blob: f6f7671190cd5bc5a40a8ccac9b349abc0489e43 [file] [log] [blame]
/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2014, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux
* Copyright (c) 2003-2014, Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
* Copyright (c) 2012, Carl Hetherington
* Copyright (c) 2017, IntoPIX SA <support@intopix.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define OPJ_SKIP_POISON
#include "opj_includes.h"
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#ifdef __SSE2__
#include <emmintrin.h>
#endif
#if defined(__GNUC__)
#pragma GCC poison malloc calloc realloc free
#endif
#include "t1_luts.h"
/** @defgroup T1 T1 - Implementation of the tier-1 coding */
/*@{*/
#define T1_FLAGS(x, y) (t1->flags[x + 1 + ((y / 4) + 1) * (t1->w+2)])
#define opj_t1_setcurctx(curctx, ctxno) curctx = &(mqc)->ctxs[(OPJ_UINT32)(ctxno)]
/** @name Local static functions */
/*@{*/
static INLINE OPJ_BYTE opj_t1_getctxno_zc(opj_mqc_t *mqc, OPJ_UINT32 f);
static INLINE OPJ_UINT32 opj_t1_getctxno_mag(OPJ_UINT32 f);
static OPJ_INT16 opj_t1_getnmsedec_sig(OPJ_UINT32 x, OPJ_UINT32 bitpos);
static OPJ_INT16 opj_t1_getnmsedec_ref(OPJ_UINT32 x, OPJ_UINT32 bitpos);
static INLINE void opj_t1_update_flags(opj_flag_t *flagsp, OPJ_UINT32 ci,
OPJ_UINT32 s, OPJ_UINT32 stride,
OPJ_UINT32 vsc);
/**
Decode significant pass
*/
static INLINE void opj_t1_dec_sigpass_step_raw(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 oneplushalf,
OPJ_UINT32 vsc,
OPJ_UINT32 row);
static INLINE void opj_t1_dec_sigpass_step_mqc(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 oneplushalf,
OPJ_UINT32 row,
OPJ_UINT32 flags_stride,
OPJ_UINT32 vsc);
/**
Encode significant pass
*/
static void opj_t1_enc_sigpass(opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 *nmsedec,
OPJ_BYTE type,
OPJ_UINT32 cblksty);
/**
Decode significant pass
*/
static void opj_t1_dec_sigpass_raw(
opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 cblksty);
/**
Encode refinement pass
*/
static void opj_t1_enc_refpass(opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 *nmsedec,
OPJ_BYTE type);
/**
Decode refinement pass
*/
static void opj_t1_dec_refpass_raw(
opj_t1_t *t1,
OPJ_INT32 bpno);
/**
Decode refinement pass
*/
static INLINE void opj_t1_dec_refpass_step_raw(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 poshalf,
OPJ_UINT32 row);
static INLINE void opj_t1_dec_refpass_step_mqc(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 poshalf,
OPJ_UINT32 row);
/**
Decode clean-up pass
*/
static void opj_t1_dec_clnpass_step(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 oneplushalf,
OPJ_UINT32 row,
OPJ_UINT32 vsc);
/**
Encode clean-up pass
*/
static void opj_t1_enc_clnpass(
opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 *nmsedec,
OPJ_UINT32 cblksty);
static OPJ_FLOAT64 opj_t1_getwmsedec(
OPJ_INT32 nmsedec,
OPJ_UINT32 compno,
OPJ_UINT32 level,
OPJ_UINT32 orient,
OPJ_INT32 bpno,
OPJ_UINT32 qmfbid,
OPJ_FLOAT64 stepsize,
OPJ_UINT32 numcomps,
const OPJ_FLOAT64 * mct_norms,
OPJ_UINT32 mct_numcomps);
static void opj_t1_encode_cblk(opj_t1_t *t1,
opj_tcd_cblk_enc_t* cblk,
OPJ_UINT32 orient,
OPJ_UINT32 compno,
OPJ_UINT32 level,
OPJ_UINT32 qmfbid,
OPJ_FLOAT64 stepsize,
OPJ_UINT32 cblksty,
OPJ_UINT32 numcomps,
opj_tcd_tile_t * tile,
const OPJ_FLOAT64 * mct_norms,
OPJ_UINT32 mct_numcomps);
/**
Decode 1 code-block
@param t1 T1 handle
@param cblk Code-block coding parameters
@param orient
@param roishift Region of interest shifting value
@param cblksty Code-block style
@param p_manager the event manager
@param p_manager_mutex mutex for the event manager
@param check_pterm whether PTERM correct termination should be checked
*/
static OPJ_BOOL opj_t1_decode_cblk(opj_t1_t *t1,
opj_tcd_cblk_dec_t* cblk,
OPJ_UINT32 orient,
OPJ_UINT32 roishift,
OPJ_UINT32 cblksty,
opj_event_mgr_t *p_manager,
opj_mutex_t* p_manager_mutex,
OPJ_BOOL check_pterm);
static OPJ_BOOL opj_t1_allocate_buffers(opj_t1_t *t1,
OPJ_UINT32 w,
OPJ_UINT32 h);
/*@}*/
/*@}*/
/* ----------------------------------------------------------------------- */
static INLINE OPJ_BYTE opj_t1_getctxno_zc(opj_mqc_t *mqc, OPJ_UINT32 f)
{
return mqc->lut_ctxno_zc_orient[(f & T1_SIGMA_NEIGHBOURS)];
}
static INLINE OPJ_UINT32 opj_t1_getctxtno_sc_or_spb_index(OPJ_UINT32 fX,
OPJ_UINT32 pfX,
OPJ_UINT32 nfX,
OPJ_UINT32 ci)
{
/*
0 pfX T1_CHI_THIS T1_LUT_SGN_W
1 tfX T1_SIGMA_1 T1_LUT_SIG_N
2 nfX T1_CHI_THIS T1_LUT_SGN_E
3 tfX T1_SIGMA_3 T1_LUT_SIG_W
4 fX T1_CHI_(THIS - 1) T1_LUT_SGN_N
5 tfX T1_SIGMA_5 T1_LUT_SIG_E
6 fX T1_CHI_(THIS + 1) T1_LUT_SGN_S
7 tfX T1_SIGMA_7 T1_LUT_SIG_S
*/
OPJ_UINT32 lu = (fX >> (ci * 3U)) & (T1_SIGMA_1 | T1_SIGMA_3 | T1_SIGMA_5 |
T1_SIGMA_7);
lu |= (pfX >> (T1_CHI_THIS_I + (ci * 3U))) & (1U << 0);
lu |= (nfX >> (T1_CHI_THIS_I - 2U + (ci * 3U))) & (1U << 2);
if (ci == 0U) {
lu |= (fX >> (T1_CHI_0_I - 4U)) & (1U << 4);
} else {
lu |= (fX >> (T1_CHI_1_I - 4U + ((ci - 1U) * 3U))) & (1U << 4);
}
lu |= (fX >> (T1_CHI_2_I - 6U + (ci * 3U))) & (1U << 6);
return lu;
}
static INLINE OPJ_BYTE opj_t1_getctxno_sc(OPJ_UINT32 lu)
{
return lut_ctxno_sc[lu];
}
static INLINE OPJ_UINT32 opj_t1_getctxno_mag(OPJ_UINT32 f)
{
OPJ_UINT32 tmp = (f & T1_SIGMA_NEIGHBOURS) ? T1_CTXNO_MAG + 1 : T1_CTXNO_MAG;
OPJ_UINT32 tmp2 = (f & T1_MU_0) ? T1_CTXNO_MAG + 2 : tmp;
return tmp2;
}
static INLINE OPJ_BYTE opj_t1_getspb(OPJ_UINT32 lu)
{
return lut_spb[lu];
}
static OPJ_INT16 opj_t1_getnmsedec_sig(OPJ_UINT32 x, OPJ_UINT32 bitpos)
{
if (bitpos > 0) {
return lut_nmsedec_sig[(x >> (bitpos)) & ((1 << T1_NMSEDEC_BITS) - 1)];
}
return lut_nmsedec_sig0[x & ((1 << T1_NMSEDEC_BITS) - 1)];
}
static OPJ_INT16 opj_t1_getnmsedec_ref(OPJ_UINT32 x, OPJ_UINT32 bitpos)
{
if (bitpos > 0) {
return lut_nmsedec_ref[(x >> (bitpos)) & ((1 << T1_NMSEDEC_BITS) - 1)];
}
return lut_nmsedec_ref0[x & ((1 << T1_NMSEDEC_BITS) - 1)];
}
#define opj_t1_update_flags_macro(flags, flagsp, ci, s, stride, vsc) \
{ \
/* east */ \
flagsp[-1] |= T1_SIGMA_5 << (3U * ci); \
\
/* mark target as significant */ \
flags |= ((s << T1_CHI_1_I) | T1_SIGMA_4) << (3U * ci); \
\
/* west */ \
flagsp[1] |= T1_SIGMA_3 << (3U * ci); \
\
/* north-west, north, north-east */ \
if (ci == 0U && !(vsc)) { \
opj_flag_t* north = flagsp - (stride); \
*north |= (s << T1_CHI_5_I) | T1_SIGMA_16; \
north[-1] |= T1_SIGMA_17; \
north[1] |= T1_SIGMA_15; \
} \
\
/* south-west, south, south-east */ \
if (ci == 3U) { \
opj_flag_t* south = flagsp + (stride); \
*south |= (s << T1_CHI_0_I) | T1_SIGMA_1; \
south[-1] |= T1_SIGMA_2; \
south[1] |= T1_SIGMA_0; \
} \
}
static INLINE void opj_t1_update_flags(opj_flag_t *flagsp, OPJ_UINT32 ci,
OPJ_UINT32 s, OPJ_UINT32 stride,
OPJ_UINT32 vsc)
{
opj_t1_update_flags_macro(*flagsp, flagsp, ci, s, stride, vsc);
}
/**
Encode significant pass
*/
static INLINE void opj_t1_enc_sigpass_step(opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 bpno,
OPJ_INT32 one,
OPJ_INT32 *nmsedec,
OPJ_BYTE type,
OPJ_UINT32 ci,
OPJ_UINT32 vsc)
{
OPJ_UINT32 v;
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
