blob: a524a10c1f37bdd410059b3026fa479f943bb76a [file] [log] [blame]
// Copyright 2019 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/render/cpdf_rendershading.h"
#include <math.h>
#include <algorithm>
#include <array>
#include <memory>
#include <utility>
#include <vector>
#include "core/fpdfapi/page/cpdf_colorspace.h"
#include "core/fpdfapi/page/cpdf_dib.h"
#include "core/fpdfapi/page/cpdf_function.h"
#include "core/fpdfapi/page/cpdf_meshstream.h"
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_stream.h"
#include "core/fpdfapi/parser/fpdf_parser_utility.h"
#include "core/fpdfapi/render/cpdf_devicebuffer.h"
#include "core/fpdfapi/render/cpdf_renderoptions.h"
#include "core/fxcrt/check.h"
#include "core/fxcrt/check_op.h"
#include "core/fxcrt/compiler_specific.h"
#include "core/fxcrt/fx_safe_types.h"
#include "core/fxcrt/fx_system.h"
#include "core/fxcrt/numerics/clamped_math.h"
#include "core/fxcrt/span.h"
#include "core/fxcrt/span_util.h"
#include "core/fxcrt/stl_util.h"
#include "core/fxcrt/unowned_ptr.h"
#include "core/fxge/cfx_defaultrenderdevice.h"
#include "core/fxge/cfx_fillrenderoptions.h"
#include "core/fxge/cfx_path.h"
#include "core/fxge/dib/cfx_dibitmap.h"
#include "core/fxge/dib/fx_dib.h"
namespace {
constexpr int kShadingSteps = 256;
uint32_t CountOutputsFromFunctions(
const std::vector<std::unique_ptr<CPDF_Function>>& funcs) {
FX_SAFE_UINT32 total = 0;
for (const auto& func : funcs) {
if (func) {
total += func->OutputCount();
}
}
return total.ValueOrDefault(0);
}
uint32_t GetValidatedOutputsCount(
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS) {
uint32_t funcs_outputs = CountOutputsFromFunctions(funcs);
return funcs_outputs ? std::max(funcs_outputs, pCS->ComponentCount()) : 0;
}
bool GetShadingSteps(float t_min,
float t_max,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha,
std::array<FX_ARGB, kShadingSteps>* output) {
const uint32_t results_count = GetValidatedOutputsCount(funcs, pCS);
if (results_count == 0) {
return false;
}
CHECK_GE(results_count, CountOutputsFromFunctions(funcs));
CHECK_GE(results_count, pCS->ComponentCount());
std::array<FX_ARGB, kShadingSteps>& shading_steps = *output;
std::vector<float> result_array(results_count);
float diff = t_max - t_min;
for (int i = 0; i < kShadingSteps; ++i) {
float input = diff * i / kShadingSteps + t_min;
pdfium::span<float> result_span = pdfium::span(result_array);
for (const auto& func : funcs) {
if (!func) {
continue;
}
std::optional<uint32_t> nresults =
func->Call(pdfium::span_from_ref(input), result_span);
if (nresults.has_value()) {
result_span = result_span.subspan(nresults.value());
}
}
auto rgb = pCS->GetRGBOrZerosOnError(result_array);
shading_steps[i] =
ArgbEncode(alpha, FXSYS_roundf(rgb.red * 255),
FXSYS_roundf(rgb.green * 255), FXSYS_roundf(rgb.blue * 255));
}
return true;
}
float ComponentToShadingIndex(float c, float c_min, float c_max) {
if (c_min == c_max) {
return 0;
}
return ((c - c_min) / (c_max - c_min)) * (kShadingSteps - 1);
}
void DrawAxialShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* dict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra);
RetainPtr<const CPDF_Array> pCoords = dict->GetArrayFor("Coords");
if (!pCoords) {
return;
}
float start_x = pCoords->GetFloatAt(0);
float start_y = pCoords->GetFloatAt(1);
float end_x = pCoords->GetFloatAt(2);
float end_y = pCoords->GetFloatAt(3);
float t_min = 0;
float t_max = 1.0f;
RetainPtr<const CPDF_Array> pArray = dict->GetArrayFor("Domain");
if (pArray) {
t_min = pArray->GetFloatAt(0);
t_max = pArray->GetFloatAt(1);
}
pArray = dict->GetArrayFor("Extend");
const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false);
const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false);
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
float x_span = end_x - start_x;
float y_span = end_y - start_y;
float axis_len_square = (x_span * x_span) + (y_span * y_span);
std::array<FX_ARGB, kShadingSteps> shading_steps;
if (!GetShadingSteps(t_min, t_max, funcs, pCS, alpha, &shading_steps)) {
