blob: a7d2e47ac1acd3a270e2b061bd7beb87bfca4807 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "xfa/fde/cfde_path.h"
#include "third_party/base/stl_util.h"
void CFDE_Path::CloseFigure() {
m_Path.ClosePath();
}
bool CFDE_Path::FigureClosed() const {
const std::vector<FX_PATHPOINT>& points = m_Path.GetPoints();
return points.empty() ? true : points.back().m_CloseFigure;
}
void CFDE_Path::MoveTo(const CFX_PointF& point) {
m_Path.AppendPoint(point, FXPT_TYPE::MoveTo, false);
}
void CFDE_Path::LineTo(const CFX_PointF& point) {
m_Path.AppendPoint(point, FXPT_TYPE::LineTo, false);
}
void CFDE_Path::BezierTo(const CFX_PointF& p1,
const CFX_PointF& p2,
const CFX_PointF& p3) {
m_Path.AppendPoint(p1, FXPT_TYPE::BezierTo, false);
m_Path.AppendPoint(p2, FXPT_TYPE::BezierTo, false);
m_Path.AppendPoint(p3, FXPT_TYPE::BezierTo, false);
}
void CFDE_Path::ArcTo(bool bStart,
const CFX_RectF& rect,
float startAngle,
float endAngle) {
float rx = rect.width / 2;
float ry = rect.height / 2;
float cx = rect.left + rx;
float cy = rect.top + ry;
float alpha = atan2(rx * sin(startAngle), ry * cos(startAngle));
float beta = atan2(rx * sin(endAngle), ry * cos(endAngle));
if (fabs(beta - alpha) > FX_PI) {
if (beta > alpha)
beta -= 2 * FX_PI;
else
alpha -= 2 * FX_PI;
}
float half_delta = (beta - alpha) / 2;
float bcp = 4.0f / 3 * (1 - cos(half_delta)) / sin(half_delta);
float sin_alpha = sin(alpha);
float sin_beta = sin(beta);
float cos_alpha = cos(alpha);
float cos_beta = cos(beta);
if (bStart)
MoveTo(CFX_PointF(cx + rx * cos_alpha, cy + ry * sin_alpha));
BezierTo(CFX_PointF(cx + rx * (cos_alpha - bcp * sin_alpha),
cy + ry * (sin_alpha + bcp * cos_alpha)),
CFX_PointF(cx + rx * (cos_beta + bcp * sin_beta),
cy + ry * (sin_beta - bcp * cos_beta)),
CFX_PointF(cx + rx * cos_beta, cy + ry * sin_beta));
}
void CFDE_Path::AddBezier(const std::vector<CFX_PointF>& points) {
if (points.size() != 4)
return;
MoveTo(points[0]);
BezierTo(points[1], points[2], points[3]);
}
void CFDE_Path::AddBeziers(const std::vector<CFX_PointF>& points) {
int32_t iCount = points.size();
if (iCount < 4)
return;
const CFX_PointF* p = points.data();
const CFX_PointF* pEnd = p + iCount;
MoveTo(p[0]);
for (++p; p <= pEnd - 3; p += 3)
BezierTo(p[0], p[1], p[2]);
}
void CFDE_Path::GetCurveTangents(const std::vector<CFX_PointF>& points,
std::vector<CFX_PointF>* tangents,
bool bClosed,
float fTension) const {
int32_t iCount = pdfium::CollectionSize<int32_t>(points);
tangents->resize(iCount);
if (iCount < 3)
return;
float fCoefficient = fTension / 3.0f;
const CFX_PointF* pPoints = points.data();
CFX_PointF* pTangents = tangents->data();
for (int32_t i = 0; i < iCount; ++i) {
int32_t r = i + 1;
int32_t s = i - 1;
if (r >= iCount)
r = bClosed ? (r - iCount) : (iCount - 1);
if (s < 0)
s = bClosed ? (s + iCount) : 0;
pTangents[i].x += (fCoefficient * (pPoints[r].x - pPoints[s].x));
