right) { |
| for (int y = 0; y < 4; ++y) { |
| std::array<CFX_PointF, 3> level1 = { |
| 0.5f * (points[0][y] + points[1][y]), |
| 0.5f * (points[1][y] + points[2][y]), |
| 0.5f * (points[2][y] + points[3][y]), |
| }; |
| std::array<CFX_PointF, 2> level2 = { |
| 0.5f * (level1[0] + level1[1]), |
| 0.5f * (level1[1] + level1[2]), |
| }; |
| CFX_PointF level3 = 0.5f * (level2[0] + level2[1]); |
| |
| left.points[0][y] = points[0][y]; |
| left.points[1][y] = level1[0]; |
| left.points[2][y] = level2[0]; |
| left.points[3][y] = level3; |
| |
| right.points[0][y] = level3; |
| right.points[1][y] = level2[1]; |
| right.points[2][y] = level1[2]; |
| right.points[3][y] = points[3][y]; |
| } |
| } |
| |
| void Subdivide(CubicBezierPatch& top_left, |
| CubicBezierPatch& bottom_left, |
| CubicBezierPatch& top_right, |
| CubicBezierPatch& bottom_right) { |
| CubicBezierPatch top; |
| CubicBezierPatch bottom; |
| SubdivideVertical(top, bottom); |
| top.SubdivideHorizontal(top_left, top_right); |
| bottom.SubdivideHorizontal(bottom_left, bottom_right); |
| } |
| |
| std::array<std::array<CFX_PointF, 4>, 4> points; |
| }; |
| |
| int Interpolate(int p1, int p2, int delta1, int delta2, bool* overflow) { |
| FX_SAFE_INT32 p = p2; |
| p -= p1; |
| p *= delta1; |
| p /= delta2; |
| p += p1; |
| if (!p.IsValid()) { |
| *overflow = true; |
| } |
| return p.ValueOrDefault(0); |
| } |
| |
| int BiInterpolImpl(int c0, |
| int c1, |
| int c2, |
| int c3, |
| int x, |
| int y, |
| int x_scale, |
| int y_scale, |
| bool* overflow) { |
| int x1 = Interpolate(c0, c3, x, x_scale, overflow); |
| int x2 = Interpolate(c1, c2, x, x_scale, overflow); |
| return Interpolate(x1, x2, y, y_scale, overflow); |
| } |
| |
| struct CoonColor { |
| CoonColor() = default; |
| |
| // Returns true if successful, false if overflow detected. |
| bool BiInterpol(pdfium::span<CoonColor, 4> colors, |
| int x, |
| int y, |
| int x_scale, |
| int y_scale) { |
| bool overflow = false; |
| for (int i = 0; i < 3; i++) { |
| comp[i] = BiInterpolImpl(colors[0].comp[i], colors[1].comp[i], |
| colors[2].comp[i], colors[3].comp[i], x, y, |
| x_scale, y_scale, &overflow); |
| } |
| return !overflow; |
| } |
| |
| int Distance(const CoonColor& o) const { |
| return std::max({abs(comp[0] - o.comp[0]), abs(comp[1] - o.comp[1]), |
| abs(comp[2] - o.comp[2])}); |
| } |
| |
| std::array<int, 3> comp = {}; |
| }; |
| |
| struct PatchDrawer { |
| static constexpr int kCoonColorThreshold = 4; |
| |
| void Draw(int x_scale, |
| int y_scale, |
| int left, |
| int bottom, |
| CubicBezierPatch patch, |
| const std::array<FX_ARGB, kShadingSteps>* shading_steps) { |
| bool bSmall = patch.IsSmall(); |
| |
| CoonColor div_colors[4]; |
| int d_bottom = 0; |
| int d_left = 0; |
| int d_top = 0; |
| int d_right = 0; |
| if (!div_colors[0].BiInterpol(patch_colors, left, bottom, x_scale, |
| y_scale)) { |
| return; |
| } |
| if (!bSmall) { |
| if (!div_colors[1].BiInterpol(patch_colors, left, bottom + 1, x_scale, |