return;
}
CFX_Matrix matrix = mtObject2Bitmap.GetInverse();
for (int row = 0; row < height; row++) {
auto dest_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row).first(
static_cast<size_t>(width));
size_t column_counter = 0;
for (auto& pix : dest_buf) {
const float column = static_cast<float>(column_counter++);
const CFX_PointF pos =
matrix.Transform(CFX_PointF(column, static_cast<float>(row)));
float scale =
(((pos.x - start_x) * x_span) + ((pos.y - start_y) * y_span)) /
axis_len_square;
int index = static_cast<int32_t>(scale * (kShadingSteps - 1));
if (index < 0) {
if (!bStartExtend) {
continue;
}
index = 0;
} else if (index >= kShadingSteps) {
if (!bEndExtend) {
continue;
}
index = kShadingSteps - 1;
}
pix = shading_steps[index];
}
}
}
void DrawRadialShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* dict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra);
RetainPtr<const CPDF_Array> pCoords = dict->GetArrayFor("Coords");
if (!pCoords) {
return;
}
float start_x = pCoords->GetFloatAt(0);
float start_y = pCoords->GetFloatAt(1);
float start_r = pCoords->GetFloatAt(2);
float end_x = pCoords->GetFloatAt(3);
float end_y = pCoords->GetFloatAt(4);
float end_r = pCoords->GetFloatAt(5);
float t_min = 0;
float t_max = 1.0f;
RetainPtr<const CPDF_Array> pArray = dict->GetArrayFor("Domain");
if (pArray) {
t_min = pArray->GetFloatAt(0);
t_max = pArray->GetFloatAt(1);
}
pArray = dict->GetArrayFor("Extend");
const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false);
const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false);
std::array<FX_ARGB, kShadingSteps> shading_steps;
if (!GetShadingSteps(t_min, t_max, funcs, pCS, alpha, &shading_steps)) {
return;
}
const float dx = end_x - start_x;
const float dy = end_y - start_y;
const float dr = end_r - start_r;
const float a = dx * dx + dy * dy - dr * dr;
const bool a_is_float_zero = FXSYS_IsFloatZero(a);
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
bool bDecreasing = dr < 0 && static_cast<int>(hypotf(dx, dy)) < -dr;
CFX_Matrix matrix = mtObject2Bitmap.GetInverse();
for (int row = 0; row < height; row++) {
auto dest_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row).first(
static_cast<size_t>(width));
size_t column_counter = 0;
for (auto& pix : dest_buf) {
const float column = static_cast<float>(column_counter++);
const CFX_PointF pos =
matrix.Transform(CFX_PointF(column, static_cast<float>(row)));
float pos_dx = pos.x - start_x;
float pos_dy = pos.y - start_y;
float b = -2 * (pos_dx * dx + pos_dy * dy + start_r * dr);
float c = pos_dx * pos_dx + pos_dy * pos_dy - start_r * start_r;
float s;
if (FXSYS_IsFloatZero(b)) {
s = sqrt(-c / a);
} else if (a_is_float_zero) {
s = -c / b;
} else {
float b2_4ac = (b * b) - 4 * (a * c);
if (b2_4ac < 0) {
continue;
}
float root = sqrt(b2_4ac);
float s1 = (-b - root) / (2 * a);
float s2 = (-b + root) / (2 * a);
if (a <= 0) {
std::swap(s1, s2);
}
if (bDecreasing) {
s = (s1 >= 0 || bStartExtend) ? s1 : s2;
} else {
s = (s2 <= 1.0f || bEndExtend) ? s2 : s1;
}
if (start_r + s * dr < 0) {
continue;
}
}
int index = static_cast<int32_t>(s * (kShadingSteps - 1));
if (index < 0) {
if (!bStartExtend) {
continue;
}
index = 0;
} else if (index >= kShadingSteps) {
if (!bEndExtend) {
continue;
}
index = kShadingSteps - 1;
}
pix = shading_steps[index];
}
}
}
void DrawFuncShading(const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
const CPDF_Dictionary* dict,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
const RetainPtr<CPDF_ColorSpace>& pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra);
const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS);
if (total_results == 0) {
return;
}
RetainPtr<const CPDF_Array> pDomain = dict->GetArrayFor("Domain");
float xmin = 0.0f;
float ymin = 0.0f;
float xmax = 1.0f;
float ymax = 1.0f;
if (pDomain) {
xmin = pDomain->GetFloatAt(0);
xmax = pDomain->GetFloatAt(1);
ymin = pDomain->GetFloatAt(2);
ymax = pDomain->GetFloatAt(3);
}
CFX_Matrix mtDomain2Target = dict->GetMatrixFor("Matrix");
