| /* |
| * The copyright in this software is being made available under the 2-clauses |
| * BSD License, included below. This software may be subject to other third |
| * party and contributor rights, including patent rights, and no such rights |
| * are granted under this license. |
| * |
| * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium |
| * Copyright (c) 2002-2014, Professor Benoit Macq |
| * Copyright (c) 2001-2003, David Janssens |
| * Copyright (c) 2002-2003, Yannick Verschueren |
| * Copyright (c) 2003-2007, Francois-Olivier Devaux |
| * Copyright (c) 2003-2014, Antonin Descampe |
| * Copyright (c) 2005, Herve Drolon, FreeImage Team |
| * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net> |
| * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com> |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef __SSE__ |
| #include <xmmintrin.h> |
| #endif |
| |
| #include "opj_includes.h" |
| |
| /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ |
| /*@{*/ |
| |
| /** @name Local data structures */ |
| /*@{*/ |
| |
| typedef struct dwt_local { |
| OPJ_INT32* mem; |
| OPJ_SIZE_T mem_count; |
| OPJ_INT32 dn; |
| OPJ_INT32 sn; |
| OPJ_INT32 cas; |
| } opj_dwt_t; |
| |
| typedef union { |
| OPJ_FLOAT32 f[4]; |
| } opj_v4_t; |
| |
| typedef struct v4dwt_local { |
| opj_v4_t* wavelet ; |
| OPJ_INT32 dn ; |
| OPJ_INT32 sn ; |
| OPJ_INT32 cas ; |
| } opj_v4dwt_t ; |
| |
| static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */ |
| static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */ |
| static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */ |
| static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */ |
| |
| static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */ |
| static const OPJ_FLOAT32 opj_c13318 = 1.625732422f; |
| |
| /*@}*/ |
| |
| /** |
| Virtual function type for wavelet transform in 1-D |
| */ |
| typedef void (*DWT1DFN)(opj_dwt_t* v); |
| |
| /** @name Local static functions */ |
| /*@{*/ |
| |
| /** |
| Forward lazy transform (horizontal) |
| */ |
| static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); |
| /** |
| Forward lazy transform (vertical) |
| */ |
| static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas); |
| /** |
| Inverse lazy transform (horizontal) |
| */ |
| static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a); |
| /** |
| Inverse lazy transform (vertical) |
| */ |
| static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x); |
| /** |
| Forward 5-3 wavelet transform in 1-D |
| */ |
| static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); |
| /** |
| Inverse 5-3 wavelet transform in 1-D |
| */ |
| static void opj_dwt_decode_1(opj_dwt_t *v); |
| static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); |
| /** |
| Forward 9-7 wavelet transform in 1-D |
| */ |
| static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); |
| /** |
| Explicit calculation of the Quantization Stepsizes |
| */ |
| static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize); |
| /** |
| Inverse wavelet transform in 2-D. |
| */ |
| static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn); |
| |
| static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, |
| void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32)); |
| |
| static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i); |
| |
| /* <summary> */ |
| /* Inverse 9-7 wavelet transform in 1-D. */ |
| /* </summary> */ |
| static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt); |
| |
| static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size); |
| |
| static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read); |
| |
| #ifdef __SSE__ |
| static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c); |
| |
| static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c); |
| |
| #else |
| static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c); |
| |
| static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c); |
| |
| #endif |
| |
| /*@}*/ |
| |
| /*@}*/ |
| |
| #define IDX_S(i) (i)*2 |
| #define IDX_D(i) 1 + (i)* 2 |
| #define UNDERFLOW_SN(i) ((i) >= sn&&sn>0) |
| #define UNDERFLOW_DN(i) ((i) >= dn&&dn>0) |
| #define OVERFLOW_S(i) (IDX_S(i) >= a_count) |