| y_scale)) { |
| return; |
| } |
| if (!div_colors[2].BiInterpol(patch_colors, left + 1, bottom + 1, x_scale, |
| y_scale)) { |
| return; |
| } |
| if (!div_colors[3].BiInterpol(patch_colors, left + 1, bottom, x_scale, |
| y_scale)) { |
| return; |
| } |
| d_bottom = div_colors[3].Distance(div_colors[0]); |
| d_left = div_colors[1].Distance(div_colors[0]); |
| d_top = div_colors[1].Distance(div_colors[2]); |
| d_right = div_colors[2].Distance(div_colors[3]); |
| } |
| |
| if (bSmall || |
| (d_bottom < kCoonColorThreshold && d_left < kCoonColorThreshold && |
| d_top < kCoonColorThreshold && d_right < kCoonColorThreshold)) { |
| pdfium::span<CFX_Path::Point> points = path.GetPoints(); |
| patch.GetBoundary(points); |
| CFX_FillRenderOptions fill_options( |
| CFX_FillRenderOptions::WindingOptions()); |
| fill_options.full_cover = true; |
| if (bNoPathSmooth) { |
| fill_options.aliased_path = true; |
| } |
| |
| FX_ARGB color = shading_steps ? (*shading_steps)[div_colors[0].comp[0]] |
| : ArgbEncode(alpha, div_colors[0].comp[0], |
| div_colors[0].comp[1], |
| div_colors[0].comp[2]); |
| pDevice->DrawPath(path, nullptr, nullptr, color, 0, fill_options); |
| } else { |
| if (d_bottom < kCoonColorThreshold && d_top < kCoonColorThreshold) { |
| CubicBezierPatch top_patch; |
| CubicBezierPatch bottom_patch; |
| patch.SubdivideVertical(top_patch, bottom_patch); |
| y_scale *= 2; |
| bottom *= 2; |
| Draw(x_scale, y_scale, left, bottom, top_patch, shading_steps); |
| Draw(x_scale, y_scale, left, bottom + 1, bottom_patch, shading_steps); |
| } else if (d_left < kCoonColorThreshold && |
| d_right < kCoonColorThreshold) { |
| CubicBezierPatch left_patch; |
| CubicBezierPatch right_patch; |
| patch.SubdivideHorizontal(left_patch, right_patch); |
| x_scale *= 2; |
| left *= 2; |
| Draw(x_scale, y_scale, left, bottom, left_patch, shading_steps); |
| Draw(x_scale, y_scale, left + 1, bottom, right_patch, shading_steps); |
| } else { |
| CubicBezierPatch top_left; |
| CubicBezierPatch bottom_left; |
| CubicBezierPatch top_right; |
| CubicBezierPatch bottom_right; |
| patch.Subdivide(top_left, bottom_left, top_right, bottom_right); |
| x_scale *= 2; |
| y_scale *= 2; |
| left *= 2; |
| bottom *= 2; |
| Draw(x_scale, y_scale, left, bottom, top_left, shading_steps); |
| Draw(x_scale, y_scale, left, bottom + 1, bottom_left, shading_steps); |
| Draw(x_scale, y_scale, left + 1, bottom, top_right, shading_steps); |
| Draw(x_scale, y_scale, left + 1, bottom + 1, bottom_right, |
| shading_steps); |
| } |
| } |
| } |
| |
| int max_delta; |
| CFX_Path path; |
| UnownedPtr<CFX_RenderDevice> pDevice; |
| bool bNoPathSmooth; |
| int alpha; |
| std::array<CoonColor, 4> patch_colors; |
| }; |
| |
| void DrawCoonPatchMeshes( |
| ShadingType type, |
| const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| RetainPtr<const CPDF_Stream> pShadingStream, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| RetainPtr<CPDF_ColorSpace> pCS, |