OPJ_UINT32 const flags = *flagsp;
if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) == 0U &&
(flags & (T1_SIGMA_NEIGHBOURS << (ci * 3U))) != 0U) {
OPJ_UINT32 ctxt1 = opj_t1_getctxno_zc(mqc, flags >> (ci * 3U));
v = (opj_int_abs(*datap) & one) ? 1 : 0;
#ifdef DEBUG_ENC_SIG
fprintf(stderr, " ctxt1=%d\n", ctxt1);
#endif
opj_mqc_setcurctx(mqc, ctxt1);
if (type == T1_TYPE_RAW) { /* BYPASS/LAZY MODE */
opj_mqc_bypass_enc(mqc, v);
} else {
opj_mqc_encode(mqc, v);
}
if (v) {
OPJ_UINT32 lu = opj_t1_getctxtno_sc_or_spb_index(
*flagsp,
flagsp[-1], flagsp[1],
ci);
OPJ_UINT32 ctxt2 = opj_t1_getctxno_sc(lu);
v = *datap < 0 ? 1U : 0U;
*nmsedec += opj_t1_getnmsedec_sig((OPJ_UINT32)opj_int_abs(*datap),
(OPJ_UINT32)bpno);
#ifdef DEBUG_ENC_SIG
fprintf(stderr, " ctxt2=%d\n", ctxt2);
#endif
opj_mqc_setcurctx(mqc, ctxt2);
if (type == T1_TYPE_RAW) { /* BYPASS/LAZY MODE */
opj_mqc_bypass_enc(mqc, v);
} else {
OPJ_UINT32 spb = opj_t1_getspb(lu);
#ifdef DEBUG_ENC_SIG
fprintf(stderr, " spb=%d\n", spb);
#endif
opj_mqc_encode(mqc, v ^ spb);
}
opj_t1_update_flags(flagsp, ci, v, t1->w + 2, vsc);
}
*flagsp |= T1_PI_THIS << (ci * 3U);
}
}
static INLINE void opj_t1_dec_sigpass_step_raw(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 oneplushalf,
OPJ_UINT32 vsc,
OPJ_UINT32 ci)
{
OPJ_UINT32 v;
opj_mqc_t *mqc = &(t1->mqc); /* RAW component */
OPJ_UINT32 const flags = *flagsp;
if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) == 0U &&
(flags & (T1_SIGMA_NEIGHBOURS << (ci * 3U))) != 0U) {
if (opj_mqc_raw_decode(mqc)) {
v = opj_mqc_raw_decode(mqc);
*datap = v ? -oneplushalf : oneplushalf;
opj_t1_update_flags(flagsp, ci, v, t1->w + 2, vsc);
}
*flagsp |= T1_PI_THIS << (ci * 3U);
}
}
#define opj_t1_dec_sigpass_step_mqc_macro(flags, flagsp, flags_stride, data, \
data_stride, ci, mqc, curctx, \
v, a, c, ct, oneplushalf, vsc) \
{ \
if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) == 0U && \
(flags & (T1_SIGMA_NEIGHBOURS << (ci * 3U))) != 0U) { \
OPJ_UINT32 ctxt1 = opj_t1_getctxno_zc(mqc, flags >> (ci * 3U)); \
opj_t1_setcurctx(curctx, ctxt1); \
opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
if (v) { \
OPJ_UINT32 lu = opj_t1_getctxtno_sc_or_spb_index( \
flags, \
flagsp[-1], flagsp[1], \
ci); \
OPJ_UINT32 ctxt2 = opj_t1_getctxno_sc(lu); \
OPJ_UINT32 spb = opj_t1_getspb(lu); \
opj_t1_setcurctx(curctx, ctxt2); \
opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
v = v ^ spb; \
data[ci*data_stride] = v ? -oneplushalf : oneplushalf; \
opj_t1_update_flags_macro(flags, flagsp, ci, v, flags_stride, vsc); \
} \
flags |= T1_PI_THIS << (ci * 3U); \
} \
}
static INLINE void opj_t1_dec_sigpass_step_mqc(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 oneplushalf,
OPJ_UINT32 ci,
OPJ_UINT32 flags_stride,
OPJ_UINT32 vsc)
{
OPJ_UINT32 v;
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
opj_t1_dec_sigpass_step_mqc_macro(*flagsp, flagsp, flags_stride, datap,
0, ci, mqc, mqc->curctx,
v, mqc->a, mqc->c, mqc->ct, oneplushalf, vsc);
}
static void opj_t1_enc_sigpass(opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 *nmsedec,
OPJ_BYTE type,
OPJ_UINT32 cblksty
)
{
OPJ_UINT32 i, k;
OPJ_INT32 const one = 1 << (bpno + T1_NMSEDEC_FRACBITS);
opj_flag_t* f = &T1_FLAGS(0, 0);
OPJ_UINT32 const extra = 2;
*nmsedec = 0;
#ifdef DEBUG_ENC_SIG
fprintf(stderr, "enc_sigpass: bpno=%d\n", bpno);
#endif
for (k = 0; k < (t1->h & ~3U); k += 4) {
#ifdef DEBUG_ENC_SIG
fprintf(stderr, " k=%d\n", k);
#endif
for (i = 0; i < t1->w; ++i) {
#ifdef DEBUG_ENC_SIG
fprintf(stderr, " i=%d\n", i);
#endif
if (*f == 0U) {
/* Nothing to do for any of the 4 data points */
f++;
continue;
}
opj_t1_enc_sigpass_step(
t1,
f,
&t1->data[((k + 0) * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
0, cblksty & J2K_CCP_CBLKSTY_VSC);
opj_t1_enc_sigpass_step(
t1,
f,
&t1->data[((k + 1) * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
1, 0);
opj_t1_enc_sigpass_step(
t1,
f,
&t1->data[((k + 2) * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
2, 0);
opj_t1_enc_sigpass_step(
t1,
f,
&t1->data[((k + 3) * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
3, 0);
++f;
}
f += extra;
}
if (k < t1->h) {
OPJ_UINT32 j;
#ifdef DEBUG_ENC_SIG
fprintf(stderr, " k=%d\n", k);
#endif
for (i = 0; i < t1->w; ++i) {
#ifdef DEBUG_ENC_SIG
fprintf(stderr, " i=%d\n", i);
#endif
if (*f == 0U) {
/* Nothing to do for any of the 4 data points */
f++;
continue;
}
for (j = k; j < t1->h; ++j) {
opj_t1_enc_sigpass_step(
t1,
f,
&t1->data[(j * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
j - k,
(j == k && (cblksty & J2K_CCP_CBLKSTY_VSC) != 0));
}
++f;
}
}
}
static void opj_t1_dec_sigpass_raw(
opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 cblksty)
{
OPJ_INT32 one, half, oneplushalf;
OPJ_UINT32 i, j, k;
OPJ_INT32 *data = t1->data;
opj_flag_t *flagsp = &T1_FLAGS(0, 0);
const OPJ_UINT32 l_w = t1->w;
one = 1 << bpno;
half = one >> 1;
oneplushalf = one | half;
for (k = 0; k < (t1->h & ~3U); k += 4, flagsp += 2, data += 3 * l_w) {
for (i = 0; i < l_w; ++i, ++flagsp, ++data) {
opj_flag_t flags = *flagsp;
if (flags != 0) {
opj_t1_dec_sigpass_step_raw(
t1,
flagsp,
data,
oneplushalf,
cblksty & J2K_CCP_CBLKSTY_VSC, /* vsc */
0U);
opj_t1_dec_sigpass_step_raw(
t1,
flagsp,
data + l_w,
oneplushalf,
OPJ_FALSE, /* vsc */
1U);
opj_t1_dec_sigpass_step_raw(
t1,
flagsp,
data + 2 * l_w,
oneplushalf,
OPJ_FALSE, /* vsc */
2U);
opj_t1_dec_sigpass_step_raw(
t1,
flagsp,
data + 3 * l_w,
oneplushalf,
OPJ_FALSE, /* vsc */
3U);
}
}
}
if (k < t1->h) {
for (i = 0; i < l_w; ++i, ++flagsp, ++data) {
for (j = 0; j < t1->h - k; ++j) {
opj_t1_dec_sigpass_step_raw(
t1,
flagsp,
data + j * l_w,
oneplushalf,
cblksty & J2K_CCP_CBLKSTY_VSC, /* vsc */
j);
}
}
}
}
#define opj_t1_dec_sigpass_mqc_internal(t1, bpno, vsc, w, h, flags_stride) \
{ \
OPJ_INT32 one, half, oneplushalf; \
OPJ_UINT32 i, j, k; \
register OPJ_INT32 *data = t1->data; \
register opj_flag_t *flagsp = &t1->flags[(flags_stride) + 1]; \
const OPJ_UINT32 l_w = w; \
opj_mqc_t* mqc = &(t1->mqc); \
DOWNLOAD_MQC_VARIABLES(mqc, curctx, c, a, ct); \
register OPJ_UINT32 v; \
one = 1 << bpno; \
half = one >> 1; \
oneplushalf = one | half; \
for (k = 0; k < (h & ~3u); k += 4, data += 3*l_w, flagsp += 2) { \
for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
opj_flag_t flags = *flagsp; \
if( flags != 0 ) { \
opj_t1_dec_sigpass_step_mqc_macro( \
flags, flagsp, flags_stride, data, \
l_w, 0, mqc, curctx, v, a, c, ct, oneplushalf, vsc); \
opj_t1_dec_sigpass_step_mqc_macro( \
flags, flagsp, flags_stride, data, \
l_w, 1, mqc, curctx, v, a, c, ct, oneplushalf, OPJ_FALSE); \
opj_t1_dec_sigpass_step_mqc_macro( \
flags, flagsp, flags_stride, data, \
l_w, 2, mqc, curctx, v, a, c, ct, oneplushalf, OPJ_FALSE); \
opj_t1_dec_sigpass_step_mqc_macro( \
flags, flagsp, flags_stride, data, \
l_w, 3, mqc, curctx, v, a, c, ct, oneplushalf, OPJ_FALSE); \
*flagsp = flags; \
} \
} \
} \
UPLOAD_MQC_VARIABLES(mqc, curctx, c, a, ct); \
if( k < h ) { \
for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
for (j = 0; j < h - k; ++j) { \
opj_t1_dec_sigpass_step_mqc(t1, flagsp, \
