blob: 1bcb10816318198724c12d2e0e38d02133675314 [file] [log] [blame]
/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2014, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux
* Copyright (c) 2003-2014, Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
* Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#include "opj_includes.h"
/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/
/** @name Local data structures */
/*@{*/
typedef struct dwt_local {
OPJ_INT32* mem;
OPJ_SIZE_T mem_count;
OPJ_INT32 dn;
OPJ_INT32 sn;
OPJ_INT32 cas;
} opj_dwt_t;
typedef union {
OPJ_FLOAT32 f[4];
} opj_v4_t;
typedef struct v4dwt_local {
opj_v4_t* wavelet ;
OPJ_INT32 dn ;
OPJ_INT32 sn ;
OPJ_INT32 cas ;
} opj_v4dwt_t ;
static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */
static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */
static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */
static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */
static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */
static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
/*@}*/
/**
Virtual function type for wavelet transform in 1-D
*/
typedef void (*DWT1DFN)(opj_dwt_t* v);
/** @name Local static functions */
/*@{*/
/**
Forward lazy transform (horizontal)
*/
static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Forward lazy transform (vertical)
*/
static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
/**
Inverse lazy transform (horizontal)
*/
static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a);
/**
Inverse lazy transform (vertical)
*/
static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x);
/**
Forward 5-3 wavelet transform in 1-D
*/
static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Inverse 5-3 wavelet transform in 1-D
*/
static void opj_dwt_decode_1(opj_dwt_t *v);
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Forward 9-7 wavelet transform in 1-D
*/
static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Explicit calculation of the Quantization Stepsizes
*/
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize);
/**
Inverse wavelet transform in 2-D.
*/
static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn);
static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32));
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i);
/* <summary> */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary> */
static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt);
static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size);
static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read);
#ifdef __SSE__
static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c);
static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c);
#else
static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c);
static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c);
#endif
/*@}*/
/*@}*/
#define IDX_S(i) (i)*2
#define IDX_D(i) 1 + (i)* 2
#define UNDERFLOW_SN(i) ((i) >= sn&&sn>0)
#define UNDERFLOW_DN(i) ((i) >= dn&&dn>0)
#define OVERFLOW_S(i) (IDX_S(i) >= a_count)
#define OVERFLOW_D(i) (IDX_D(i) >= a_count)
#define OPJ_S(i) a[IDX_S(i)]
#define OPJ_D(i) a[IDX_D(i)]
#define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
#define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
/* new */
#define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
#define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
/* <summary> */
/* This table contains the norms of the 5-3 wavelets for different bands. */
/* </summary> */
static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
};
/* <summary> */
/* This table contains the norms of the 9-7 wavelets for different bands. */
/* </summary> */
static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
};
/*
==========================================================
local functions
==========================================================
*/
/* <summary> */
/* Forward lazy transform (horizontal). */
/* </summary> */
static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