CFX_Matrix matrix =
mtObject2Bitmap.GetInverse() * mtDomain2Target.GetInverse();
int width = pBitmap->GetWidth();
int height = pBitmap->GetHeight();
CHECK_GE(total_results, CountOutputsFromFunctions(funcs));
CHECK_GE(total_results, pCS->ComponentCount());
std::vector<float> result_array(total_results);
for (int row = 0; row < height; ++row) {
auto dib_buf = pBitmap->GetWritableScanlineAs<uint32_t>(row);
for (int column = 0; column < width; column++) {
CFX_PointF pos = matrix.Transform(
CFX_PointF(static_cast<float>(column), static_cast<float>(row)));
if (pos.x < xmin || pos.x > xmax || pos.y < ymin || pos.y > ymax) {
continue;
}
float input[2] = {pos.x, pos.y};
pdfium::span<float> result_span = pdfium::span(result_array);
for (const auto& func : funcs) {
if (!func) {
continue;
}
std::optional<uint32_t> nresults = func->Call(input, result_span);
if (nresults.has_value()) {
result_span = result_span.subspan(nresults.value());
}
}
auto rgb = pCS->GetRGBOrZerosOnError(result_array);
dib_buf[column] = ArgbEncode(alpha, static_cast<int32_t>(rgb.red * 255),
static_cast<int32_t>(rgb.green * 255),
static_cast<int32_t>(rgb.blue * 255));
}
}
}
bool GetScanlineIntersect(int y,
const CFX_PointF& first,
const CFX_PointF& second,
float* x) {
if (first.y == second.y) {
return false;
}
if (first.y < second.y) {
if (y < first.y || y > second.y) {
return false;
}
} else if (y < second.y || y > first.y) {
return false;
}
*x = first.x + ((second.x - first.x) * (y - first.y) / (second.y - first.y));
return true;
}
void DrawGouraud(const RetainPtr<CFX_DIBitmap>& pBitmap,
int alpha,
pdfium::span<CPDF_MeshVertex, 3> triangle,
const std::array<FX_ARGB, kShadingSteps>* shading_steps) {
float min_y = triangle[0].position.y;
float max_y = triangle[0].position.y;
for (int i = 1; i < 3; i++) {
min_y = std::min(min_y, triangle[i].position.y);
max_y = std::max(max_y, triangle[i].position.y);
}
if (min_y == max_y) {
return;
}
int min_yi = std::max(static_cast<int>(floorf(min_y)), 0);
int max_yi = static_cast<int>(ceilf(max_y));
if (max_yi >= pBitmap->GetHeight()) {
max_yi = pBitmap->GetHeight() - 1;
}
for (int y = min_yi; y <= max_yi; y++) {
int nIntersects = 0;
std::array<float, 3> inter_x;
std::array<float, 3> r;
std::array<float, 3> g;
std::array<float, 3> b;
for (int i = 0; i < 3; i++) {
const CPDF_MeshVertex& vertex1 = triangle[i];
const CPDF_MeshVertex& vertex2 = triangle[(i + 1) % 3];
const CFX_PointF& position1 = vertex1.position;
const CFX_PointF& position2 = vertex2.position;
bool bIntersect =
GetScanlineIntersect(y, position1, position2, &inter_x[nIntersects]);
if (!bIntersect) {
continue;
}
float y_dist = (y - position1.y) / (position2.y - position1.y);
r[nIntersects] =
vertex1.rgb.red + ((vertex2.rgb.red - vertex1.rgb.red) * y_dist);
g[nIntersects] = vertex1.rgb.green +
((vertex2.rgb.green - vertex1.rgb.green) * y_dist);
b[nIntersects] =
vertex1.rgb.blue + ((vertex2.rgb.blue - vertex1.rgb.blue) * y_dist);
nIntersects++;
}
if (nIntersects != 2) {
continue;
}
int min_x;
int max_x;
int start_index;
int end_index;
if (inter_x[0] < inter_x[1]) {
min_x = static_cast<int>(floorf(inter_x[0]));
max_x = static_cast<int>(ceilf(inter_x[1]));
start_index = 0;
end_index = 1;
} else {
min_x = static_cast<int>(floorf(inter_x[1]));
max_x = static_cast<int>(ceilf(inter_x[0]));
start_index = 1;
end_index = 0;
}
int start_x = std::clamp(min_x, 0, pBitmap->GetWidth());
int end_x = std::clamp(max_x, 0, pBitmap->GetWidth());
const int range_x = pdfium::ClampSub(max_x, min_x);
float r_unit = (r[end_index] - r[start_index]) / range_x;
float g_unit = (g[end_index] - g[start_index]) / range_x;
float b_unit = (b[end_index] - b[start_index]) / range_x;
const int diff_x = pdfium::ClampSub(start_x, min_x);
float r_result = r[start_index] + diff_x * r_unit;
float g_result = g[start_index] + diff_x * g_unit;
float b_result = b[start_index] + diff_x * b_unit;
auto dib_span = pBitmap->GetWritableScanlineAs<FX_ARGB>(y).subspan(
static_cast<size_t>(start_x));
for (int x = start_x; x < end_x; x++) {