data + j * l_w, oneplushalf, j, flags_stride, vsc); \
} \
} \
} \
}
static void opj_t1_dec_sigpass_mqc_64x64_novsc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_sigpass_mqc_internal(t1, bpno, OPJ_FALSE, 64, 64, 66);
}
static void opj_t1_dec_sigpass_mqc_64x64_vsc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_sigpass_mqc_internal(t1, bpno, OPJ_TRUE, 64, 64, 66);
}
static void opj_t1_dec_sigpass_mqc_generic_novsc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_sigpass_mqc_internal(t1, bpno, OPJ_FALSE, t1->w, t1->h,
t1->w + 2U);
}
static void opj_t1_dec_sigpass_mqc_generic_vsc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_sigpass_mqc_internal(t1, bpno, OPJ_TRUE, t1->w, t1->h,
t1->w + 2U);
}
static void opj_t1_dec_sigpass_mqc(
opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 cblksty)
{
if (t1->w == 64 && t1->h == 64) {
if (cblksty & J2K_CCP_CBLKSTY_VSC) {
opj_t1_dec_sigpass_mqc_64x64_vsc(t1, bpno);
} else {
opj_t1_dec_sigpass_mqc_64x64_novsc(t1, bpno);
}
} else {
if (cblksty & J2K_CCP_CBLKSTY_VSC) {
opj_t1_dec_sigpass_mqc_generic_vsc(t1, bpno);
} else {
opj_t1_dec_sigpass_mqc_generic_novsc(t1, bpno);
}
}
}
/**
Encode refinement pass step
*/
static INLINE void opj_t1_enc_refpass_step(opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 bpno,
OPJ_INT32 one,
OPJ_INT32 *nmsedec,
OPJ_BYTE type,
OPJ_UINT32 ci)
{
OPJ_UINT32 v;
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
OPJ_UINT32 const shift_flags =
(*flagsp >> (ci * 3U));
if ((shift_flags & (T1_SIGMA_THIS | T1_PI_THIS)) == T1_SIGMA_THIS) {
OPJ_UINT32 ctxt = opj_t1_getctxno_mag(shift_flags);
*nmsedec += opj_t1_getnmsedec_ref((OPJ_UINT32)opj_int_abs(*datap),
(OPJ_UINT32)bpno);
v = (opj_int_abs(*datap) & one) ? 1 : 0;
#ifdef DEBUG_ENC_REF
fprintf(stderr, " ctxt=%d\n", ctxt);
#endif
opj_mqc_setcurctx(mqc, ctxt);
if (type == T1_TYPE_RAW) { /* BYPASS/LAZY MODE */
opj_mqc_bypass_enc(mqc, v);
} else {
opj_mqc_encode(mqc, v);
}
*flagsp |= T1_MU_THIS << (ci * 3U);
}
}
static INLINE void opj_t1_dec_refpass_step_raw(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 poshalf,
OPJ_UINT32 ci)
{
OPJ_UINT32 v;
opj_mqc_t *mqc = &(t1->mqc); /* RAW component */
if ((*flagsp & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) ==
(T1_SIGMA_THIS << (ci * 3U))) {
v = opj_mqc_raw_decode(mqc);
*datap += (v ^ (*datap < 0)) ? poshalf : -poshalf;
*flagsp |= T1_MU_THIS << (ci * 3U);
}
}
#define opj_t1_dec_refpass_step_mqc_macro(flags, data, data_stride, ci, \
mqc, curctx, v, a, c, ct, poshalf) \
{ \
if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) == \
(T1_SIGMA_THIS << (ci * 3U))) { \
OPJ_UINT32 ctxt = opj_t1_getctxno_mag(flags >> (ci * 3U)); \
opj_t1_setcurctx(curctx, ctxt); \
opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
data[ci*data_stride] += (v ^ (data[ci*data_stride] < 0)) ? poshalf : -poshalf; \
flags |= T1_MU_THIS << (ci * 3U); \
} \
}
static INLINE void opj_t1_dec_refpass_step_mqc(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 poshalf,
OPJ_UINT32 ci)
{
OPJ_UINT32 v;
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
opj_t1_dec_refpass_step_mqc_macro(*flagsp, datap, 0, ci,
mqc, mqc->curctx, v, mqc->a, mqc->c,
mqc->ct, poshalf);
}
static void opj_t1_enc_refpass(
opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 *nmsedec,
OPJ_BYTE type)
{
OPJ_UINT32 i, k;
const OPJ_INT32 one = 1 << (bpno + T1_NMSEDEC_FRACBITS);
opj_flag_t* f = &T1_FLAGS(0, 0);
const OPJ_UINT32 extra = 2U;
*nmsedec = 0;
#ifdef DEBUG_ENC_REF
fprintf(stderr, "enc_refpass: bpno=%d\n", bpno);
#endif
for (k = 0; k < (t1->h & ~3U); k += 4) {
#ifdef DEBUG_ENC_REF
fprintf(stderr, " k=%d\n", k);
#endif
for (i = 0; i < t1->w; ++i) {
#ifdef DEBUG_ENC_REF
fprintf(stderr, " i=%d\n", i);
#endif
if ((*f & (T1_SIGMA_4 | T1_SIGMA_7 | T1_SIGMA_10 | T1_SIGMA_13)) == 0) {
/* none significant */
f++;
continue;
}
if ((*f & (T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3)) ==
(T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3)) {
/* all processed by sigpass */
f++;
continue;
}
opj_t1_enc_refpass_step(
t1,
f,
&t1->data[((k + 0) * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
0);
opj_t1_enc_refpass_step(
t1,
f,
&t1->data[((k + 1) * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
1);
opj_t1_enc_refpass_step(
t1,
f,
&t1->data[((k + 2) * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
2);
opj_t1_enc_refpass_step(
t1,
f,
&t1->data[((k + 3) * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
3);
++f;
}
f += extra;
}
if (k < t1->h) {
OPJ_UINT32 j;
#ifdef DEBUG_ENC_REF
fprintf(stderr, " k=%d\n", k);
#endif
for (i = 0; i < t1->w; ++i) {
#ifdef DEBUG_ENC_REF
fprintf(stderr, " i=%d\n", i);
#endif
if ((*f & (T1_SIGMA_4 | T1_SIGMA_7 | T1_SIGMA_10 | T1_SIGMA_13)) == 0) {
/* none significant */
f++;
continue;
}
for (j = k; j < t1->h; ++j) {
opj_t1_enc_refpass_step(
t1,
f,
&t1->data[(j * t1->data_stride) + i],
bpno,
one,
nmsedec,
type,
j - k);
}
++f;
}
}
}
static void opj_t1_dec_refpass_raw(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
OPJ_INT32 one, poshalf;
OPJ_UINT32 i, j, k;
OPJ_INT32 *data = t1->data;
opj_flag_t *flagsp = &T1_FLAGS(0, 0);
const OPJ_UINT32 l_w = t1->w;
one = 1 << bpno;
poshalf = one >> 1;
for (k = 0; k < (t1->h & ~3U); k += 4, flagsp += 2, data += 3 * l_w) {
for (i = 0; i < l_w; ++i, ++flagsp, ++data) {
opj_flag_t flags = *flagsp;
if (flags != 0) {
opj_t1_dec_refpass_step_raw(
t1,
flagsp,
data,
poshalf,
0U);
opj_t1_dec_refpass_step_raw(
t1,
flagsp,
data + l_w,
poshalf,
1U);
opj_t1_dec_refpass_step_raw(
t1,
flagsp,
data + 2 * l_w,
poshalf,
2U);
opj_t1_dec_refpass_step_raw(
t1,
flagsp,
data + 3 * l_w,
poshalf,
3U);
}
}
}
if (k < t1->h) {
for (i = 0; i < l_w; ++i, ++flagsp, ++data) {
for (j = 0; j < t1->h - k; ++j) {
opj_t1_dec_refpass_step_raw(
t1,
flagsp,
data + j * l_w,
poshalf,
j);
}
}
}
}
#define opj_t1_dec_refpass_mqc_internal(t1, bpno, w, h, flags_stride) \
{ \
OPJ_INT32 one, poshalf; \
OPJ_UINT32 i, j, k; \
register OPJ_INT32 *data = t1->data; \
register opj_flag_t *flagsp = &t1->flags[flags_stride + 1]; \
const OPJ_UINT32 l_w = w; \
opj_mqc_t* mqc = &(t1->mqc); \
DOWNLOAD_MQC_VARIABLES(mqc, curctx, c, a, ct); \
register OPJ_UINT32 v; \
one = 1 << bpno; \
poshalf = one >> 1; \
for (k = 0; k < (h & ~3u); k += 4, data += 3*l_w, flagsp += 2) { \
for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
opj_flag_t flags = *flagsp; \
if( flags != 0 ) { \
opj_t1_dec_refpass_step_mqc_macro( \
flags, data, l_w, 0, \
mqc, curctx, v, a, c, ct, poshalf); \
opj_t1_dec_refpass_step_mqc_macro( \
flags, data, l_w, 1, \
mqc, curctx, v, a, c, ct, poshalf); \
opj_t1_dec_refpass_step_mqc_macro( \
flags, data, l_w, 2, \
mqc, curctx, v, a, c, ct, poshalf); \
opj_t1_dec_refpass_step_mqc_macro( \
flags, data, l_w, 3, \
mqc, curctx, v, a, c, ct, poshalf); \
*flagsp = flags; \
} \
} \
} \
UPLOAD_MQC_VARIABLES(mqc, curctx, c, a, ct); \
if( k < h ) { \
for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
for (j = 0; j < h - k; ++j) { \
opj_t1_dec_refpass_step_mqc(t1, flagsp, data + j * l_w, poshalf, j); \