OPJ_INT32 i;
OPJ_INT32 * l_dest = b;
OPJ_INT32 * l_src = a+cas;
for (i=0; i<sn; ++i) {
*l_dest++ = *l_src;
l_src += 2;
}
l_dest = b + sn;
l_src = a + 1 - cas;
for (i=0; i<dn; ++i) {
*l_dest++=*l_src;
l_src += 2;
}
}
/* <summary> */
/* Forward lazy transform (vertical). */
/* </summary> */
static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) {
OPJ_INT32 i = sn;
OPJ_INT32 * l_dest = b;
OPJ_INT32 * l_src = a+cas;
while (i--) {
*l_dest = *l_src;
l_dest += x;
l_src += 2;
} /* b[i*x]=a[2*i+cas]; */
l_dest = b + sn * x;
l_src = a + 1 - cas;
i = dn;
while (i--) {
*l_dest = *l_src;
l_dest += x;
l_src += 2;
} /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
}
/* <summary> */
/* Inverse lazy transform (horizontal). */
/* </summary> */
static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) {
OPJ_INT32 *ai = a;
OPJ_INT32 *bi = h->mem + h->cas;
OPJ_INT32 i = h->sn;
while( i-- ) {
*bi = *(ai++);
bi += 2;
}
ai = a + h->sn;
bi = h->mem + 1 - h->cas;
i = h->dn ;
while( i-- ) {
*bi = *(ai++);
bi += 2;
}
}
/* <summary> */
/* Inverse lazy transform (vertical). */
/* </summary> */
static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) {
OPJ_INT32 *ai = a;
OPJ_INT32 *bi = v->mem + v->cas;
OPJ_INT32 i = v->sn;
while( i-- ) {
*bi = *ai;
bi += 2;
ai += x;
}
ai = a + (v->sn * x);
bi = v->mem + 1 - v->cas;
i = v->dn ;
while( i-- ) {
*bi = *ai;
bi += 2;
ai += x;
}
}
/* <summary> */
/* Forward 5-3 wavelet transform in 1-D. */
/* </summary> */
static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
OPJ_INT32 i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
}
} else {
if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
OPJ_S(0) *= 2;
else {
for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
}
}
}
/* <summary> */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary> */
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
OPJ_INT32 i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
}
} else {
if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
OPJ_S(0) /= 2;
else {
for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
}
}
}
/* <summary> */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary> */
static void opj_dwt_decode_1(opj_dwt_t *v) {
opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas);
}
/* <summary> */
/* Forward 9-7 wavelet transform in 1-D. */
/* </summary> */
static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
OPJ_INT32 i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++)
OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
for (i = 0; i < sn; i++)
OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
for (i = 0; i < dn; i++)
OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
for (i = 0; i < sn; i++)
OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
for (i = 0; i < dn; i++)
OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */
for (i = 0; i < sn; i++)
OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */
}
} else {
if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++)
OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
for (i = 0; i < sn; i++)
OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
for (i = 0; i < dn; i++)
OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
for (i = 0; i < sn; i++)
OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
for (i = 0; i < dn; i++)
OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */
for (i = 0; i < sn; i++)
OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */
}
}
}
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) {
OPJ_INT32 p, n;
p = opj_int_floorlog2(stepsize) - 13;
n = 11 - opj_int_floorlog2(stepsize);
bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
bandno_stepsize->expn = numbps - p;
}
/*
==========================================================
DWT interface
==========================================================
*/
/* <summary> */
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary> */
static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32))
{
OPJ_INT32 i, j, k;
OPJ_INT32 *a = 00;
OPJ_INT32 *aj = 00;