r_result += r_unit;
if (shading_steps) {
int index = static_cast<int32_t>(r_result);
if (index < 0) {
index = 0;
} else if (index >= kShadingSteps) {
index = kShadingSteps - 1;
}
dib_span.front() = (*shading_steps)[index];
} else {
g_result += g_unit;
b_result += b_unit;
dib_span.front() = ArgbEncode(alpha, static_cast<int>(r_result * 255),
static_cast<int>(g_result * 255),
static_cast<int>(b_result * 255));
}
dib_span = dib_span.subspan<1u>();
}
}
}
void DrawFreeGouraudShading(
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
RetainPtr<const CPDF_Stream> pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
RetainPtr<CPDF_ColorSpace> pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra);
CPDF_MeshStream stream(kFreeFormGouraudTriangleMeshShading, funcs,
std::move(pShadingStream), pCS);
if (!stream.Load()) {
return;
}
std::array<FX_ARGB, kShadingSteps> shading_steps;
if (!funcs.empty()) {
if (!GetShadingSteps(stream.component_min(0), stream.component_max(0),
funcs, pCS, alpha, &shading_steps)) {
return;
}
}
float c0_min = stream.component_min(0);
float c0_max = stream.component_max(0);
std::array<CPDF_MeshVertex, 3> triangle;
while (!stream.IsEOF()) {
CPDF_MeshVertex vertex;
uint32_t flag;
if (!stream.ReadVertex(mtObject2Bitmap, &vertex, &flag)) {
return;
}
if (!funcs.empty()) {
vertex.rgb.red = ComponentToShadingIndex(vertex.rgb.red, c0_min, c0_max);
}
if (flag == 0) {
triangle[0] = vertex;
for (int i = 1; i < 3; ++i) {
uint32_t dummy_flag;
if (!stream.ReadVertex(mtObject2Bitmap, &triangle[i], &dummy_flag)) {
return;
}
if (!funcs.empty()) {
triangle[i].rgb.red =
ComponentToShadingIndex(triangle[i].rgb.red, c0_min, c0_max);
}
}
} else {
if (flag == 1) {
triangle[0] = triangle[1];
}
triangle[1] = triangle[2];
triangle[2] = vertex;
}
DrawGouraud(pBitmap, alpha, triangle,
funcs.empty() ? nullptr : &shading_steps);
}
}
void DrawLatticeGouraudShading(
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
RetainPtr<const CPDF_Stream> pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
RetainPtr<CPDF_ColorSpace> pCS,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra);
int row_verts = pShadingStream->GetDict()->GetIntegerFor("VerticesPerRow");
if (row_verts < 2) {
return;
}
CPDF_MeshStream stream(kLatticeFormGouraudTriangleMeshShading, funcs,
std::move(pShadingStream), pCS);
if (!stream.Load()) {
return;
}
std::array<FX_ARGB, kShadingSteps> shading_steps;
if (!funcs.empty()) {
if (!GetShadingSteps(stream.component_min(0), stream.component_max(0),
funcs, pCS, alpha, &shading_steps)) {
return;
}
}
float c0_min = stream.component_min(0);
float c0_max = stream.component_max(0);
std::array<std::vector<CPDF_MeshVertex>, 2> vertices;
vertices[0] = stream.ReadVertexRow(mtObject2Bitmap, row_verts);
if (vertices[0].empty()) {
return;
}
for (auto& vertex : vertices[0]) {
if (!funcs.empty()) {
vertex.rgb.red = ComponentToShadingIndex(vertex.rgb.red, c0_min, c0_max);
}
}
int last_index = 0;
while (true) {
vertices[1 - last_index] = stream.ReadVertexRow(mtObject2Bitmap, row_verts);
if (vertices[1 - last_index].empty()) {
return;
}
for (auto& vertex : vertices[1 - last_index]) {
if (!funcs.empty()) {
vertex.rgb.red =
ComponentToShadingIndex(vertex.rgb.red, c0_min, c0_max);
}
}
CPDF_MeshVertex triangle[3];
for (int i = 1; i < row_verts; ++i) {
triangle[0] = vertices[last_index][i];
triangle[1] = vertices[1 - last_index][i - 1];
triangle[2] = vertices[last_index][i - 1];
DrawGouraud(pBitmap, alpha, triangle,
funcs.empty() ? nullptr : &shading_steps);
triangle[2] = vertices[1 - last_index][i];
DrawGouraud(pBitmap, alpha, triangle,
funcs.empty() ? nullptr : &shading_steps);
}
last_index = 1 - last_index;
}
}
struct CubicBezierPatch {
bool IsSmall() const {
CFX_FloatRect bbox = CFX_FloatRect::GetBBox(
fxcrt::reinterpret_span<const CFX_PointF>(pdfium::span(points)));
return bbox.Width() < 2 && bbox.Height() < 2;
}
void GetBoundary(pdfium::span<CFX_Path::Point> boundary) {
// Returns a cubic bezier path consisting of the outer control points.