| bool bNoPathSmooth, |
| int alpha) { |
| DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra); |
| DCHECK(type == kCoonsPatchMeshShading || |
| type == kTensorProductPatchMeshShading); |
| |
| CFX_DefaultRenderDevice device; |
| device.Attach(pBitmap); |
| |
| CPDF_MeshStream stream(type, funcs, std::move(pShadingStream), pCS); |
| if (!stream.Load()) { |
| return; |
| } |
| |
| std::array<FX_ARGB, kShadingSteps> shading_steps; |
| if (!funcs.empty()) { |
| if (!GetShadingSteps(stream.component_min(0), stream.component_max(0), |
| funcs, pCS, alpha, &shading_steps)) { |
| return; |
| } |
| } |
| float c0_min = stream.component_min(0); |
| float c0_max = stream.component_max(0); |
| |
| PatchDrawer patch_drawer; |
| patch_drawer.alpha = alpha; |
| patch_drawer.pDevice = &device; |
| patch_drawer.bNoPathSmooth = bNoPathSmooth; |
| |
| for (int i = 0; i < 13; i++) { |
| patch_drawer.path.AppendPoint( |
| CFX_PointF(), |
| i == 0 ? CFX_Path::Point::Type::kMove : CFX_Path::Point::Type::kBezier); |
| } |
| |
| std::array<CFX_PointF, 16> coords; |
| int point_count = type == kTensorProductPatchMeshShading ? 16 : 12; |
| while (!stream.IsEOF()) { |
| if (!stream.CanReadFlag()) { |
| break; |
| } |
| uint32_t flag = stream.ReadFlag(); |
| int iStartPoint = 0; |
| int iStartColor = 0; |
| int i = 0; |
| if (flag) { |
| iStartPoint = 4; |
| iStartColor = 2; |
| std::array<CFX_PointF, 4> tempCoords; |
| for (i = 0; i < 4; i++) { |
| tempCoords[i] = coords[(flag * 3 + i) % 12]; |
| } |
| fxcrt::Copy(tempCoords, coords); |
| std::array<CoonColor, 2> tempColors = {{ |
| patch_drawer.patch_colors[flag], |
| patch_drawer.patch_colors[(flag + 1) % 4], |
| }}; |
| fxcrt::Copy(tempColors, patch_drawer.patch_colors); |
| } |
| for (i = iStartPoint; i < point_count; i++) { |
| if (!stream.CanReadCoords()) { |
| break; |
| } |
| coords[i] = mtObject2Bitmap.Transform(stream.ReadCoords()); |
| } |
| |
| for (i = iStartColor; i < 4; i++) { |
| if (!stream.CanReadColor()) { |
| break; |
| } |
| |
| FX_RGB_STRUCT<float> rgb = stream.ReadColor(); |
| if (funcs.empty()) { |
| patch_drawer.patch_colors[i].comp[0] = |
| static_cast<int32_t>(rgb.red * 255); |
| patch_drawer.patch_colors[i].comp[1] = |
| static_cast<int32_t>(rgb.green * 255); |
| patch_drawer.patch_colors[i].comp[2] = |
| static_cast<int32_t>(rgb.blue * 255); |
| } else { |
| patch_drawer.patch_colors[i].comp[0] = static_cast<int32_t>( |
| ComponentToShadingIndex(rgb.red, c0_min, c0_max)); |
| patch_drawer.patch_colors[i].comp[1] = 0; |
| patch_drawer.patch_colors[i].comp[2] = 0; |
| } |
| } |
| |
| CFX_FloatRect bbox = CFX_FloatRect::GetBBox( |
| pdfium::span(coords).first(static_cast<size_t>(point_count))); |
| if (bbox.right <= 0 || bbox.left >= (float)pBitmap->GetWidth() || |
| bbox.top <= 0 || bbox.bottom >= (float)pBitmap->GetHeight()) { |
| continue; |
| } |
| |
| CubicBezierPatch patch; |
| patch.points[0][0] = coords[0]; |