OPJ_INT32 *bj = 00;
OPJ_INT32 w, l;
OPJ_INT32 rw; /* width of the resolution level computed */
OPJ_INT32 rh; /* height of the resolution level computed */
OPJ_SIZE_T l_data_count;
OPJ_SIZE_T l_data_size;
opj_tcd_resolution_t * l_cur_res = 0;
opj_tcd_resolution_t * l_last_res = 0;
w = tilec->x1-tilec->x0;
l = (OPJ_INT32)tilec->numresolutions-1;
a = tilec->data;
l_cur_res = tilec->resolutions + l;
l_last_res = l_cur_res - 1;
l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32);
l_data_size = l_data_count * (OPJ_UINT32)sizeof(OPJ_INT32);
bj = (OPJ_INT32*)opj_malloc(l_data_size);
if (! bj) {
return OPJ_FALSE;
}
i = l;
while (i--) {
OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */
OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */
OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
OPJ_INT32 dn, sn;
rw = l_cur_res->x1 - l_cur_res->x0;
rh = l_cur_res->y1 - l_cur_res->y0;
rw1 = l_last_res->x1 - l_last_res->x0;
rh1 = l_last_res->y1 - l_last_res->y0;
cas_row = l_cur_res->x0 & 1;
cas_col = l_cur_res->y0 & 1;
sn = rh1;
dn = rh - rh1;
for (j = 0; j < rw; ++j) {
aj = a + j;
for (k = 0; k < rh; ++k) {
bj[k] = aj[k*w];
}
(*p_function) (bj, l_data_count, dn, sn, cas_col);
opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
}
sn = rw1;
dn = rw - rw1;
for (j = 0; j < rh; j++) {
aj = a + j * w;
for (k = 0; k < rw; k++) bj[k] = aj[k];
(*p_function) (bj, l_data_count, dn, sn, cas_row);
opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
}
l_cur_res = l_last_res;
--l_last_res;
}
opj_free(bj);
return OPJ_TRUE;
}
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary> */
OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
{
return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1);
}
/* <summary> */
/* Inverse 5-3 wavelet transform in 2-D. */
/* </summary> */
OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) {
return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1);
}
/* <summary> */
/* Get gain of 5-3 wavelet transform. */
/* </summary> */
OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) {
if (orient == 0)
return 0;
if (orient == 1 || orient == 2)
return 1;
return 2;
}
/* <summary> */
/* Get norm of 5-3 wavelet. */
/* </summary> */
OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) {
return opj_dwt_norms[orient][level];
}
/* <summary> */
/* Forward 9-7 wavelet transform in 2-D. */
/* </summary> */
OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
{
return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real);
}
/* <summary> */
/* Get gain of 9-7 wavelet transform. */
/* </summary> */
OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) {
(void)orient;
return 0;
}
/* <summary> */
/* Get norm of 9-7 wavelet. */
/* </summary> */
OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) {
return opj_dwt_norms_real[orient][level];
}
void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) {
OPJ_UINT32 numbands, bandno;
numbands = 3 * tccp->numresolutions - 2;
for (bandno = 0; bandno < numbands; bandno++) {
OPJ_FLOAT64 stepsize;
OPJ_UINT32 resno, level, orient, gain;
resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
level = tccp->numresolutions - 1 - resno;
gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
stepsize = 1.0;
} else {
OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
stepsize = (1 << (gain)) / norm;
}
opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
}
}
/* <summary> */
/* Determine maximum computed resolution level for inverse wavelet transform */
/* </summary> */
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) {
OPJ_UINT32 mr = 0;
OPJ_UINT32 w;
while( --i ) {
++r;
if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) )
mr = w ;
if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) )
mr = w ;
}
return mr ;
}
/* <summary> */
/* Inverse wavelet transform in 2-D. */
/* </summary> */
static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) {
opj_dwt_t h;
opj_dwt_t v;
opj_tcd_resolution_t* tr = tilec->resolutions;
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0); /* width of the resolution level computed */