// Note that patch boundary does not always contain all patch points,
// but for "small" patches it's reasonably close.
// TODO(thakis): The outer control points don't always contain all
// points in the patch, e.g. for a single-color tensor product patch
// where the "inner" control points (points[1][1], points[2][1],
// points[1][2], points[2][2]) are far outside the "outer" ones.
// Make a bezier patch stress test and fix this by continuing to
// subdivide if the inner points are outside.
boundary[0].point_ = points[0][0];
boundary[1].point_ = points[0][1];
boundary[2].point_ = points[0][2];
boundary[3].point_ = points[0][3];
boundary[4].point_ = points[1][3];
boundary[5].point_ = points[2][3];
boundary[6].point_ = points[3][3];
boundary[7].point_ = points[3][2];
boundary[8].point_ = points[3][1];
boundary[9].point_ = points[3][0];
boundary[10].point_ = points[2][0];
boundary[11].point_ = points[1][0];
boundary[12].point_ = points[0][0];
}
void SubdivideVertical(CubicBezierPatch& top, CubicBezierPatch& bottom) {
for (int x = 0; x < 4; ++x) {
std::array<CFX_PointF, 3> level1 = {
0.5f * (points[x][0] + points[x][1]),
0.5f * (points[x][1] + points[x][2]),
0.5f * (points[x][2] + points[x][3]),
};
std::array<CFX_PointF, 2> level2 = {
0.5f * (level1[0] + level1[1]),
0.5f * (level1[1] + level1[2]),
};
CFX_PointF level3 = 0.5f * (level2[0] + level2[1]);
top.points[x][0] = points[x][0];
top.points[x][1] = level1[0];
top.points[x][2] = level2[0];
top.points[x][3] = level3;
bottom.points[x][0] = level3;
bottom.points[x][1] = level2[1];
bottom.points[x][2] = level1[2];
bottom.points[x][3] = points[x][3];
}
}
void SubdivideHorizontal(CubicBezierPatch& left, CubicBezierPatch& right) {
for (int y = 0; y < 4; ++y) {
std::array<CFX_PointF, 3> level1 = {
0.5f * (points[0][y] + points[1][y]),
0.5f * (points[1][y] + points[2][y]),
0.5f * (points[2][y] + points[3][y]),
};
std::array<CFX_PointF, 2> level2 = {
0.5f * (level1[0] + level1[1]),
0.5f * (level1[1] + level1[2]),
};
CFX_PointF level3 = 0.5f * (level2[0] + level2[1]);
left.points[0][y] = points[0][y];
left.points[1][y] = level1[0];
left.points[2][y] = level2[0];
left.points[3][y] = level3;
right.points[0][y] = level3;
right.points[1][y] = level2[1];
right.points[2][y] = level1[2];
right.points[3][y] = points[3][y];
}
}
void Subdivide(CubicBezierPatch& top_left,
CubicBezierPatch& bottom_left,
CubicBezierPatch& top_right,
CubicBezierPatch& bottom_right) {
CubicBezierPatch top;
CubicBezierPatch bottom;
SubdivideVertical(top, bottom);
top.SubdivideHorizontal(top_left, top_right);
bottom.SubdivideHorizontal(bottom_left, bottom_right);
}
std::array<std::array<CFX_PointF, 4>, 4> points;
};
int Interpolate(int p1, int p2, int delta1, int delta2, bool* overflow) {
FX_SAFE_INT32 p = p2;
p -= p1;
p *= delta1;
p /= delta2;
p += p1;
if (!p.IsValid()) {
*overflow = true;
}
return p.ValueOrDefault(0);
}
int BiInterpolImpl(int c0,
int c1,
int c2,
int c3,
int x,
int y,
int x_scale,
int y_scale,
bool* overflow) {
int x1 = Interpolate(c0, c3, x, x_scale, overflow);
int x2 = Interpolate(c1, c2, x, x_scale, overflow);
return Interpolate(x1, x2, y, y_scale, overflow);
}
struct CoonColor {
CoonColor() = default;
// Returns true if successful, false if overflow detected.