} \
} \
} \
}
static void opj_t1_dec_refpass_mqc_64x64(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_refpass_mqc_internal(t1, bpno, 64, 64, 66);
}
static void opj_t1_dec_refpass_mqc_generic(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_refpass_mqc_internal(t1, bpno, t1->w, t1->h, t1->w + 2U);
}
static void opj_t1_dec_refpass_mqc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
if (t1->w == 64 && t1->h == 64) {
opj_t1_dec_refpass_mqc_64x64(t1, bpno);
} else {
opj_t1_dec_refpass_mqc_generic(t1, bpno);
}
}
/**
Encode clean-up pass step
*/
static void opj_t1_enc_clnpass_step(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 bpno,
OPJ_INT32 one,
OPJ_INT32 *nmsedec,
OPJ_UINT32 agg,
OPJ_UINT32 runlen,
OPJ_UINT32 lim,
OPJ_UINT32 cblksty)
{
OPJ_UINT32 v;
OPJ_UINT32 ci;
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
const OPJ_UINT32 check = (T1_SIGMA_4 | T1_SIGMA_7 | T1_SIGMA_10 | T1_SIGMA_13 |
T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3);
if ((*flagsp & check) == check) {
if (runlen == 0) {
*flagsp &= ~(T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3);
} else if (runlen == 1) {
*flagsp &= ~(T1_PI_1 | T1_PI_2 | T1_PI_3);
} else if (runlen == 2) {
*flagsp &= ~(T1_PI_2 | T1_PI_3);
} else if (runlen == 3) {
*flagsp &= ~(T1_PI_3);
}
return;
}
for (ci = runlen; ci < lim; ++ci) {
OPJ_UINT32 vsc;
opj_flag_t flags;
OPJ_UINT32 ctxt1;
flags = *flagsp;
if ((agg != 0) && (ci == runlen)) {
goto LABEL_PARTIAL;
}
if (!(flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U)))) {
ctxt1 = opj_t1_getctxno_zc(mqc, flags >> (ci * 3U));
#ifdef DEBUG_ENC_CLN
printf(" ctxt1=%d\n", ctxt1);
#endif
opj_mqc_setcurctx(mqc, ctxt1);
v = (opj_int_abs(*datap) & one) ? 1 : 0;
opj_mqc_encode(mqc, v);
if (v) {
OPJ_UINT32 ctxt2, spb;
OPJ_UINT32 lu;
LABEL_PARTIAL:
lu = opj_t1_getctxtno_sc_or_spb_index(
*flagsp,
flagsp[-1], flagsp[1],
ci);
*nmsedec += opj_t1_getnmsedec_sig((OPJ_UINT32)opj_int_abs(*datap),
(OPJ_UINT32)bpno);
ctxt2 = opj_t1_getctxno_sc(lu);
#ifdef DEBUG_ENC_CLN
printf(" ctxt2=%d\n", ctxt2);
#endif
opj_mqc_setcurctx(mqc, ctxt2);
v = *datap < 0 ? 1U : 0U;
spb = opj_t1_getspb(lu);
#ifdef DEBUG_ENC_CLN
printf(" spb=%d\n", spb);
#endif
opj_mqc_encode(mqc, v ^ spb);
vsc = ((cblksty & J2K_CCP_CBLKSTY_VSC) && (ci == 0)) ? 1 : 0;
opj_t1_update_flags(flagsp, ci, v, t1->w + 2U, vsc);
}
}
*flagsp &= ~(T1_PI_THIS << (3U * ci));
datap += t1->data_stride;
}
}
#define opj_t1_dec_clnpass_step_macro(check_flags, partial, \
flags, flagsp, flags_stride, data, \
data_stride, ci, mqc, curctx, \
v, a, c, ct, oneplushalf, vsc) \
{ \
if ( !check_flags || !(flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U)))) {\
do { \
if( !partial ) { \
OPJ_UINT32 ctxt1 = opj_t1_getctxno_zc(mqc, flags >> (ci * 3U)); \
opj_t1_setcurctx(curctx, ctxt1); \
opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
if( !v ) \
break; \
} \
{ \
OPJ_UINT32 lu = opj_t1_getctxtno_sc_or_spb_index( \
flags, flagsp[-1], flagsp[1], \
ci); \
opj_t1_setcurctx(curctx, opj_t1_getctxno_sc(lu)); \
opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
v = v ^ opj_t1_getspb(lu); \
data[ci*data_stride] = v ? -oneplushalf : oneplushalf; \
opj_t1_update_flags_macro(flags, flagsp, ci, v, flags_stride, vsc); \
} \
} while(0); \
} \
}
static void opj_t1_dec_clnpass_step(
opj_t1_t *t1,
opj_flag_t *flagsp,
OPJ_INT32 *datap,
OPJ_INT32 oneplushalf,
OPJ_UINT32 ci,
OPJ_UINT32 vsc)
{
OPJ_UINT32 v;
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE,
*flagsp, flagsp, t1->w + 2U, datap,
0, ci, mqc, mqc->curctx,
v, mqc->a, mqc->c, mqc->ct, oneplushalf, vsc);
}
static void opj_t1_enc_clnpass(
opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 *nmsedec,
OPJ_UINT32 cblksty)
{
OPJ_UINT32 i, k;
const OPJ_INT32 one = 1 << (bpno + T1_NMSEDEC_FRACBITS);
OPJ_UINT32 agg, runlen;
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
*nmsedec = 0;
#ifdef DEBUG_ENC_CLN
printf("enc_clnpass: bpno=%d\n", bpno);
#endif
for (k = 0; k < (t1->h & ~3U); k += 4) {
#ifdef DEBUG_ENC_CLN
printf(" k=%d\n", k);
#endif
for (i = 0; i < t1->w; ++i) {
#ifdef DEBUG_ENC_CLN
printf(" i=%d\n", i);
#endif
agg = !(T1_FLAGS(i, k));
#ifdef DEBUG_ENC_CLN
printf(" agg=%d\n", agg);
#endif
if (agg) {
for (runlen = 0; runlen < 4; ++runlen) {
if (opj_int_abs(t1->data[((k + runlen)*t1->data_stride) + i]) & one) {
break;
}
}
opj_mqc_setcurctx(mqc, T1_CTXNO_AGG);
opj_mqc_encode(mqc, runlen != 4);
if (runlen == 4) {
continue;
}
opj_mqc_setcurctx(mqc, T1_CTXNO_UNI);
opj_mqc_encode(mqc, runlen >> 1);
opj_mqc_encode(mqc, runlen & 1);
} else {
runlen = 0;
}
opj_t1_enc_clnpass_step(
t1,
&T1_FLAGS(i, k),
&t1->data[((k + runlen) * t1->data_stride) + i],
bpno,
one,
nmsedec,
agg,
runlen,
4U,
cblksty);
}
}
if (k < t1->h) {
agg = 0;
runlen = 0;
#ifdef DEBUG_ENC_CLN
printf(" k=%d\n", k);
#endif
for (i = 0; i < t1->w; ++i) {
#ifdef DEBUG_ENC_CLN
printf(" i=%d\n", i);
printf(" agg=%d\n", agg);
#endif
opj_t1_enc_clnpass_step(
t1,
&T1_FLAGS(i, k),
&t1->data[((k + runlen) * t1->data_stride) + i],
bpno,
one,
nmsedec,
agg,
runlen,
t1->h - k,
cblksty);
}
}
}
#define opj_t1_dec_clnpass_internal(t1, bpno, vsc, w, h, flags_stride) \
{ \
OPJ_INT32 one, half, oneplushalf; \
OPJ_UINT32 runlen; \
OPJ_UINT32 i, j, k; \
const OPJ_UINT32 l_w = w; \
opj_mqc_t* mqc = &(t1->mqc); \
register OPJ_INT32 *data = t1->data; \
register opj_flag_t *flagsp = &t1->flags[flags_stride + 1]; \
DOWNLOAD_MQC_VARIABLES(mqc, curctx, c, a, ct); \
register OPJ_UINT32 v; \
one = 1 << bpno; \
half = one >> 1; \
oneplushalf = one | half; \
for (k = 0; k < (h & ~3u); k += 4, data += 3*l_w, flagsp += 2) { \
for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
opj_flag_t flags = *flagsp; \
if (flags == 0) { \
OPJ_UINT32 partial = OPJ_TRUE; \
opj_t1_setcurctx(curctx, T1_CTXNO_AGG); \
opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
if (!v) { \
continue; \
} \
opj_t1_setcurctx(curctx, T1_CTXNO_UNI); \
opj_mqc_decode_macro(runlen, mqc, curctx, a, c, ct); \
opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
runlen = (runlen << 1) | v; \
switch(runlen) { \
case 0: \
opj_t1_dec_clnpass_step_macro(OPJ_FALSE, OPJ_TRUE,\
flags, flagsp, flags_stride, data, \
l_w, 0, mqc, curctx, \
v, a, c, ct, oneplushalf, vsc); \
partial = OPJ_FALSE; \
/* FALLTHRU */ \
case 1: \
opj_t1_dec_clnpass_step_macro(OPJ_FALSE, partial,\
flags, flagsp, flags_stride, data, \
l_w, 1, mqc, curctx, \
v, a, c, ct, oneplushalf, OPJ_FALSE); \
partial = OPJ_FALSE; \
/* FALLTHRU */ \
case 2: \
opj_t1_dec_clnpass_step_macro(OPJ_FALSE, partial,\
flags, flagsp, flags_stride, data, \
l_w, 2, mqc, curctx, \
v, a, c, ct, oneplushalf, OPJ_FALSE); \
partial = OPJ_FALSE; \
/* FALLTHRU */ \
case 3: \
opj_t1_dec_clnpass_step_macro(OPJ_FALSE, partial,\
flags, flagsp, flags_stride, data, \
l_w, 3, mqc, curctx, \
v, a, c, ct, oneplushalf, OPJ_FALSE); \
break; \
} \
} else { \
opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE, \
flags, flagsp, flags_stride, data, \
l_w, 0, mqc, curctx, \
v, a, c, ct, oneplushalf, vsc); \
opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE, \
