blob: afe69d90c072574aa735aa0e9a1947602f66a1d4 [file] [log] [blame]
/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2014, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux
* Copyright (c) 2003-2014, Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef OPJ_INTMATH_H
#define OPJ_INTMATH_H
/**
@file opj_intmath.h
@brief Implementation of operations on integers (INT)
The functions in OPJ_INTMATH.H have for goal to realize operations on integers.
*/
/** @defgroup OPJ_INTMATH OPJ_INTMATH - Implementation of operations on integers */
/*@{*/
/** @name Exported functions (see also openjpeg.h) */
/*@{*/
/* ----------------------------------------------------------------------- */
/**
Get the minimum of two integers
@return Returns a if a < b else b
*/
static INLINE OPJ_INT32 opj_int_min(OPJ_INT32 a, OPJ_INT32 b)
{
return a < b ? a : b;
}
/**
Get the minimum of two integers
@return Returns a if a < b else b
*/
static INLINE OPJ_UINT32 opj_uint_min(OPJ_UINT32 a, OPJ_UINT32 b)
{
return a < b ? a : b;
}
/**
Get the maximum of two integers
@return Returns a if a > b else b
*/
static INLINE OPJ_INT32 opj_int_max(OPJ_INT32 a, OPJ_INT32 b)
{
return (a > b) ? a : b;
}
/**
Get the maximum of two integers
@return Returns a if a > b else b
*/
static INLINE OPJ_UINT32 opj_uint_max(OPJ_UINT32 a, OPJ_UINT32 b)
{
return (a > b) ? a : b;
}
/**
Get the saturated sum of two unsigned integers
@return Returns saturated sum of a+b
*/
static INLINE OPJ_UINT32 opj_uint_adds(OPJ_UINT32 a, OPJ_UINT32 b)
{
OPJ_UINT64 sum = (OPJ_UINT64)a + (OPJ_UINT64)b;
return (OPJ_UINT32)(-(OPJ_INT32)(sum >> 32)) | (OPJ_UINT32)sum;
}
/**
Get the saturated difference of two unsigned integers
@return Returns saturated sum of a-b
*/
static INLINE OPJ_UINT32 opj_uint_subs(OPJ_UINT32 a, OPJ_UINT32 b)
{
return (a >= b) ? a - b : 0;
}
/**
Clamp an integer inside an interval
@return
<ul>
<li>Returns a if (min < a < max)
<li>Returns max if (a > max)
<li>Returns min if (a < min)
</ul>
*/
static INLINE OPJ_INT32 opj_int_clamp(OPJ_INT32 a, OPJ_INT32 min,
OPJ_INT32 max)
{
if (a < min) {
return min;
}
if (a > max) {
return max;
}
return a;
}
/**
Clamp an integer inside an interval
@return
<ul>
<li>Returns a if (min < a < max)
<li>Returns max if (a > max)
<li>Returns min if (a < min)
</ul>
*/
static INLINE OPJ_INT64 opj_int64_clamp(OPJ_INT64 a, OPJ_INT64 min,
OPJ_INT64 max)
{
if (a < min) {
return min;
}
if (a > max) {
return max;
}
return a;
}
/**
@return Get absolute value of integer
*/
static INLINE OPJ_INT32 opj_int_abs(OPJ_INT32 a)
{
return a < 0 ? -a : a;
}
/**
Divide an integer and round upwards
@return Returns a divided by b
*/
static INLINE OPJ_INT32 opj_int_ceildiv(OPJ_INT32 a, OPJ_INT32 b)
{
assert(b);
return (OPJ_INT32)(((OPJ_INT64)a + b - 1) / b);
}
/**
Divide an integer and round upwards
@return Returns a divided by b
*/
static INLINE OPJ_UINT32 opj_uint_ceildiv(OPJ_UINT32 a, OPJ_UINT32 b)
{
assert(b);
return (OPJ_UINT32)(((OPJ_UINT64)a + b - 1) / b);
}
/**
Divide an integer by a power of 2 and round upwards
@return Returns a divided by 2^b
*/
static INLINE OPJ_INT32 opj_int_ceildivpow2(OPJ_INT32 a, OPJ_INT32 b)
{
return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
}
/**
Divide a 64bits integer by a power of 2 and round upwards
@return Returns a divided by 2^b
*/
static INLINE OPJ_INT32 opj_int64_ceildivpow2(OPJ_INT64 a, OPJ_INT32 b)
{
return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
}
/**
Divide an integer by a power of 2 and round upwards
@return Returns a divided by 2^b
*/
static INLINE OPJ_UINT32 opj_uint_ceildivpow2(OPJ_UINT32 a, OPJ_UINT32 b)
{
return (OPJ_UINT32)((a + ((OPJ_UINT64)1U << b) - 1U) >> b);
}
/**
Divide an integer by a power of 2 and round downwards
@return Returns a divided by 2^b
*/
static INLINE OPJ_INT32 opj_int_floordivpow2(OPJ_INT32 a, OPJ_INT32 b)
{
return a >> b;
}
/**
Divide an integer by a power of 2 and round downwards
@return Returns a divided by 2^b
*/
static INLINE OPJ_UINT32 opj_uint_floordivpow2(OPJ_UINT32 a, OPJ_UINT32 b)
{
return a >> b;
}
/**
Get logarithm of an integer and round downwards
@return Returns log2(a)
*/
static INLINE OPJ_INT32 opj_int_floorlog2(OPJ_INT32 a)
{
OPJ_INT32 l;
for (l = 0; a > 1; l++) {
a >>= 1;
}
return l;
}
/**
Get logarithm of an integer and round downwards
@return Returns log2(a)
*/
static INLINE OPJ_UINT32 opj_uint_floorlog2(OPJ_UINT32 a)
{
OPJ_UINT32 l;
for (l = 0; a > 1; ++l) {
a >>= 1;
}
return l;
}
/**
Multiply two fixed-precision rational numbers.
@param a
@param b
@return Returns a * b
*/
static INLINE OPJ_INT32 opj_int_fix_mul(OPJ_INT32 a, OPJ_INT32 b)
{
#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
OPJ_INT64 temp = __emul(a, b);
#else
OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
#endif
temp += 4096;
assert((temp >> 13) <= (OPJ_INT64)0x7FFFFFFF);
assert((temp >> 13) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1));
return (OPJ_INT32)(temp >> 13);
}
static INLINE OPJ_INT32 opj_int_fix_mul_t1(OPJ_INT32 a, OPJ_INT32 b)
{
#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
OPJ_INT64 temp = __emul(a, b);
#else
OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
#endif
temp += 4096;
assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) <= (OPJ_INT64)0x7FFFFFFF);
assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) >= (-(OPJ_INT64)0x7FFFFFFF -
(OPJ_INT64)1));
return (OPJ_INT32)(temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) ;
}
/* ----------------------------------------------------------------------- */
/*@}*/
/*@}*/
#endif /* OPJ_INTMATH_H */