bool BiInterpol(pdfium::span<CoonColor, 4> colors,
int x,
int y,
int x_scale,
int y_scale) {
bool overflow = false;
for (int i = 0; i < 3; i++) {
comp[i] = BiInterpolImpl(colors[0].comp[i], colors[1].comp[i],
colors[2].comp[i], colors[3].comp[i], x, y,
x_scale, y_scale, &overflow);
}
return !overflow;
}
int Distance(const CoonColor& o) const {
return std::max({abs(comp[0] - o.comp[0]), abs(comp[1] - o.comp[1]),
abs(comp[2] - o.comp[2])});
}
std::array<int, 3> comp = {};
};
struct PatchDrawer {
static constexpr int kCoonColorThreshold = 4;
void Draw(int x_scale,
int y_scale,
int left,
int bottom,
CubicBezierPatch patch,
const std::array<FX_ARGB, kShadingSteps>* shading_steps) {
bool bSmall = patch.IsSmall();
CoonColor div_colors[4];
int d_bottom = 0;
int d_left = 0;
int d_top = 0;
int d_right = 0;
if (!div_colors[0].BiInterpol(patch_colors, left, bottom, x_scale,
y_scale)) {
return;
}
if (!bSmall) {
if (!div_colors[1].BiInterpol(patch_colors, left, bottom + 1, x_scale,
y_scale)) {
return;
}
if (!div_colors[2].BiInterpol(patch_colors, left + 1, bottom + 1, x_scale,
y_scale)) {
return;
}
if (!div_colors[3].BiInterpol(patch_colors, left + 1, bottom, x_scale,
y_scale)) {
return;
}
d_bottom = div_colors[3].Distance(div_colors[0]);
d_left = div_colors[1].Distance(div_colors[0]);
d_top = div_colors[1].Distance(div_colors[2]);
d_right = div_colors[2].Distance(div_colors[3]);
}
if (bSmall ||
(d_bottom < kCoonColorThreshold && d_left < kCoonColorThreshold &&
d_top < kCoonColorThreshold && d_right < kCoonColorThreshold)) {
pdfium::span<CFX_Path::Point> points = path.GetPoints();
patch.GetBoundary(points);
CFX_FillRenderOptions fill_options(
CFX_FillRenderOptions::WindingOptions());
fill_options.full_cover = true;
if (bNoPathSmooth) {
fill_options.aliased_path = true;
}
FX_ARGB color = shading_steps ? (*shading_steps)[div_colors[0].comp[0]]
: ArgbEncode(alpha, div_colors[0].comp[0],
div_colors[0].comp[1],
div_colors[0].comp[2]);
pDevice->DrawPath(path, nullptr, nullptr, color, 0, fill_options);
} else {
if (d_bottom < kCoonColorThreshold && d_top < kCoonColorThreshold) {
CubicBezierPatch top_patch;
CubicBezierPatch bottom_patch;
patch.SubdivideVertical(top_patch, bottom_patch);
y_scale *= 2;
bottom *= 2;
Draw(x_scale, y_scale, left, bottom, top_patch, shading_steps);
Draw(x_scale, y_scale, left, bottom + 1, bottom_patch, shading_steps);
} else if (d_left < kCoonColorThreshold &&
d_right < kCoonColorThreshold) {
CubicBezierPatch left_patch;
CubicBezierPatch right_patch;
patch.SubdivideHorizontal(left_patch, right_patch);
x_scale *= 2;
left *= 2;
Draw(x_scale, y_scale, left, bottom, left_patch, shading_steps);
Draw(x_scale, y_scale, left + 1, bottom, right_patch, shading_steps);
} else {
CubicBezierPatch top_left;
CubicBezierPatch bottom_left;
CubicBezierPatch top_right;
CubicBezierPatch bottom_right;
patch.Subdivide(top_left, bottom_left, top_right, bottom_right);
x_scale *= 2;
y_scale *= 2;
left *= 2;
bottom *= 2;
Draw(x_scale, y_scale, left, bottom, top_left, shading_steps);
Draw(x_scale, y_scale, left, bottom + 1, bottom_left, shading_steps);
Draw(x_scale, y_scale, left + 1, bottom, top_right, shading_steps);
Draw(x_scale, y_scale, left + 1, bottom + 1, bottom_right,
shading_steps);
}
}
}
int max_delta;
CFX_Path path;
UnownedPtr<CFX_RenderDevice> pDevice;
bool bNoPathSmooth;
int alpha;
std::array<CoonColor, 4> patch_colors;
};
void DrawCoonPatchMeshes(
ShadingType type,
const RetainPtr<CFX_DIBitmap>& pBitmap,
const CFX_Matrix& mtObject2Bitmap,
RetainPtr<const CPDF_Stream> pShadingStream,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
RetainPtr<CPDF_ColorSpace> pCS,
bool bNoPathSmooth,
int alpha) {
DCHECK_EQ(pBitmap->GetFormat(), FXDIB_Format::kBgra);
DCHECK(type == kCoonsPatchMeshShading ||