flags, flagsp, flags_stride, data, \
l_w, 1, mqc, curctx, \
v, a, c, ct, oneplushalf, OPJ_FALSE); \
opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE, \
flags, flagsp, flags_stride, data, \
l_w, 2, mqc, curctx, \
v, a, c, ct, oneplushalf, OPJ_FALSE); \
opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE, \
flags, flagsp, flags_stride, data, \
l_w, 3, mqc, curctx, \
v, a, c, ct, oneplushalf, OPJ_FALSE); \
} \
*flagsp = flags & ~(T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3); \
} \
} \
UPLOAD_MQC_VARIABLES(mqc, curctx, c, a, ct); \
if( k < h ) { \
for (i = 0; i < l_w; ++i, ++flagsp, ++data) { \
for (j = 0; j < h - k; ++j) { \
opj_t1_dec_clnpass_step(t1, flagsp, data + j * l_w, oneplushalf, j, vsc); \
} \
*flagsp &= ~(T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3); \
} \
} \
}
static void opj_t1_dec_clnpass_check_segsym(opj_t1_t *t1, OPJ_INT32 cblksty)
{
if (cblksty & J2K_CCP_CBLKSTY_SEGSYM) {
opj_mqc_t* mqc = &(t1->mqc);
OPJ_UINT32 v, v2;
opj_mqc_setcurctx(mqc, T1_CTXNO_UNI);
opj_mqc_decode(v, mqc);
opj_mqc_decode(v2, mqc);
v = (v << 1) | v2;
opj_mqc_decode(v2, mqc);
v = (v << 1) | v2;
opj_mqc_decode(v2, mqc);
v = (v << 1) | v2;
/*
if (v!=0xa) {
opj_event_msg(t1->cinfo, EVT_WARNING, "Bad segmentation symbol %x\n", v);
}
*/
}
}
static void opj_t1_dec_clnpass_64x64_novsc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_clnpass_internal(t1, bpno, OPJ_FALSE, 64, 64, 66);
}
static void opj_t1_dec_clnpass_64x64_vsc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_clnpass_internal(t1, bpno, OPJ_TRUE, 64, 64, 66);
}
static void opj_t1_dec_clnpass_generic_novsc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_clnpass_internal(t1, bpno, OPJ_FALSE, t1->w, t1->h,
t1->w + 2U);
}
static void opj_t1_dec_clnpass_generic_vsc(
opj_t1_t *t1,
OPJ_INT32 bpno)
{
opj_t1_dec_clnpass_internal(t1, bpno, OPJ_TRUE, t1->w, t1->h,
t1->w + 2U);
}
static void opj_t1_dec_clnpass(
opj_t1_t *t1,
OPJ_INT32 bpno,
OPJ_INT32 cblksty)
{
if (t1->w == 64 && t1->h == 64) {
if (cblksty & J2K_CCP_CBLKSTY_VSC) {
opj_t1_dec_clnpass_64x64_vsc(t1, bpno);
} else {
opj_t1_dec_clnpass_64x64_novsc(t1, bpno);
}
} else {
if (cblksty & J2K_CCP_CBLKSTY_VSC) {
opj_t1_dec_clnpass_generic_vsc(t1, bpno);
} else {
opj_t1_dec_clnpass_generic_novsc(t1, bpno);
}
}
opj_t1_dec_clnpass_check_segsym(t1, cblksty);
}
/** mod fixed_quality */
static OPJ_FLOAT64 opj_t1_getwmsedec(
OPJ_INT32 nmsedec,
OPJ_UINT32 compno,
OPJ_UINT32 level,
OPJ_UINT32 orient,
OPJ_INT32 bpno,
OPJ_UINT32 qmfbid,
OPJ_FLOAT64 stepsize,
OPJ_UINT32 numcomps,
const OPJ_FLOAT64 * mct_norms,
OPJ_UINT32 mct_numcomps)
{
OPJ_FLOAT64 w1 = 1, w2, wmsedec;
OPJ_ARG_NOT_USED(numcomps);
if (mct_norms && (compno < mct_numcomps)) {
w1 = mct_norms[compno];
}
if (qmfbid == 1) {
w2 = opj_dwt_getnorm(level, orient);
} else { /* if (qmfbid == 0) */
w2 = opj_dwt_getnorm_real(level, orient);
}
wmsedec = w1 * w2 * stepsize * (1 << bpno);
wmsedec *= wmsedec * nmsedec / 8192.0;
return wmsedec;
}
static OPJ_BOOL opj_t1_allocate_buffers(
opj_t1_t *t1,
OPJ_UINT32 w,
OPJ_UINT32 h)
{
OPJ_UINT32 flagssize;
OPJ_UINT32 flags_stride;
/* No risk of overflow. Prior checks ensure those assert are met */
/* They are per the specification */
assert(w <= 1024);
assert(h <= 1024);
assert(w * h <= 4096);
/* encoder uses tile buffer, so no need to allocate */
if (!t1->encoder) {
OPJ_UINT32 datasize = w * h;
if (datasize > t1->datasize) {
opj_aligned_free(t1->data);
t1->data = (OPJ_INT32*) opj_aligned_malloc(datasize * sizeof(OPJ_INT32));
if (!t1->data) {
/* FIXME event manager error callback */
return OPJ_FALSE;
}
t1->datasize = datasize;
}
/* memset first arg is declared to never be null by gcc */
if (t1->data != NULL) {
memset(t1->data, 0, datasize * sizeof(OPJ_INT32));
}
}
flags_stride = w + 2U; /* can't be 0U */
flagssize = (h + 3U) / 4U + 2U;
flagssize *= flags_stride;
{
opj_flag_t* p;
OPJ_UINT32 x;
OPJ_UINT32 flags_height = (h + 3U) / 4U;
if (flagssize > t1->flagssize) {
opj_aligned_free(t1->flags);
t1->flags = (opj_flag_t*) opj_aligned_malloc(flagssize * sizeof(
opj_flag_t));
if (!t1->flags) {
/* FIXME event manager error callback */
return OPJ_FALSE;
}
}
t1->flagssize = flagssize;
memset(t1->flags, 0, flagssize * sizeof(opj_flag_t));
p = &t1->flags[0];
for (x = 0; x < flags_stride; ++x) {
/* magic value to hopefully stop any passes being interested in this entry */
*p++ = (T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3);
}
p = &t1->flags[((flags_height + 1) * flags_stride)];
for (x = 0; x < flags_stride; ++x) {
/* magic value to hopefully stop any passes being interested in this entry */
*p++ = (T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3);
}
if (h % 4) {
OPJ_UINT32 v = 0;
p = &t1->flags[((flags_height) * flags_stride)];
if (h % 4 == 1) {
v |= T1_PI_1 | T1_PI_2 | T1_PI_3;
} else if (h % 4 == 2) {
v |= T1_PI_2 | T1_PI_3;
} else if (h % 4 == 3) {
v |= T1_PI_3;
}
for (x = 0; x < flags_stride; ++x) {
*p++ = v;
}
}
}
t1->w = w;
t1->h = h;
return OPJ_TRUE;
}
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/**
* Creates a new Tier 1 handle
* and initializes the look-up tables of the Tier-1 coder/decoder
* @return a new T1 handle if successful, returns NULL otherwise
*/
opj_t1_t* opj_t1_create(OPJ_BOOL isEncoder)
{
opj_t1_t *l_t1 = 00;
l_t1 = (opj_t1_t*) opj_calloc(1, sizeof(opj_t1_t));
if (!l_t1) {
return 00;
}
l_t1->encoder = isEncoder;
return l_t1;
}
/**
* Destroys a previously created T1 handle
*
* @param p_t1 Tier 1 handle to destroy
*/
void opj_t1_destroy(opj_t1_t *p_t1)
{
if (! p_t1) {
return;
}
/* encoder uses tile buffer, so no need to free */
if (!p_t1->encoder && p_t1->data) {
opj_aligned_free(p_t1->data);
p_t1->data = 00;
}
if (p_t1->flags) {
opj_aligned_free(p_t1->flags);
p_t1->flags = 00;
}
opj_free(p_t1->cblkdatabuffer);
opj_free(p_t1);
}
typedef struct {
OPJ_BOOL whole_tile_decoding;
OPJ_UINT32 resno;
opj_tcd_cblk_dec_t* cblk;
opj_tcd_band_t* band;
opj_tcd_tilecomp_t* tilec;
opj_tccp_t* tccp;
OPJ_BOOL mustuse_cblkdatabuffer;
volatile OPJ_BOOL* pret;
opj_event_mgr_t *p_manager;
opj_mutex_t* p_manager_mutex;
OPJ_BOOL check_pterm;
} opj_t1_cblk_decode_processing_job_t;
static void opj_t1_destroy_wrapper(void* t1)
{
opj_t1_destroy((opj_t1_t*) t1);
}
static void opj_t1_clbl_decode_processor(void* user_data, opj_tls_t* tls)
{
opj_tcd_cblk_dec_t* cblk;
opj_tcd_band_t* band;
opj_tcd_tilecomp_t* tilec;
opj_tccp_t* tccp;
OPJ_INT32* OPJ_RESTRICT datap;
OPJ_UINT32 cblk_w, cblk_h;
OPJ_INT32 x, y;
OPJ_UINT32 i, j;
opj_t1_cblk_decode_processing_job_t* job;
opj_t1_t* t1;
OPJ_UINT32 resno;
OPJ_UINT32 tile_w;
job = (opj_t1_cblk_decode_processing_job_t*) user_data;
cblk = job->cblk;
if (!job->whole_tile_decoding) {
cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
cblk->decoded_data = (OPJ_INT32*)opj_aligned_malloc(sizeof(OPJ_INT32) *
cblk_w * cblk_h);
if (cblk->decoded_data == NULL) {
if (job->p_manager_mutex) {
opj_mutex_lock(job->p_manager_mutex);
}
opj_event_msg(job->p_manager, EVT_ERROR,
"Cannot allocate cblk->decoded_data\n");