| patch.points[0][1] = coords[1]; |
| patch.points[0][2] = coords[2]; |
| patch.points[0][3] = coords[3]; |
| patch.points[1][3] = coords[4]; |
| patch.points[2][3] = coords[5]; |
| patch.points[3][3] = coords[6]; |
| patch.points[3][2] = coords[7]; |
| patch.points[3][1] = coords[8]; |
| patch.points[3][0] = coords[9]; |
| patch.points[2][0] = coords[10]; |
| patch.points[1][0] = coords[11]; |
| if (type == kTensorProductPatchMeshShading) { |
| patch.points[1][1] = coords[12]; |
| patch.points[1][2] = coords[13]; |
| patch.points[2][2] = coords[14]; |
| patch.points[2][1] = coords[15]; |
| } else { |
| CHECK_EQ(type, kCoonsPatchMeshShading); |
| // These equations are from ISO 32000-2:2020, page 267, in |
| // 8.7.4.5.8 Type 7 (tensor-product patch mesh) shadings: |
| patch.points[1][1] = |
| (1.0f / 9.0f) * (-4.0f * patch.points[0][0] + |
| 6.0f * (patch.points[0][1] + patch.points[1][0]) - |
| 2.0f * (patch.points[0][3] + patch.points[3][0]) + |
| 3.0f * (patch.points[3][1] + patch.points[1][3]) - |
| 1.0f * patch.points[3][3]); |
| patch.points[1][2] = |
| (1.0f / 9.0f) * (-4.0f * patch.points[0][3] + |
| 6.0f * (patch.points[0][2] + patch.points[1][3]) - |
| 2.0f * (patch.points[0][0] + patch.points[3][3]) + |
| 3.0f * (patch.points[3][2] + patch.points[1][0]) - |
| 1.0f * patch.points[3][0]); |
| patch.points[2][1] = |
| (1.0f / 9.0f) * (-4.0f * patch.points[3][0] + |
| 6.0f * (patch.points[3][1] + patch.points[2][0]) - |
| 2.0f * (patch.points[3][3] + patch.points[0][0]) + |
| 3.0f * (patch.points[0][1] + patch.points[2][3]) - |
| 1.0f * patch.points[0][3]); |
| patch.points[2][2] = |
| (1.0f / 9.0f) * (-4.0f * patch.points[3][3] + |
| 6.0f * (patch.points[3][2] + patch.points[2][3]) - |
| 2.0f * (patch.points[3][0] + patch.points[0][3]) + |
| 3.0f * (patch.points[0][2] + patch.points[2][0]) - |
| 1.0f * patch.points[0][0]); |
| } |
| |
| patch_drawer.Draw(1, 1, 0, 0, patch, |
| funcs.empty() ? nullptr : &shading_steps); |
| } |
| } |
| |
| } // namespace |
| |
| // static |
| void CPDF_RenderShading::Draw(CFX_RenderDevice* pDevice, |
| CPDF_RenderContext* pContext, |
| const CPDF_PageObject* pCurObj, |
| const CPDF_ShadingPattern* pPattern, |
| const CFX_Matrix& mtMatrix, |
| const FX_RECT& clip_rect, |
| int alpha, |
| const CPDF_RenderOptions& options) { |
| RetainPtr<CPDF_ColorSpace> pColorSpace = pPattern->GetCS(); |
| if (!pColorSpace) { |
| return; |
| } |
| |
| FX_ARGB background = 0; |
| RetainPtr<const CPDF_Dictionary> dict = |
| pPattern->GetShadingObject()->GetDict(); |
| if (!pPattern->IsShadingObject() && dict->KeyExist("Background")) { |
| RetainPtr<const CPDF_Array> pBackColor = dict->GetArrayFor("Background"); |
| if (pBackColor && pBackColor->size() >= pColorSpace->ComponentCount()) { |
| std::vector<float> comps = ReadArrayElementsToVector( |
| pBackColor.Get(), pColorSpace->ComponentCount()); |
| |
| auto rgb = pColorSpace->GetRGBOrZerosOnError(comps); |