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0); /* height of the resolution level computed */
OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
h.mem_count = opj_dwt_max_resolution(tr, numres);
if (((OPJ_UINT32)-1) / (OPJ_UINT32)sizeof(OPJ_INT32) < (OPJ_UINT32)h.mem_count) {
return OPJ_FALSE;
}
h.mem = (OPJ_INT32*)opj_aligned_malloc(h.mem_count * sizeof(OPJ_INT32));
if (! h.mem){
/* FIXME event manager error callback */
return OPJ_FALSE;
}
v.mem_count = h.mem_count;
v.mem = h.mem;
while( --numres) {
OPJ_INT32 * restrict tiledp = tilec->data;
OPJ_UINT32 j;
++tr;
h.sn = (OPJ_INT32)rw;
v.sn = (OPJ_INT32)rh;
rw = (OPJ_UINT32)(tr->x1 - tr->x0);
rh = (OPJ_UINT32)(tr->y1 - tr->y0);
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
h.cas = tr->x0 % 2;
for(j = 0; j < rh; ++j) {
opj_dwt_interleave_h(&h, &tiledp[j*w]);
(dwt_1D)(&h);
memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32));
}
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
v.cas = tr->y0 % 2;
for(j = 0; j < rw; ++j){
OPJ_UINT32 k;
opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w);
(dwt_1D)(&v);
for(k = 0; k < rh; ++k) {
tiledp[k * w + j] = v.mem[k];
}
}
}
opj_aligned_free(h.mem);
return OPJ_TRUE;
}
static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){
OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas);
OPJ_INT32 count = w->sn;
OPJ_INT32 i, k;
for(k = 0; k < 2; ++k){
if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) {
/* Fast code path */
for(i = 0; i < count; ++i){
OPJ_INT32 j = i;
bi[i*8 ] = a[j];
j += x;
bi[i*8 + 1] = a[j];
j += x;
bi[i*8 + 2] = a[j];
j += x;
bi[i*8 + 3] = a[j];
}
}
else {
/* Slow code path */
for(i = 0; i < count; ++i){
OPJ_INT32 j = i;
bi[i*8 ] = a[j];
j += x;
if(j >= size) continue;
bi[i*8 + 1] = a[j];
j += x;
if(j >= size) continue;
bi[i*8 + 2] = a[j];
j += x;
if(j >= size) continue;
bi[i*8 + 3] = a[j]; /* This one*/
}
}
bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas);
a += w->sn;
size -= w->sn;
count = w->dn;
}
}
static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){
opj_v4_t* restrict bi = v->wavelet + v->cas;
OPJ_INT32 i;
for(i = 0; i < v->sn; ++i){
memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
}
a += v->sn * x;
bi = v->wavelet + 1 - v->cas;
for(i = 0; i < v->dn; ++i){
memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
}
}
#ifdef __SSE__
static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){
__m128* restrict vw = (__m128*) w;
OPJ_INT32 i;
/* 4x unrolled loop */
for(i = 0; i < count >> 2; ++i){
*vw = _mm_mul_ps(*vw, c);
vw += 2;
*vw = _mm_mul_ps(*vw, c);
vw += 2;
*vw = _mm_mul_ps(*vw, c);
vw += 2;
*vw = _mm_mul_ps(*vw, c);
vw += 2;
}
count &= 3;
for(i = 0; i < count; ++i){
*vw = _mm_mul_ps(*vw, c);
vw += 2;
}
}
void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){
__m128* restrict vl = (__m128*) l;
__m128* restrict vw = (__m128*) w;
OPJ_INT32 i;
__m128 tmp1, tmp2, tmp3;
tmp1 = vl[0];
for(i = 0; i < m; ++i){
tmp2 = vw[-1];
tmp3 = vw[ 0];
vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
tmp1 = tmp3;
vw += 2;
}
vl = vw - 2;
if(m >= k){
return;
}
c = _mm_add_ps(c, c);
c = _mm_mul_ps(c, vl[0]);
for(; m < k; ++m){
__m128 tmp = vw[-1];
vw[-1] = _mm_add_ps(tmp, c);
vw += 2;
}
}
#else
static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c)
{
OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
OPJ_INT32 i;
for(i = 0; i < count; ++i){
OPJ_FLOAT32 tmp1 = fw[i*8 ];
OPJ_FLOAT32 tmp2 = fw[i*8 + 1];
OPJ_FLOAT32 tmp3 = fw[i*8 + 2];
OPJ_FLOAT32 tmp4 = fw[i*8 + 3];
fw[i*8 ] = tmp1 * c;
fw[i*8 + 1] = tmp2 * c;
fw[i*8 + 2] = tmp3 * c;
fw[i*8 + 3] = tmp4 * c;
}
}
static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c)
{
OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l;
OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
OPJ_INT32 i;
for(i = 0; i < m; ++i){
OPJ_FLOAT32 tmp1_1 = fl[0];
OPJ_FLOAT32 tmp1_2 = fl[1];
OPJ_FLOAT32 tmp1_3 = fl[2];
OPJ_FLOAT32 tmp1_4 = fl[3];
OPJ_FLOAT32 tmp2_1 = fw[-4];
OPJ_FLOAT32 tmp2_2 = fw[-3];