pTangents[i].y += (fCoefficient * (pPoints[r].y - pPoints[s].y));
}
}
void CFDE_Path::AddCurve(const std::vector<CFX_PointF>& points,
bool bClosed,
float fTension) {
int32_t iLast = pdfium::CollectionSize<int32_t>(points) - 1;
if (iLast < 1)
return;
std::vector<CFX_PointF> tangents;
GetCurveTangents(points, &tangents, bClosed, fTension);
const CFX_PointF* pPoints = points.data();
CFX_PointF* pTangents = tangents.data();
MoveTo(pPoints[0]);
for (int32_t i = 0; i < iLast; ++i) {
BezierTo(CFX_PointF(pPoints[i].x + pTangents[i].x,
pPoints[i].y + pTangents[i].y),
CFX_PointF(pPoints[i + 1].x - pTangents[i + 1].x,
pPoints[i + 1].y - pTangents[i + 1].y),
CFX_PointF(pPoints[i + 1].x, pPoints[i + 1].y));
}
if (bClosed) {
BezierTo(CFX_PointF(pPoints[iLast].x + pTangents[iLast].x,
pPoints[iLast].y + pTangents[iLast].y),
CFX_PointF(pPoints[0].x - pTangents[0].x,
pPoints[0].y - pTangents[0].y),
CFX_PointF(pPoints[0].x, pPoints[0].y));
CloseFigure();
}
}
void CFDE_Path::AddEllipse(const CFX_RectF& rect) {
float fStartAngle = 0;
float fEndAngle = FX_PI / 2;
for (int32_t i = 0; i < 4; ++i) {
ArcTo(i == 0, rect, fStartAngle, fEndAngle);
fStartAngle += FX_PI / 2;
fEndAngle += FX_PI / 2;
}
CloseFigure();
}
void CFDE_Path::AddLine(const CFX_PointF& pt1, const CFX_PointF& pt2) {
std::vector<FX_PATHPOINT>& points = m_Path.GetPoints();
if (points.empty() || fabs(points.back().m_Point.x - pt1.x) > 0.001 ||
fabs(points.back().m_Point.y - pt1.y) > 0.001) {
MoveTo(pt1);
}
LineTo(pt2);
}
void CFDE_Path::AddPath(const CFDE_Path* pSrc, bool bConnect) {
if (!pSrc)
return;
if (pSrc->m_Path.GetPoints().empty())
return;
if (bConnect)
LineTo(pSrc->m_Path.GetPoint(0));
m_Path.Append(&pSrc->m_Path, nullptr);
}
void CFDE_Path::AddPolygon(const std::vector<CFX_PointF>& points) {
size_t iCount = points.size();
if (iCount < 2)
return;
AddLines(points);
const CFX_PointF* p = points.data();
if (fabs(p[0].x - p[iCount - 1].x) < 0.01f ||
fabs(p[0].y - p[iCount - 1].y) < 0.01f) {
LineTo(p[0]);
}
CloseFigure();
}
void CFDE_Path::AddLines(const std::vector<CFX_PointF>& points) {
size_t iCount = points.size();
if (iCount < 2)
return;
const CFX_PointF* p = points.data();
const CFX_PointF* pEnd = p + iCount;
MoveTo(p[0]);
for (++p; p < pEnd; ++p)
LineTo(*p);
}
void CFDE_Path::AddRectangle(const CFX_RectF& rect) {
MoveTo(rect.TopLeft());
LineTo(rect.TopRight());
LineTo(rect.BottomRight());
LineTo(rect.BottomLeft());
CloseFigure();
}
CFX_RectF CFDE_Path::GetBBox() const {
CFX_FloatRect rect = m_Path.GetBoundingBox();
CFX_RectF bbox = CFX_RectF(rect.left, rect.top, rect.Width(), rect.Height());
bbox.Normalize();
return bbox;
}
CFX_RectF CFDE_Path::GetBBox(float fLineWidth, float fMiterLimit) const {
CFX_FloatRect rect = m_Path.GetBoundingBox(fLineWidth, fMiterLimit);
CFX_RectF bbox = CFX_RectF(rect.left, rect.top, rect.Width(), rect.Height());
bbox.Normalize();
return bbox;
}