if (job->p_manager_mutex) {
opj_mutex_unlock(job->p_manager_mutex);
}
*(job->pret) = OPJ_FALSE;
opj_free(job);
return;
}
/* Zero-init required */
memset(cblk->decoded_data, 0, sizeof(OPJ_INT32) * cblk_w * cblk_h);
} else if (cblk->decoded_data) {
/* Not sure if that code path can happen, but better be */
/* safe than sorry */
opj_aligned_free(cblk->decoded_data);
cblk->decoded_data = NULL;
}
resno = job->resno;
band = job->band;
tilec = job->tilec;
tccp = job->tccp;
tile_w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - 1].x1
-
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
if (!*(job->pret)) {
opj_free(job);
return;
}
t1 = (opj_t1_t*) opj_tls_get(tls, OPJ_TLS_KEY_T1);
if (t1 == NULL) {
t1 = opj_t1_create(OPJ_FALSE);
opj_tls_set(tls, OPJ_TLS_KEY_T1, t1, opj_t1_destroy_wrapper);
}
t1->mustuse_cblkdatabuffer = job->mustuse_cblkdatabuffer;
if (OPJ_FALSE == opj_t1_decode_cblk(
t1,
cblk,
band->bandno,
(OPJ_UINT32)tccp->roishift,
tccp->cblksty,
job->p_manager,
job->p_manager_mutex,
job->check_pterm)) {
*(job->pret) = OPJ_FALSE;
opj_free(job);
return;
}
x = cblk->x0 - band->x0;
y = cblk->y0 - band->y0;
if (band->bandno & 1) {
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
x += pres->x1 - pres->x0;
}
if (band->bandno & 2) {
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
y += pres->y1 - pres->y0;
}
datap = cblk->decoded_data ? cblk->decoded_data : t1->data;
cblk_w = t1->w;
cblk_h = t1->h;
if (tccp->roishift) {
if (tccp->roishift >= 31) {
for (j = 0; j < cblk_h; ++j) {
for (i = 0; i < cblk_w; ++i) {
datap[(j * cblk_w) + i] = 0;
}
}
} else {
OPJ_INT32 thresh = 1 << tccp->roishift;
for (j = 0; j < cblk_h; ++j) {
for (i = 0; i < cblk_w; ++i) {
OPJ_INT32 val = datap[(j * cblk_w) + i];
OPJ_INT32 mag = abs(val);
if (mag >= thresh) {
mag >>= tccp->roishift;
datap[(j * cblk_w) + i] = val < 0 ? -mag : mag;
}
}
}
}
}
/* Both can be non NULL if for example decoding a full tile and then */
/* partially a tile. In which case partial decoding should be the */
/* priority */
assert((cblk->decoded_data != NULL) || (tilec->data != NULL));
if (cblk->decoded_data) {
OPJ_UINT32 cblk_size = cblk_w * cblk_h;
if (tccp->qmfbid == 1) {
for (i = 0; i < cblk_size; ++i) {
datap[i] /= 2;
}
} else { /* if (tccp->qmfbid == 0) */
i = 0;
#ifdef __SSE2__
{
const __m128 xmm_stepsize = _mm_set1_ps(band->stepsize);
for (; i < (cblk_size & ~15U); i += 16) {
__m128 xmm0_data = _mm_cvtepi32_ps(_mm_load_si128((__m128i * const)(
datap + 0)));
__m128 xmm1_data = _mm_cvtepi32_ps(_mm_load_si128((__m128i * const)(
datap + 4)));
__m128 xmm2_data = _mm_cvtepi32_ps(_mm_load_si128((__m128i * const)(
datap + 8)));
__m128 xmm3_data = _mm_cvtepi32_ps(_mm_load_si128((__m128i * const)(
datap + 12)));
_mm_store_ps((float*)(datap + 0), _mm_mul_ps(xmm0_data, xmm_stepsize));
_mm_store_ps((float*)(datap + 4), _mm_mul_ps(xmm1_data, xmm_stepsize));
_mm_store_ps((float*)(datap + 8), _mm_mul_ps(xmm2_data, xmm_stepsize));
_mm_store_ps((float*)(datap + 12), _mm_mul_ps(xmm3_data, xmm_stepsize));
datap += 16;
}
}
#endif
for (; i < cblk_size; ++i) {
OPJ_FLOAT32 tmp = ((OPJ_FLOAT32)(*datap)) * band->stepsize;
memcpy(datap, &tmp, sizeof(tmp));
datap++;
}
}
} else if (tccp->qmfbid == 1) {
OPJ_INT32* OPJ_RESTRICT tiledp = &tilec->data[(OPJ_SIZE_T)y * tile_w +
(OPJ_SIZE_T)x];
for (j = 0; j < cblk_h; ++j) {
i = 0;
for (; i < (cblk_w & ~(OPJ_UINT32)3U); i += 4U) {
OPJ_INT32 tmp0 = datap[(j * cblk_w) + i + 0U];
OPJ_INT32 tmp1 = datap[(j * cblk_w) + i + 1U];
OPJ_INT32 tmp2 = datap[(j * cblk_w) + i + 2U];
OPJ_INT32 tmp3 = datap[(j * cblk_w) + i + 3U];
((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i + 0U] = tmp0 / 2;
((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i + 1U] = tmp1 / 2;
((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i + 2U] = tmp2 / 2;
((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i + 3U] = tmp3 / 2;
}
for (; i < cblk_w; ++i) {
OPJ_INT32 tmp = datap[(j * cblk_w) + i];
((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i] = tmp / 2;
}
}
} else { /* if (tccp->qmfbid == 0) */
OPJ_FLOAT32* OPJ_RESTRICT tiledp = (OPJ_FLOAT32*) &tilec->data[(OPJ_SIZE_T)y *
tile_w + (OPJ_SIZE_T)x];
for (j = 0; j < cblk_h; ++j) {
OPJ_FLOAT32* OPJ_RESTRICT tiledp2 = tiledp;
for (i = 0; i < cblk_w; ++i) {
OPJ_FLOAT32 tmp = (OPJ_FLOAT32) * datap * band->stepsize;
*tiledp2 = tmp;
datap++;
tiledp2++;
}
tiledp += tile_w;
}
}
opj_free(job);
}
void opj_t1_decode_cblks(opj_tcd_t* tcd,
volatile OPJ_BOOL* pret,
opj_tcd_tilecomp_t* tilec,
opj_tccp_t* tccp,
opj_event_mgr_t *p_manager,
opj_mutex_t* p_manager_mutex,
OPJ_BOOL check_pterm
)
{
opj_thread_pool_t* tp = tcd->thread_pool;
OPJ_UINT32 resno, bandno, precno, cblkno;
#ifdef DEBUG_VERBOSE
OPJ_UINT32 codeblocks_decoded = 0;
printf("Enter opj_t1_decode_cblks()\n");
#endif
for (resno = 0; resno < tilec->minimum_num_resolutions; ++resno) {
opj_tcd_resolution_t* res = &tilec->resolutions[resno];
for (bandno = 0; bandno < res->numbands; ++bandno) {
opj_tcd_band_t* OPJ_RESTRICT band = &res->bands[bandno];
for (precno = 0; precno < res->pw * res->ph; ++precno) {
opj_tcd_precinct_t* precinct = &band->precincts[precno];
if (!opj_tcd_is_subband_area_of_interest(tcd,
tilec->compno,
resno,
band->bandno,
(OPJ_UINT32)precinct->x0,
(OPJ_UINT32)precinct->y0,
(OPJ_UINT32)precinct->x1,
(OPJ_UINT32)precinct->y1)) {
for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
if (cblk->decoded_data) {
#ifdef DEBUG_VERBOSE
printf("Discarding codeblock %d,%d at resno=%d, bandno=%d\n",
cblk->x0, cblk->y0, resno, bandno);
#endif
opj_aligned_free(cblk->decoded_data);
cblk->decoded_data = NULL;
}
}
continue;
}
for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
opj_t1_cblk_decode_processing_job_t* job;
if (!opj_tcd_is_subband_area_of_interest(tcd,
tilec->compno,
resno,
band->bandno,
(OPJ_UINT32)cblk->x0,
(OPJ_UINT32)cblk->y0,
(OPJ_UINT32)cblk->x1,
(OPJ_UINT32)cblk->y1)) {
if (cblk->decoded_data) {
#ifdef DEBUG_VERBOSE
printf("Discarding codeblock %d,%d at resno=%d, bandno=%d\n",
cblk->x0, cblk->y0, resno, bandno);
#endif
opj_aligned_free(cblk->decoded_data);
cblk->decoded_data = NULL;
}
continue;
}
if (!tcd->whole_tile_decoding) {
OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
if (cblk->decoded_data != NULL) {
#ifdef DEBUG_VERBOSE
printf("Reusing codeblock %d,%d at resno=%d, bandno=%d\n",
cblk->x0, cblk->y0, resno, bandno);
#endif
continue;
}
if (cblk_w == 0 || cblk_h == 0) {
continue;
}
#ifdef DEBUG_VERBOSE
printf("Decoding codeblock %d,%d at resno=%d, bandno=%d\n",
cblk->x0, cblk->y0, resno, bandno);
#endif
}
job = (opj_t1_cblk_decode_processing_job_t*) opj_calloc(1,
sizeof(opj_t1_cblk_decode_processing_job_t));
if (!job) {
*pret = OPJ_FALSE;
return;
}
job->whole_tile_decoding = tcd->whole_tile_decoding;
job->resno = resno;
job->cblk = cblk;
job->band = band;
job->tilec = tilec;
job->tccp = tccp;
job->pret = pret;
job->p_manager_mutex = p_manager_mutex;
job->p_manager = p_manager;
job->check_pterm = check_pterm;
job->mustuse_cblkdatabuffer = opj_thread_pool_get_thread_count(tp) > 1;