| #define OVERFLOW_D(i) (IDX_D(i) >= a_count) |
| |
| #define OPJ_S(i) a[IDX_S(i)] |
| #define OPJ_D(i) a[IDX_D(i)] |
| #define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i))) |
| #define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i))) |
| /* new */ |
| #define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i))) |
| #define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i))) |
| |
| /* <summary> */ |
| /* This table contains the norms of the 5-3 wavelets for different bands. */ |
| /* </summary> */ |
| static const OPJ_FLOAT64 opj_dwt_norms[4][10] = { |
| {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, |
| {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
| {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
| {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} |
| }; |
| |
| /* <summary> */ |
| /* This table contains the norms of the 9-7 wavelets for different bands. */ |
| /* </summary> */ |
| static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = { |
| {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, |
| {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
| {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
| {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} |
| }; |
| |
| /* |
| ========================================================== |
| local functions |
| ========================================================== |
| */ |
| |
| /* <summary> */ |
| /* Forward lazy transform (horizontal). */ |
| /* </summary> */ |
| static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { |
| OPJ_INT32 i; |
| OPJ_INT32 * l_dest = b; |
| OPJ_INT32 * l_src = a+cas; |
| |
| for (i=0; i<sn; ++i) { |
| *l_dest++ = *l_src; |
| l_src += 2; |
| } |
| |
| l_dest = b + sn; |
| l_src = a + 1 - cas; |
| |
| for (i=0; i<dn; ++i) { |
| *l_dest++=*l_src; |
| l_src += 2; |
| } |
| } |
| |
| /* <summary> */ |
| /* Forward lazy transform (vertical). */ |
| /* </summary> */ |
| static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) { |
| OPJ_INT32 i = sn; |
| OPJ_INT32 * l_dest = b; |
| OPJ_INT32 * l_src = a+cas; |
| |
| while (i--) { |
| *l_dest = *l_src; |
| l_dest += x; |
| l_src += 2; |
| } /* b[i*x]=a[2*i+cas]; */ |
| |
| l_dest = b + sn * x; |
| l_src = a + 1 - cas; |
| |
| i = dn; |
| while (i--) { |
| *l_dest = *l_src; |
| l_dest += x; |
| l_src += 2; |
| } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/ |
| } |
| |
| /* <summary> */ |
| /* Inverse lazy transform (horizontal). */ |
| /* </summary> */ |
| static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) { |
| OPJ_INT32 *ai = a; |
| OPJ_INT32 *bi = h->mem + h->cas; |
| OPJ_INT32 i = h->sn; |
| while( i-- ) { |
| *bi = *(ai++); |
| bi += 2; |
| } |
| ai = a + h->sn; |
| bi = h->mem + 1 - h->cas; |
| i = h->dn ; |
| while( i-- ) { |
| *bi = *(ai++); |
| bi += 2; |
| } |
| } |
| |
| /* <summary> */ |
| /* Inverse lazy transform (vertical). */ |
| /* </summary> */ |
| static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) { |
| OPJ_INT32 *ai = a; |
| OPJ_INT32 *bi = v->mem + v->cas; |
| OPJ_INT32 i = v->sn; |
| while( i-- ) { |
| *bi = *ai; |
| bi += 2; |
| ai += x; |
| } |
| ai = a + (v->sn * x); |
| bi = v->mem + 1 - v->cas; |
| i = v->dn ; |
| while( i-- ) { |
| *bi = *ai; |
| bi += 2; |
| ai += x; |
| } |
| } |
| |
| |
| /* <summary> */ |
| /* Forward 5-3 wavelet transform in 1-D. */ |
| /* </summary> */ |
| static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { |
| OPJ_INT32 i; |
| |
| if (!cas) { |
| if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| } |
| } else { |
| if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ |
| OPJ_S(0) *= 2; |
| else { |
| for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
| for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
| } |
| } |
| } |
| |
| /* <summary> */ |
| /* Inverse 5-3 wavelet transform in 1-D. */ |
| /* </summary> */ |
| static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { |
| OPJ_INT32 i; |
| |
| if (!cas) { |
| if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| } |
| } else { |
| if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ |
| OPJ_S(0) /= 2; |
| else { |
| for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
| for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