OPJ_FLOAT32 tmp2_3 = fw[-2];
OPJ_FLOAT32 tmp2_4 = fw[-1];
OPJ_FLOAT32 tmp3_1 = fw[0];
OPJ_FLOAT32 tmp3_2 = fw[1];
OPJ_FLOAT32 tmp3_3 = fw[2];
OPJ_FLOAT32 tmp3_4 = fw[3];
fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
fl = fw;
fw += 8;
}
if(m < k){
OPJ_FLOAT32 c1;
OPJ_FLOAT32 c2;
OPJ_FLOAT32 c3;
OPJ_FLOAT32 c4;
c += c;
c1 = fl[0] * c;
c2 = fl[1] * c;
c3 = fl[2] * c;
c4 = fl[3] * c;
for(; m < k; ++m){
OPJ_FLOAT32 tmp1 = fw[-4];
OPJ_FLOAT32 tmp2 = fw[-3];
OPJ_FLOAT32 tmp3 = fw[-2];
OPJ_FLOAT32 tmp4 = fw[-1];
fw[-4] = tmp1 + c1;
fw[-3] = tmp2 + c2;
fw[-2] = tmp3 + c3;
fw[-1] = tmp4 + c4;
fw += 8;
}
}
}
#endif
/* <summary> */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary> */
void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt)
{
OPJ_INT32 a, b;
if(dwt->cas == 0) {
if(!((dwt->dn > 0) || (dwt->sn > 1))){
return;
}
a = 0;
b = 1;
}else{
if(!((dwt->sn > 0) || (dwt->dn > 1))) {
return;
}
a = 1;
b = 0;
}
#ifdef __SSE__
opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K));
opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318));
opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta));
opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma));
opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta));
opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha));
#else
opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K);
opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318);
opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta);
opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma);
opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta);
opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha);
#endif
}
/* <summary> */
/* Inverse 9-7 wavelet transform in 2-D. */
/* </summary> */
OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres)
{
opj_v4dwt_t h;
opj_v4dwt_t v;
opj_tcd_resolution_t* res = tilec->resolutions;
OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */
OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */
OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
OPJ_UINT32 mr = opj_dwt_max_resolution(res, numres);
if (mr >= ((OPJ_UINT32)-5)) {
return OPJ_FALSE;
}
mr += 5;
if (((OPJ_UINT32)-1) / (OPJ_UINT32)sizeof(opj_v4_t) < mr) {
return OPJ_FALSE;
}
h.wavelet = (opj_v4_t*) opj_aligned_malloc(mr * sizeof(opj_v4_t));
if (!h.wavelet) {
/* FIXME event manager error callback */
return OPJ_FALSE;
}
v.wavelet = h.wavelet;
while( --numres) {
OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data;
OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0));
OPJ_INT32 j;
h.sn = (OPJ_INT32)rw;
v.sn = (OPJ_INT32)rh;
++res;
rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */
rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
h.cas = res->x0 % 2;
for(j = (OPJ_INT32)rh; j > 3; j -= 4) {
OPJ_INT32 k;
opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
opj_v4dwt_decode(&h);
for(k = (OPJ_INT32)rw; --k >= 0;){
aj[k ] = h.wavelet[k].f[0];
aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1];
aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3];
}
aj += w*4;
bufsize -= w*4;
}
if (rh & 0x03) {
OPJ_INT32 k;
j = rh & 0x03;
opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
opj_v4dwt_decode(&h);
for(k = (OPJ_INT32)rw; --k >= 0;){
switch(j) {
case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
case 2: aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1];
case 1: aj[k ] = h.wavelet[k].f[0];
}
}
}
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
v.cas = res->y0 % 2;
aj = (OPJ_FLOAT32*) tilec->data;
for(j = (OPJ_INT32)rw; j > 3; j -= 4){
OPJ_UINT32 k;
opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4);
opj_v4dwt_decode(&v);
for(k = 0; k < rh; ++k){
memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
}
aj += 4;
}
if (rw & 0x03){
OPJ_UINT32 k;
j = rw & 0x03;
opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j);
opj_v4dwt_decode(&v);
for(k = 0; k < rh; ++k){
memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32));
}
}
}
opj_aligned_free(h.wavelet);
return OPJ_TRUE;
}