opj_thread_pool_submit_job(tp, opj_t1_clbl_decode_processor, job);
#ifdef DEBUG_VERBOSE
codeblocks_decoded ++;
#endif
if (!(*pret)) {
return;
}
} /* cblkno */
} /* precno */
} /* bandno */
} /* resno */
#ifdef DEBUG_VERBOSE
printf("Leave opj_t1_decode_cblks(). Number decoded: %d\n", codeblocks_decoded);
#endif
return;
}
static OPJ_BOOL opj_t1_decode_cblk(opj_t1_t *t1,
opj_tcd_cblk_dec_t* cblk,
OPJ_UINT32 orient,
OPJ_UINT32 roishift,
OPJ_UINT32 cblksty,
opj_event_mgr_t *p_manager,
opj_mutex_t* p_manager_mutex,
OPJ_BOOL check_pterm)
{
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
OPJ_INT32 bpno_plus_one;
OPJ_UINT32 passtype;
OPJ_UINT32 segno, passno;
OPJ_BYTE* cblkdata = NULL;
OPJ_UINT32 cblkdataindex = 0;
OPJ_BYTE type = T1_TYPE_MQ; /* BYPASS mode */
OPJ_INT32* original_t1_data = NULL;
mqc->lut_ctxno_zc_orient = lut_ctxno_zc + (orient << 9);
if (!opj_t1_allocate_buffers(
t1,
(OPJ_UINT32)(cblk->x1 - cblk->x0),
(OPJ_UINT32)(cblk->y1 - cblk->y0))) {
return OPJ_FALSE;
}
bpno_plus_one = (OPJ_INT32)(roishift + cblk->numbps);
if (bpno_plus_one >= 31) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_WARNING,
"opj_t1_decode_cblk(): unsupported bpno_plus_one = %d >= 31\n",
bpno_plus_one);
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
passtype = 2;
opj_mqc_resetstates(mqc);
opj_mqc_setstate(mqc, T1_CTXNO_UNI, 0, 46);
opj_mqc_setstate(mqc, T1_CTXNO_AGG, 0, 3);
opj_mqc_setstate(mqc, T1_CTXNO_ZC, 0, 4);
/* Even if we have a single chunk, in multi-threaded decoding */
/* the insertion of our synthetic marker might potentially override */
/* valid codestream of other codeblocks decoded in parallel. */
if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) {
OPJ_UINT32 i;
OPJ_UINT32 cblk_len;
/* Compute whole codeblock length from chunk lengths */
cblk_len = 0;
for (i = 0; i < cblk->numchunks; i++) {
cblk_len += cblk->chunks[i].len;
}
/* Allocate temporary memory if needed */
if (cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA > t1->cblkdatabuffersize) {
cblkdata = (OPJ_BYTE*)opj_realloc(t1->cblkdatabuffer,
cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA);
if (cblkdata == NULL) {
return OPJ_FALSE;
}
t1->cblkdatabuffer = cblkdata;
memset(t1->cblkdatabuffer + cblk_len, 0, OPJ_COMMON_CBLK_DATA_EXTRA);
t1->cblkdatabuffersize = cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA;
}
/* Concatenate all chunks */
cblkdata = t1->cblkdatabuffer;
cblk_len = 0;
for (i = 0; i < cblk->numchunks; i++) {
memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len);
cblk_len += cblk->chunks[i].len;
}
} else if (cblk->numchunks == 1) {
cblkdata = cblk->chunks[0].data;
} else {
/* Not sure if that can happen in practice, but avoid Coverity to */
/* think we will dereference a null cblkdta pointer */
return OPJ_TRUE;
}
/* For subtile decoding, directly decode in the decoded_data buffer of */
/* the code-block. Hack t1->data to point to it, and restore it later */
if (cblk->decoded_data) {
original_t1_data = t1->data;
t1->data = cblk->decoded_data;
}
for (segno = 0; segno < cblk->real_num_segs; ++segno) {
opj_tcd_seg_t *seg = &cblk->segs[segno];
/* BYPASS mode */
type = ((bpno_plus_one <= ((OPJ_INT32)(cblk->numbps)) - 4) && (passtype < 2) &&
(cblksty & J2K_CCP_CBLKSTY_LAZY)) ? T1_TYPE_RAW : T1_TYPE_MQ;
if (type == T1_TYPE_RAW) {
opj_mqc_raw_init_dec(mqc, cblkdata + cblkdataindex, seg->len,
OPJ_COMMON_CBLK_DATA_EXTRA);
} else {
opj_mqc_init_dec(mqc, cblkdata + cblkdataindex, seg->len,
OPJ_COMMON_CBLK_DATA_EXTRA);
}
cblkdataindex += seg->len;
for (passno = 0; (passno < seg->real_num_passes) &&
(bpno_plus_one >= 1); ++passno) {
switch (passtype) {
case 0:
if (type == T1_TYPE_RAW) {
opj_t1_dec_sigpass_raw(t1, bpno_plus_one, (OPJ_INT32)cblksty);
} else {
opj_t1_dec_sigpass_mqc(t1, bpno_plus_one, (OPJ_INT32)cblksty);
}
break;
case 1:
if (type == T1_TYPE_RAW) {
opj_t1_dec_refpass_raw(t1, bpno_plus_one);
} else {
opj_t1_dec_refpass_mqc(t1, bpno_plus_one);
}
break;
case 2:
opj_t1_dec_clnpass(t1, bpno_plus_one, (OPJ_INT32)cblksty);
break;
}
if ((cblksty & J2K_CCP_CBLKSTY_RESET) && type == T1_TYPE_MQ) {
opj_mqc_resetstates(mqc);
opj_mqc_setstate(mqc, T1_CTXNO_UNI, 0, 46);
opj_mqc_setstate(mqc, T1_CTXNO_AGG, 0, 3);
opj_mqc_setstate(mqc, T1_CTXNO_ZC, 0, 4);
}
if (++passtype == 3) {
passtype = 0;
bpno_plus_one--;
}
}
opq_mqc_finish_dec(mqc);
}
if (check_pterm) {
if (mqc->bp + 2 < mqc->end) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_WARNING,
"PTERM check failure: %d remaining bytes in code block (%d used / %d)\n",
(int)(mqc->end - mqc->bp) - 2,
(int)(mqc->bp - mqc->start),
(int)(mqc->end - mqc->start));
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
} else if (mqc->end_of_byte_stream_counter > 2) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_WARNING,
"PTERM check failure: %d synthetized 0xFF markers read\n",
mqc->end_of_byte_stream_counter);
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
}
}
/* Restore original t1->data is needed */
if (cblk->decoded_data) {
t1->data = original_t1_data;
}
return OPJ_TRUE;
}
OPJ_BOOL opj_t1_encode_cblks(opj_t1_t *t1,
opj_tcd_tile_t *tile,
opj_tcp_t *tcp,
const OPJ_FLOAT64 * mct_norms,
OPJ_UINT32 mct_numcomps
)
{
OPJ_UINT32 compno, resno, bandno, precno, cblkno;
tile->distotile = 0; /* fixed_quality */
for (compno = 0; compno < tile->numcomps; ++compno) {
opj_tcd_tilecomp_t* tilec = &tile->comps[compno];
opj_tccp_t* tccp = &tcp->tccps[compno];
OPJ_UINT32 tile_w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
for (resno = 0; resno < tilec->numresolutions; ++resno) {
opj_tcd_resolution_t *res = &tilec->resolutions[resno];
for (bandno = 0; bandno < res->numbands; ++bandno) {
opj_tcd_band_t* OPJ_RESTRICT band = &res->bands[bandno];
OPJ_INT32 bandconst;
/* Skip empty bands */
if (opj_tcd_is_band_empty(band)) {
continue;
}
bandconst = 8192 * 8192 / ((OPJ_INT32) floor(band->stepsize * 8192));
for (precno = 0; precno < res->pw * res->ph; ++precno) {
opj_tcd_precinct_t *prc = &band->precincts[precno];
for (cblkno = 0; cblkno < prc->cw * prc->ch; ++cblkno) {
opj_tcd_cblk_enc_t* cblk = &prc->cblks.enc[cblkno];
OPJ_INT32* OPJ_RESTRICT tiledp;
OPJ_UINT32 cblk_w;
OPJ_UINT32 cblk_h;
OPJ_UINT32 i, j, tileLineAdvance;
OPJ_SIZE_T tileIndex = 0;
OPJ_INT32 x = cblk->x0 - band->x0;
OPJ_INT32 y = cblk->y0 - band->y0;
if (band->bandno & 1) {
opj_tcd_resolution_t *pres = &tilec->resolutions[resno - 1];
x += pres->x1 - pres->x0;
}
if (band->bandno & 2) {
opj_tcd_resolution_t *pres = &tilec->resolutions[resno - 1];
y += pres->y1 - pres->y0;
}
if (!opj_t1_allocate_buffers(
t1,
(OPJ_UINT32)(cblk->x1 - cblk->x0),
(OPJ_UINT32)(cblk->y1 - cblk->y0))) {
return OPJ_FALSE;
}
cblk_w = t1->w;
cblk_h = t1->h;
tileLineAdvance = tile_w - cblk_w;
tiledp = &tilec->data[(OPJ_SIZE_T)y * tile_w + (OPJ_SIZE_T)x];
t1->data = tiledp;
t1->data_stride = tile_w;
if (tccp->qmfbid == 1) {
/* Do multiplication on unsigned type, even if the
* underlying type is signed, to avoid potential
* int overflow on large value (the output will be
* incorrect in such situation, but whatever...)