| } |
| } |
| } |
| |
| /* <summary> */ |
| /* Inverse 5-3 wavelet transform in 1-D. */ |
| /* </summary> */ |
| static void opj_dwt_decode_1(opj_dwt_t *v) { |
| opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas); |
| } |
| |
| /* <summary> */ |
| /* Forward 9-7 wavelet transform in 1-D. */ |
| /* </summary> */ |
| static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { |
| OPJ_INT32 i; |
| if (!cas) { |
| if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| for (i = 0; i < dn; i++) |
| OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993); |
| for (i = 0; i < sn; i++) |
| OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434); |
| for (i = 0; i < dn; i++) |
| OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233); |
| for (i = 0; i < sn; i++) |
| OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633); |
| for (i = 0; i < dn; i++) |
| OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */ |
| for (i = 0; i < sn; i++) |
| OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */ |
| } |
| } else { |
| if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| for (i = 0; i < dn; i++) |
| OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993); |
| for (i = 0; i < sn; i++) |
| OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434); |
| for (i = 0; i < dn; i++) |
| OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233); |
| for (i = 0; i < sn; i++) |
| OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633); |
| for (i = 0; i < dn; i++) |
| OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */ |
| for (i = 0; i < sn; i++) |
| OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */ |
| } |
| } |
| } |
| |
| static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) { |
| OPJ_INT32 p, n; |
| p = opj_int_floorlog2(stepsize) - 13; |
| n = 11 - opj_int_floorlog2(stepsize); |
| bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; |
| bandno_stepsize->expn = numbps - p; |
| } |
| |
| /* |
| ========================================================== |
| DWT interface |
| ========================================================== |
| */ |
| |
| |
| /* <summary> */ |
| /* Forward 5-3 wavelet transform in 2-D. */ |
| /* </summary> */ |
| static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32)) |
| { |
| OPJ_INT32 i, j, k; |
| OPJ_INT32 *a = 00; |
| OPJ_INT32 *aj = 00; |
| OPJ_INT32 *bj = 00; |
| OPJ_INT32 w, l; |
| |
| OPJ_INT32 rw; /* width of the resolution level computed */ |
| OPJ_INT32 rh; /* height of the resolution level computed */ |
| OPJ_SIZE_T l_data_count; |
| OPJ_SIZE_T l_data_size; |
| |
| opj_tcd_resolution_t * l_cur_res = 0; |
| opj_tcd_resolution_t * l_last_res = 0; |
| |
| w = tilec->x1-tilec->x0; |
| l = (OPJ_INT32)tilec->numresolutions-1; |
| a = tilec->data; |
| |
| l_cur_res = tilec->resolutions + l; |
| l_last_res = l_cur_res - 1; |
| |
| l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32); |
| l_data_size = l_data_count * (OPJ_UINT32)sizeof(OPJ_INT32); |
| bj = (OPJ_INT32*)opj_malloc(l_data_size); |
| if (! bj) { |
| return OPJ_FALSE; |
| } |
| i = l; |
| |
| while (i--) { |
| OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */ |
| OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */ |
| OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ |
| OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ |
| OPJ_INT32 dn, sn; |
| |
| rw = l_cur_res->x1 - l_cur_res->x0; |
| rh = l_cur_res->y1 - l_cur_res->y0; |
| rw1 = l_last_res->x1 - l_last_res->x0; |
| rh1 = l_last_res->y1 - l_last_res->y0; |
| |
| cas_row = l_cur_res->x0 & 1; |
| cas_col = l_cur_res->y0 & 1; |
| |
| sn = rh1; |
| dn = rh - rh1; |
| for (j = 0; j < rw; ++j) { |
| aj = a + j; |
| for (k = 0; k < rh; ++k) { |
| bj[k] = aj[k*w]; |
| } |
| |
| (*p_function) (bj, l_data_count, dn, sn, cas_col); |
| |
| opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); |
| } |
| |
| sn = rw1; |
| dn = rw - rw1; |
| |
| for (j = 0; j < rh; j++) { |
| aj = a + j * w; |
| for (k = 0; k < rw; k++) bj[k] = aj[k]; |
| (*p_function) (bj, l_data_count, dn, sn, cas_row); |
| opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row); |
| } |
| |
| l_cur_res = l_last_res; |
| |
| --l_last_res; |
| } |
| |
| opj_free(bj); |