type == kTensorProductPatchMeshShading);
CFX_DefaultRenderDevice device;
device.Attach(pBitmap);
CPDF_MeshStream stream(type, funcs, std::move(pShadingStream), pCS);
if (!stream.Load()) {
return;
}
std::array<FX_ARGB, kShadingSteps> shading_steps;
if (!funcs.empty()) {
if (!GetShadingSteps(stream.component_min(0), stream.component_max(0),
funcs, pCS, alpha, &shading_steps)) {
return;
}
}
float c0_min = stream.component_min(0);
float c0_max = stream.component_max(0);
PatchDrawer patch_drawer;
patch_drawer.alpha = alpha;
patch_drawer.pDevice = &device;
patch_drawer.bNoPathSmooth = bNoPathSmooth;
for (int i = 0; i < 13; i++) {
patch_drawer.path.AppendPoint(
CFX_PointF(),
i == 0 ? CFX_Path::Point::Type::kMove : CFX_Path::Point::Type::kBezier);
}
std::array<CFX_PointF, 16> coords;
int point_count = type == kTensorProductPatchMeshShading ? 16 : 12;
while (!stream.IsEOF()) {
if (!stream.CanReadFlag()) {
break;
}
uint32_t flag = stream.ReadFlag();
int iStartPoint = 0;
int iStartColor = 0;
int i = 0;
if (flag) {
iStartPoint = 4;
iStartColor = 2;
std::array<CFX_PointF, 4> tempCoords;
for (i = 0; i < 4; i++) {
tempCoords[i] = coords[(flag * 3 + i) % 12];
}
fxcrt::Copy(tempCoords, coords);
std::array<CoonColor, 2> tempColors = {{
patch_drawer.patch_colors[flag],
patch_drawer.patch_colors[(flag + 1) % 4],
}};
fxcrt::Copy(tempColors, patch_drawer.patch_colors);
}
for (i = iStartPoint; i < point_count; i++) {
if (!stream.CanReadCoords()) {
break;
}
coords[i] = mtObject2Bitmap.Transform(stream.ReadCoords());
}
for (i = iStartColor; i < 4; i++) {
if (!stream.CanReadColor()) {
break;
}
FX_RGB_STRUCT<float> rgb = stream.ReadColor();
if (funcs.empty()) {
patch_drawer.patch_colors[i].comp[0] =
static_cast<int32_t>(rgb.red * 255);
patch_drawer.patch_colors[i].comp[1] =
static_cast<int32_t>(rgb.green * 255);
patch_drawer.patch_colors[i].comp[2] =
static_cast<int32_t>(rgb.blue * 255);
} else {
patch_drawer.patch_colors[i].comp[0] = static_cast<int32_t>(
ComponentToShadingIndex(rgb.red, c0_min, c0_max));
patch_drawer.patch_colors[i].comp[1] = 0;
patch_drawer.patch_colors[i].comp[2] = 0;
}
}
CFX_FloatRect bbox = CFX_FloatRect::GetBBox(
pdfium::span(coords).first(static_cast<size_t>(point_count)));
if (bbox.right <= 0 || bbox.left >= (float)pBitmap->GetWidth() ||
bbox.top <= 0 || bbox.bottom >= (float)pBitmap->GetHeight()) {
continue;
}
CubicBezierPatch patch;
patch.points[0][0] = coords[0];
patch.points[0][1] = coords[1];
patch.points[0][2] = coords[2];
patch.points[0][3] = coords[3];
patch.points[1][3] = coords[4];
patch.points[2][3] = coords[5];
patch.points[3][3] = coords[6];
patch.points[3][2] = coords[7];
patch.points[3][1] = coords[8];
patch.points[3][0] = coords[9];
patch.points[2][0] = coords[10];
patch.points[1][0] = coords[11];
if (type == kTensorProductPatchMeshShading) {
patch.points[1][1] = coords[12];
patch.points[1][2] = coords[13];
patch.points[2][2] = coords[14];
patch.points[2][1] = coords[15];
} else {
CHECK_EQ(type, kCoonsPatchMeshShading);
// These equations are from ISO 32000-2:2020, page 267, in
// 8.7.4.5.8 Type 7 (tensor-product patch mesh) shadings:
patch.points[1][1] =
(1.0f / 9.0f) * (-4.0f * patch.points[0][0] +
6.0f * (patch.points[0][1] + patch.points[1][0]) -
2.0f * (patch.points[0][3] + patch.points[3][0]) +
3.0f * (patch.points[3][1] + patch.points[1][3]) -
1.0f * patch.points[3][3]);
patch.points[1][2] =
(1.0f / 9.0f) * (-4.0f * patch.points[0][3] +
6.0f * (patch.points[0][2] + patch.points[1][3]) -
2.0f * (patch.points[0][0] + patch.points[3][3]) +
3.0f * (patch.points[3][2] + patch.points[1][0]) -
1.0f * patch.points[3][0]);
patch.points[2][1] =
(1.0f / 9.0f) * (-4.0f * patch.points[3][0] +
6.0f * (patch.points[3][1] + patch.points[2][0]) -