* This assumes complement-to-2 signed integer
* representation
* Fixes https://github.com/uclouvain/openjpeg/issues/1053
*/
OPJ_UINT32* OPJ_RESTRICT tiledp_u = (OPJ_UINT32*) tiledp;
for (j = 0; j < cblk_h; ++j) {
for (i = 0; i < cblk_w; ++i) {
tiledp_u[tileIndex] <<= T1_NMSEDEC_FRACBITS;
tileIndex++;
}
tileIndex += tileLineAdvance;
}
} else { /* if (tccp->qmfbid == 0) */
for (j = 0; j < cblk_h; ++j) {
for (i = 0; i < cblk_w; ++i) {
OPJ_INT32 tmp = tiledp[tileIndex];
tiledp[tileIndex] =
opj_int_fix_mul_t1(
tmp,
bandconst);
tileIndex++;
}
tileIndex += tileLineAdvance;
}
}
opj_t1_encode_cblk(
t1,
cblk,
band->bandno,
compno,
tilec->numresolutions - 1 - resno,
tccp->qmfbid,
band->stepsize,
tccp->cblksty,
tile->numcomps,
tile,
mct_norms,
mct_numcomps);
} /* cblkno */
} /* precno */
} /* bandno */
} /* resno */
} /* compno */
return OPJ_TRUE;
}
/* Returns whether the pass (bpno, passtype) is terminated */
static int opj_t1_enc_is_term_pass(opj_tcd_cblk_enc_t* cblk,
OPJ_UINT32 cblksty,
OPJ_INT32 bpno,
OPJ_UINT32 passtype)
{
/* Is it the last cleanup pass ? */
if (passtype == 2 && bpno == 0) {
return OPJ_TRUE;
}
if (cblksty & J2K_CCP_CBLKSTY_TERMALL) {
return OPJ_TRUE;
}
if ((cblksty & J2K_CCP_CBLKSTY_LAZY)) {
/* For bypass arithmetic bypass, terminate the 4th cleanup pass */
if ((bpno == ((OPJ_INT32)cblk->numbps - 4)) && (passtype == 2)) {
return OPJ_TRUE;
}
/* and beyond terminate all the magnitude refinement passes (in raw) */
/* and cleanup passes (in MQC) */
if ((bpno < ((OPJ_INT32)(cblk->numbps) - 4)) && (passtype > 0)) {
return OPJ_TRUE;
}
}
return OPJ_FALSE;
}
/** mod fixed_quality */
static void opj_t1_encode_cblk(opj_t1_t *t1,
opj_tcd_cblk_enc_t* cblk,
OPJ_UINT32 orient,
OPJ_UINT32 compno,
OPJ_UINT32 level,
OPJ_UINT32 qmfbid,
OPJ_FLOAT64 stepsize,
OPJ_UINT32 cblksty,
OPJ_UINT32 numcomps,
opj_tcd_tile_t * tile,
const OPJ_FLOAT64 * mct_norms,
OPJ_UINT32 mct_numcomps)
{
OPJ_FLOAT64 cumwmsedec = 0.0;
opj_mqc_t *mqc = &(t1->mqc); /* MQC component */
OPJ_UINT32 passno;
OPJ_INT32 bpno;
OPJ_UINT32 passtype;
OPJ_INT32 nmsedec = 0;
OPJ_INT32 max;
OPJ_UINT32 i, j;
OPJ_BYTE type = T1_TYPE_MQ;
OPJ_FLOAT64 tempwmsedec;
#ifdef EXTRA_DEBUG
printf("encode_cblk(x=%d,y=%d,x1=%d,y1=%d,orient=%d,compno=%d,level=%d\n",
cblk->x0, cblk->y0, cblk->x1, cblk->y1, orient, compno, level);
#endif
mqc->lut_ctxno_zc_orient = lut_ctxno_zc + (orient << 9);
max = 0;
for (i = 0; i < t1->w; ++i) {
for (j = 0; j < t1->h; ++j) {
OPJ_INT32 tmp = abs(t1->data[i + j * t1->data_stride]);
max = opj_int_max(max, tmp);
}
}
cblk->numbps = max ? (OPJ_UINT32)((opj_int_floorlog2(max) + 1) -
T1_NMSEDEC_FRACBITS) : 0;
if (cblk->numbps == 0) {
cblk->totalpasses = 0;
return;
}
bpno = (OPJ_INT32)(cblk->numbps - 1);
passtype = 2;
opj_mqc_resetstates(mqc);
opj_mqc_setstate(mqc, T1_CTXNO_UNI, 0, 46);
opj_mqc_setstate(mqc, T1_CTXNO_AGG, 0, 3);
opj_mqc_setstate(mqc, T1_CTXNO_ZC, 0, 4);
opj_mqc_init_enc(mqc, cblk->data);
for (passno = 0; bpno >= 0; ++passno) {
opj_tcd_pass_t *pass = &cblk->passes[passno];
type = ((bpno < ((OPJ_INT32)(cblk->numbps) - 4)) && (passtype < 2) &&
(cblksty & J2K_CCP_CBLKSTY_LAZY)) ? T1_TYPE_RAW : T1_TYPE_MQ;
/* If the previous pass was terminating, we need to reset the encoder */
if (passno > 0 && cblk->passes[passno - 1].term) {
if (type == T1_TYPE_RAW) {
opj_mqc_bypass_init_enc(mqc);
} else {
opj_mqc_restart_init_enc(mqc);
}
}
switch (passtype) {
case 0:
opj_t1_enc_sigpass(t1, bpno, &nmsedec, type, cblksty);
break;
case 1:
opj_t1_enc_refpass(t1, bpno, &nmsedec, type);
break;
case 2:
opj_t1_enc_clnpass(t1, bpno, &nmsedec, cblksty);
/* code switch SEGMARK (i.e. SEGSYM) */
if (cblksty & J2K_CCP_CBLKSTY_SEGSYM) {
opj_mqc_segmark_enc(mqc);
}
break;
}
/* fixed_quality */
tempwmsedec = opj_t1_getwmsedec(nmsedec, compno, level, orient, bpno, qmfbid,
stepsize, numcomps, mct_norms, mct_numcomps) ;
cumwmsedec += tempwmsedec;
tile->distotile += tempwmsedec;
pass->distortiondec = cumwmsedec;
if (opj_t1_enc_is_term_pass(cblk, cblksty, bpno, passtype)) {
/* If it is a terminated pass, terminate it */
if (type == T1_TYPE_RAW) {
opj_mqc_bypass_flush_enc(mqc, cblksty & J2K_CCP_CBLKSTY_PTERM);
} else {
if (cblksty & J2K_CCP_CBLKSTY_PTERM) {
opj_mqc_erterm_enc(mqc);
} else {
opj_mqc_flush(mqc);
}
}
pass->term = 1;
pass->rate = opj_mqc_numbytes(mqc);
} else {
/* Non terminated pass */
OPJ_UINT32 rate_extra_bytes;
if (type == T1_TYPE_RAW) {
rate_extra_bytes = opj_mqc_bypass_get_extra_bytes(
mqc, (cblksty & J2K_CCP_CBLKSTY_PTERM));
} else {
rate_extra_bytes = 3;
}
pass->term = 0;
pass->rate = opj_mqc_numbytes(mqc) + rate_extra_bytes;
}
if (++passtype == 3) {
passtype = 0;
bpno--;
}
/* Code-switch "RESET" */
if (cblksty & J2K_CCP_CBLKSTY_RESET) {
opj_mqc_reset_enc(mqc);
}
}
cblk->totalpasses = passno;
if (cblk->totalpasses) {
/* Make sure that pass rates are increasing */
OPJ_UINT32 last_pass_rate = opj_mqc_numbytes(mqc);
for (passno = cblk->totalpasses; passno > 0;) {
opj_tcd_pass_t *pass = &cblk->passes[--passno];
if (pass->rate > last_pass_rate) {
pass->rate = last_pass_rate;
} else {
last_pass_rate = pass->rate;
}
}
}
for (passno = 0; passno < cblk->totalpasses; passno++) {
opj_tcd_pass_t *pass = &cblk->passes[passno];
/* Prevent generation of FF as last data byte of a pass*/
/* For terminating passes, the flushing procedure ensured this already */
assert(pass->rate > 0);
if (cblk->data[pass->rate - 1] == 0xFF) {
pass->rate--;
}
pass->len = pass->rate - (passno == 0 ? 0 : cblk->passes[passno - 1].rate);
}
#ifdef EXTRA_DEBUG
printf(" len=%d\n", (cblk->totalpasses) ? opj_mqc_numbytes(mqc) : 0);
/* Check that there not 0xff >=0x90 sequences */
if (cblk->totalpasses) {
OPJ_UINT32 i;
OPJ_UINT32 len = opj_mqc_numbytes(mqc);
for (i = 1; i < len; ++i) {
if (cblk->data[i - 1] == 0xff && cblk->data[i] >= 0x90) {
printf("0xff %02x at offset %d\n", cblk->data[i], i - 1);
abort();
}
}
}
#endif
}