| return OPJ_TRUE; |
| } |
| |
| /* Forward 5-3 wavelet transform in 2-D. */ |
| /* </summary> */ |
| OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec) |
| { |
| return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1); |
| } |
| |
| /* <summary> */ |
| /* Inverse 5-3 wavelet transform in 2-D. */ |
| /* </summary> */ |
| OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) { |
| return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1); |
| } |
| |
| |
| /* <summary> */ |
| /* Get gain of 5-3 wavelet transform. */ |
| /* </summary> */ |
| OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) { |
| if (orient == 0) |
| return 0; |
| if (orient == 1 || orient == 2) |
| return 1; |
| return 2; |
| } |
| |
| /* <summary> */ |
| /* Get norm of 5-3 wavelet. */ |
| /* </summary> */ |
| OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) { |
| return opj_dwt_norms[orient][level]; |
| } |
| |
| /* <summary> */ |
| /* Forward 9-7 wavelet transform in 2-D. */ |
| /* </summary> */ |
| OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec) |
| { |
| return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real); |
| } |
| |
| /* <summary> */ |
| /* Get gain of 9-7 wavelet transform. */ |
| /* </summary> */ |
| OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) { |
| (void)orient; |
| return 0; |
| } |
| |
| /* <summary> */ |
| /* Get norm of 9-7 wavelet. */ |
| /* </summary> */ |
| OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) { |
| return opj_dwt_norms_real[orient][level]; |
| } |
| |
| void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) { |
| OPJ_UINT32 numbands, bandno; |
| numbands = 3 * tccp->numresolutions - 2; |
| for (bandno = 0; bandno < numbands; bandno++) { |
| OPJ_FLOAT64 stepsize; |
| OPJ_UINT32 resno, level, orient, gain; |
| |
| resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); |
| orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); |
| level = tccp->numresolutions - 1 - resno; |
| gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2)); |
| if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { |
| stepsize = 1.0; |
| } else { |
| OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level]; |
| stepsize = (1 << (gain)) / norm; |
| } |
| opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]); |
| } |
| } |
| |
| /* <summary> */ |
| /* Determine maximum computed resolution level for inverse wavelet transform */ |
| /* </summary> */ |
| static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) { |
| OPJ_UINT32 mr = 0; |
| OPJ_UINT32 w; |
| while( --i ) { |
| ++r; |
| if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) ) |
| mr = w ; |
| if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) ) |
| mr = w ; |
| } |
| return mr ; |
| } |
| |
| /* <summary> */ |
| /* Inverse wavelet transform in 2-D. */ |
| /* </summary> */ |
| static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) { |
| opj_dwt_t h; |
| opj_dwt_t v; |
| |
| opj_tcd_resolution_t* tr = tilec->resolutions; |
| |
| OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0); /* width of the resolution level computed */ |
| OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0); /* height of the resolution level computed */ |
| |
| OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0); |
| |
| h.mem_count = opj_dwt_max_resolution(tr, numres); |
| h.mem = (OPJ_INT32*)opj_aligned_malloc(h.mem_count * sizeof(OPJ_INT32)); |
| if (! h.mem){ |
| /* FIXME event manager error callback */ |
| return OPJ_FALSE; |
| } |
| |
| v.mem_count = h.mem_count; |
| v.mem = h.mem; |
| |
| while( --numres) { |
| OPJ_INT32 * restrict tiledp = tilec->data; |
| OPJ_UINT32 j; |
| |
| ++tr; |
| h.sn = (OPJ_INT32)rw; |
| v.sn = (OPJ_INT32)rh; |
| |
| rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
| rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
| |
| h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
| h.cas = tr->x0 % 2; |
| |
| for(j = 0; j < rh; ++j) { |
| opj_dwt_interleave_h(&h, &tiledp[j*w]); |
| (dwt_1D)(&h); |
| memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32)); |
| } |
| |
| v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
| v.cas = tr->y0 % 2; |
| |
| for(j = 0; j < rw; ++j){ |
| OPJ_UINT32 k; |
| opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w); |
| (dwt_1D)(&v); |
| for(k = 0; k < rh; ++k) { |
| tiledp[k * w + j] = v.mem[k]; |
| } |
| } |
| } |
| opj_aligned_free(h.mem); |
| return OPJ_TRUE; |
| } |
| |
| static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){ |
| OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas); |
| OPJ_INT32 count = w->sn; |
| OPJ_INT32 i, k; |
| |
| for(k = 0; k < 2; ++k){ |
| if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) { |
| /* Fast code path */ |
| for(i = 0; i < count; ++i){ |
| OPJ_INT32 j = i; |
| bi[i*8 ] = a[j]; |
| j += x; |
| bi[i*8 + 1] = a[j]; |
| j += x; |
| bi[i*8 + 2] = a[j]; |
| j += x; |
| bi[i*8 + 3] = a[j]; |
| } |
| } |
| else { |
| /* Slow code path */ |
| for(i = 0; i < count; ++i){ |
| OPJ_INT32 j = i; |
| bi[i*8 ] = a[j]; |
| j += x; |
| if(j >= size) continue; |
| bi[i*8 + 1] = a[j]; |
| j += x; |
| if(j >= size) continue; |
| bi[i*8 + 2] = a[j]; |
| j += x; |
| if(j >= size) continue; |
| bi[i*8 + 3] = a[j]; /* This one*/ |
| } |
| } |
| |
| bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas); |
| a += w->sn; |
| size -= w->sn; |
| count = w->dn; |
| } |
| } |
| |
| static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){ |
| opj_v4_t* restrict bi = v->wavelet + v->cas; |
| OPJ_INT32 i; |
| |
| for(i = 0; i < v->sn; ++i){ |
| memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32)); |
| } |
| |
| a += v->sn * x; |
| bi = v->wavelet + 1 - v->cas; |
| |
| for(i = 0; i < v->dn; ++i){ |
| memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32)); |
| } |
| } |
| |
| #ifdef __SSE__ |
| |
| static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){ |
| __m128* restrict vw = (__m128*) w; |
| OPJ_INT32 i; |
| /* 4x unrolled loop */ |
| for(i = 0; i < count >> 2; ++i){ |
| *vw = _mm_mul_ps(*vw, c); |
| vw += 2; |
| *vw = _mm_mul_ps(*vw, c); |
| vw += 2; |
| *vw = _mm_mul_ps(*vw, c); |
| vw += 2; |
| *vw = _mm_mul_ps(*vw, c); |
| vw += 2; |
| } |
| count &= 3; |
| for(i = 0; i < count; ++i){ |
| *vw = _mm_mul_ps(*vw, c); |
| vw += 2; |
| } |
| } |
| |
| void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){ |
| __m128* restrict vl = (__m128*) l; |
| __m128* restrict vw = (__m128*) w; |
| OPJ_INT32 i; |
| __m128 tmp1, tmp2, tmp3; |
| tmp1 = vl[0]; |
| for(i = 0; i < m; ++i){ |
| tmp2 = vw[-1]; |
| tmp3 = vw[ 0]; |
| vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); |
| tmp1 = tmp3; |
| vw += 2; |
| } |
| vl = vw - 2; |
| if(m >= k){ |
| return; |
| } |
| c = _mm_add_ps(c, c); |
| c = _mm_mul_ps(c, vl[0]); |
| for(; m < k; ++m){ |
| __m128 tmp = vw[-1]; |
| vw[-1] = _mm_add_ps(tmp, c); |
| vw += 2; |
| } |
| } |
| |
| #else |
| |
| static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c) |
| { |
| OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w; |
| OPJ_INT32 i; |
| for(i = 0; i < count; ++i){ |
| OPJ_FLOAT32 tmp1 = fw[i*8 ]; |
| OPJ_FLOAT32 tmp2 = fw[i*8 + 1]; |
| OPJ_FLOAT32 tmp3 = fw[i*8 + 2]; |
| OPJ_FLOAT32 tmp4 = fw[i*8 + 3]; |
| fw[i*8 ] = tmp1 * c; |
| fw[i*8 + 1] = tmp2 * c; |
| fw[i*8 + 2] = tmp3 * c; |
| fw[i*8 + 3] = tmp4 * c; |
| } |
| } |
| |
| static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c) |
| { |
| OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l; |
| OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w; |
| OPJ_INT32 i; |
| for(i = 0; i < m; ++i){ |
| OPJ_FLOAT32 tmp1_1 = fl[0]; |
| OPJ_FLOAT32 tmp1_2 = fl[1]; |
| OPJ_FLOAT32 tmp1_3 = fl[2]; |
| OPJ_FLOAT32 tmp1_4 = fl[3]; |
| OPJ_FLOAT32 tmp2_1 = fw[-4]; |
| OPJ_FLOAT32 tmp2_2 = fw[-3]; |
| OPJ_FLOAT32 tmp2_3 = fw[-2]; |
| OPJ_FLOAT32 tmp2_4 = fw[-1]; |
| OPJ_FLOAT32 tmp3_1 = fw[0]; |
| OPJ_FLOAT32 tmp3_2 = fw[1]; |
| OPJ_FLOAT32 tmp3_3 = fw[2]; |
| OPJ_FLOAT32 tmp3_4 = fw[3]; |
| fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c); |
| fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c); |
| fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c); |
| fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c); |
| fl = fw; |
| fw += 8; |
| } |
| if(m < k){ |
| OPJ_FLOAT32 c1; |
| OPJ_FLOAT32 c2; |
| OPJ_FLOAT32 c3; |
| OPJ_FLOAT32 c4; |
| c += c; |
| c1 = fl[0] * c; |
| c2 = fl[1] * c; |
| c3 = fl[2] * c; |
| c4 = fl[3] * c; |