2.0f * (patch.points[3][3] + patch.points[0][0]) +
3.0f * (patch.points[0][1] + patch.points[2][3]) -
1.0f * patch.points[0][3]);
patch.points[2][2] =
(1.0f / 9.0f) * (-4.0f * patch.points[3][3] +
6.0f * (patch.points[3][2] + patch.points[2][3]) -
2.0f * (patch.points[3][0] + patch.points[0][3]) +
3.0f * (patch.points[0][2] + patch.points[2][0]) -
1.0f * patch.points[0][0]);
}
patch_drawer.Draw(1, 1, 0, 0, patch,
funcs.empty() ? nullptr : &shading_steps);
}
}
} // namespace
// static
void CPDF_RenderShading::Draw(CFX_RenderDevice* pDevice,
CPDF_RenderContext* pContext,
const CPDF_PageObject* pCurObj,
const CPDF_ShadingPattern* pPattern,
const CFX_Matrix& mtMatrix,
const FX_RECT& clip_rect,
int alpha,
const CPDF_RenderOptions& options) {
RetainPtr<CPDF_ColorSpace> pColorSpace = pPattern->GetCS();
if (!pColorSpace) {
return;
}
FX_ARGB background = 0;
RetainPtr<const CPDF_Dictionary> dict =
pPattern->GetShadingObject()->GetDict();
if (!pPattern->IsShadingObject() && dict->KeyExist("Background")) {
RetainPtr<const CPDF_Array> pBackColor = dict->GetArrayFor("Background");
if (pBackColor && pBackColor->size() >= pColorSpace->ComponentCount()) {
std::vector<float> comps = ReadArrayElementsToVector(
pBackColor.Get(), pColorSpace->ComponentCount());
auto rgb = pColorSpace->GetRGBOrZerosOnError(comps);
background = ArgbEncode(255, static_cast<int32_t>(rgb.red * 255),
static_cast<int32_t>(rgb.green * 255),
static_cast<int32_t>(rgb.blue * 255));
}
}
FX_RECT clip_rect_bbox = clip_rect;
if (dict->KeyExist("BBox")) {
clip_rect_bbox.Intersect(
mtMatrix.TransformRect(dict->GetRectFor("BBox")).GetOuterRect());
}
#if defined(PDF_USE_SKIA)
if ((pDevice->GetDeviceCaps(FXDC_RENDER_CAPS) & FXRC_SHADING) &&
pDevice->DrawShading(*pPattern, mtMatrix, clip_rect_bbox, alpha)) {
return;
}
#endif // defined(PDF_USE_SKIA)
CPDF_DeviceBuffer buffer(pContext, pDevice, clip_rect_bbox, pCurObj, 150);
RetainPtr<CFX_DIBitmap> pBitmap = buffer.Initialize();
if (!pBitmap) {
return;
}
if (background != 0) {
pBitmap->Clear(background);
}
const CFX_Matrix final_matrix = mtMatrix * buffer.GetMatrix();
const auto& funcs = pPattern->GetFuncs();
switch (pPattern->GetShadingType()) {
case kInvalidShading:
case kMaxShading:
return;
case kFunctionBasedShading:
DrawFuncShading(pBitmap, final_matrix, dict.Get(), funcs, pColorSpace,
alpha);
break;
case kAxialShading:
DrawAxialShading(pBitmap, final_matrix, dict.Get(), funcs, pColorSpace,
alpha);
break;
case kRadialShading:
DrawRadialShading(pBitmap, final_matrix, dict.Get(), funcs, pColorSpace,
alpha);
break;
case kFreeFormGouraudTriangleMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
RetainPtr<const CPDF_Stream> pStream =
ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawFreeGouraudShading(pBitmap, final_matrix, std::move(pStream), funcs,
pColorSpace, alpha);
}
break;
}
case kLatticeFormGouraudTriangleMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
RetainPtr<const CPDF_Stream> pStream =
ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawLatticeGouraudShading(pBitmap, final_matrix, std::move(pStream),
funcs, pColorSpace, alpha);
}
break;
}
case kCoonsPatchMeshShading:
case kTensorProductPatchMeshShading: {
// The shading object can be a stream or a dictionary. We do not handle
// the case of dictionary at the moment.
RetainPtr<const CPDF_Stream> pStream =
ToStream(pPattern->GetShadingObject());
if (pStream) {
DrawCoonPatchMeshes(pPattern->GetShadingType(), pBitmap, final_matrix,
std::move(pStream), funcs, pColorSpace,
options.GetOptions().bNoPathSmooth, alpha);
}
break;
}
}
if (options.ColorModeIs(CPDF_RenderOptions::kAlpha)) {
pBitmap->SetRedFromAlpha();
} else if (options.ColorModeIs(CPDF_RenderOptions::kGray)) {
pBitmap->ConvertColorScale(0, 0xffffff);
}
buffer.OutputToDevice();
}