| background = ArgbEncode(255, static_cast<int32_t>(rgb.red * 255), |
| static_cast<int32_t>(rgb.green * 255), |
| static_cast<int32_t>(rgb.blue * 255)); |
| } |
| } |
| FX_RECT clip_rect_bbox = clip_rect; |
| if (dict->KeyExist("BBox")) { |
| clip_rect_bbox.Intersect( |
| mtMatrix.TransformRect(dict->GetRectFor("BBox")).GetOuterRect()); |
| } |
| #if defined(PDF_USE_SKIA) |
| if ((pDevice->GetDeviceCaps(FXDC_RENDER_CAPS) & FXRC_SHADING) && |
| pDevice->DrawShading(*pPattern, mtMatrix, clip_rect_bbox, alpha)) { |
| return; |
| } |
| #endif // defined(PDF_USE_SKIA) |
| CPDF_DeviceBuffer buffer(pContext, pDevice, clip_rect_bbox, pCurObj, 150); |
| RetainPtr<CFX_DIBitmap> pBitmap = buffer.Initialize(); |
| if (!pBitmap) { |
| return; |
| } |
| |
| if (background != 0) { |
| pBitmap->Clear(background); |
| } |
| const CFX_Matrix final_matrix = mtMatrix * buffer.GetMatrix(); |
| const auto& funcs = pPattern->GetFuncs(); |
| switch (pPattern->GetShadingType()) { |
| case kInvalidShading: |
| case kMaxShading: |
| return; |
| case kFunctionBasedShading: |
| DrawFuncShading(pBitmap, final_matrix, dict.Get(), funcs, pColorSpace, |
| alpha); |
| break; |
| case kAxialShading: |
| DrawAxialShading(pBitmap, final_matrix, dict.Get(), funcs, pColorSpace, |
| alpha); |
| break; |
| case kRadialShading: |
| DrawRadialShading(pBitmap, final_matrix, dict.Get(), funcs, pColorSpace, |
| alpha); |
| break; |
| case kFreeFormGouraudTriangleMeshShading: { |
| // The shading object can be a stream or a dictionary. We do not handle |
| // the case of dictionary at the moment. |
| RetainPtr<const CPDF_Stream> pStream = |
| ToStream(pPattern->GetShadingObject()); |
| if (pStream) { |
| DrawFreeGouraudShading(pBitmap, final_matrix, std::move(pStream), funcs, |
| pColorSpace, alpha); |
| } |
| break; |
| } |
| case kLatticeFormGouraudTriangleMeshShading: { |
| // The shading object can be a stream or a dictionary. We do not handle |
| // the case of dictionary at the moment. |
| RetainPtr<const CPDF_Stream> pStream = |
| ToStream(pPattern->GetShadingObject()); |
| if (pStream) { |
| DrawLatticeGouraudShading(pBitmap, final_matrix, std::move(pStream), |
| funcs, pColorSpace, alpha); |
| } |
| break; |
| } |
| case kCoonsPatchMeshShading: |
| case kTensorProductPatchMeshShading: { |
| // The shading object can be a stream or a dictionary. We do not handle |
| // the case of dictionary at the moment. |
| RetainPtr<const CPDF_Stream> pStream = |
| ToStream(pPattern->GetShadingObject()); |
| if (pStream) { |
| DrawCoonPatchMeshes(pPattern->GetShadingType(), pBitmap, final_matrix, |
| std::move(pStream), funcs, pColorSpace, |
| options.GetOptions().bNoPathSmooth, alpha); |
| } |
| break; |
| } |
| } |
| |
| if (options.ColorModeIs(CPDF_RenderOptions::kAlpha)) { |
| pBitmap->SetRedFromAlpha(); |
| } else if (options.ColorModeIs(CPDF_RenderOptions::kGray)) { |
| pBitmap->ConvertColorScale(0, 0xffffff); |
| } |
| |
| buffer.OutputToDevice(); |
| } |