| for(; m < k; ++m){ |
| OPJ_FLOAT32 tmp1 = fw[-4]; |
| OPJ_FLOAT32 tmp2 = fw[-3]; |
| OPJ_FLOAT32 tmp3 = fw[-2]; |
| OPJ_FLOAT32 tmp4 = fw[-1]; |
| fw[-4] = tmp1 + c1; |
| fw[-3] = tmp2 + c2; |
| fw[-2] = tmp3 + c3; |
| fw[-1] = tmp4 + c4; |
| fw += 8; |
| } |
| } |
| } |
| |
| #endif |
| |
| /* <summary> */ |
| /* Inverse 9-7 wavelet transform in 1-D. */ |
| /* </summary> */ |
| void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt) |
| { |
| OPJ_INT32 a, b; |
| if(dwt->cas == 0) { |
| if(!((dwt->dn > 0) || (dwt->sn > 1))){ |
| return; |
| } |
| a = 0; |
| b = 1; |
| }else{ |
| if(!((dwt->sn > 0) || (dwt->dn > 1))) { |
| return; |
| } |
| a = 1; |
| b = 0; |
| } |
| #ifdef __SSE__ |
| opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K)); |
| opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318)); |
| opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta)); |
| opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma)); |
| opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta)); |
| opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha)); |
| #else |
| opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K); |
| opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318); |
| opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta); |
| opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma); |
| opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta); |
| opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha); |
| #endif |
| } |
| |
| |
| /* <summary> */ |
| /* Inverse 9-7 wavelet transform in 2-D. */ |
| /* </summary> */ |
| OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres) |
| { |
| opj_v4dwt_t h; |
| opj_v4dwt_t v; |
| |
| opj_tcd_resolution_t* res = tilec->resolutions; |
| |
| OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */ |
| OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */ |
| |
| OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0); |
| |
| h.wavelet = (opj_v4_t*) opj_aligned_malloc((opj_dwt_max_resolution(res, numres)+5) * sizeof(opj_v4_t)); |
| if (!h.wavelet) { |
| /* FIXME event manager error callback */ |
| return OPJ_FALSE; |
| } |
| v.wavelet = h.wavelet; |
| |
| while( --numres) { |
| OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data; |
| OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0)); |
| OPJ_INT32 j; |
| |
| h.sn = (OPJ_INT32)rw; |
| v.sn = (OPJ_INT32)rh; |
| |
| ++res; |
| |
| rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */ |
| rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */ |
| |
| h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
| h.cas = res->x0 % 2; |
| |
| for(j = (OPJ_INT32)rh; j > 3; j -= 4) { |
| OPJ_INT32 k; |
| opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize); |
| opj_v4dwt_decode(&h); |
| |
| for(k = (OPJ_INT32)rw; --k >= 0;){ |
| aj[k ] = h.wavelet[k].f[0]; |
| aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1]; |
| aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2]; |
| aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3]; |
| } |
| |
| aj += w*4; |
| bufsize -= w*4; |
| } |
| |
| if (rh & 0x03) { |
| OPJ_INT32 k; |
| j = rh & 0x03; |
| opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize); |
| opj_v4dwt_decode(&h); |
| for(k = (OPJ_INT32)rw; --k >= 0;){ |
| switch(j) { |
| case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2]; |
| case 2: aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1]; |
| case 1: aj[k ] = h.wavelet[k].f[0]; |
| } |
| } |
| } |
| |
| v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
| v.cas = res->y0 % 2; |
| |
| aj = (OPJ_FLOAT32*) tilec->data; |
| for(j = (OPJ_INT32)rw; j > 3; j -= 4){ |
| OPJ_UINT32 k; |
| |
| opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4); |
| opj_v4dwt_decode(&v); |
| |
| for(k = 0; k < rh; ++k){ |
| memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32)); |
| } |
| aj += 4; |
| } |
| |
| if (rw & 0x03){ |
| OPJ_UINT32 k; |
| |
| j = rw & 0x03; |
| |
| opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j); |
| opj_v4dwt_decode(&v); |
| |
| for(k = 0; k < rh; ++k){ |
| memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32)); |
| } |
| } |
| } |
| |
| opj_aligned_free(h.wavelet); |
| return OPJ_TRUE; |
| } |