blob: d8cb498c20a65fb2a22fbe32dc0a6c2dbf59b52c [file] [log] [blame]
// Copyright 2017 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CORE_FXCRT_UNOWNED_PTR_H_
#define CORE_FXCRT_UNOWNED_PTR_H_
#include <cstddef>
#include <functional>
#include <type_traits>
#include <utility>
#include "third_party/base/compiler_specific.h"
// UnownedPtr is a smart pointer class that behaves very much like a
// standard C-style pointer. The advantages of using it over raw
// pointers are:
//
// 1. It documents the nature of the pointer with no need to add a comment
// explaining that is it // Not owned. Additionally, an attempt to delete
// an unowned ptr will fail to compile rather than silently succeeding,
// since it is a class and not a raw pointer.
//
// 2. When built using the memory tool ASAN, the class provides a destructor
// which checks that the object being pointed to is still alive.
//
// Hence, when using UnownedPtr, no dangling pointers are ever permitted,
// even if they are not de-referenced after becoming dangling. The style of
// programming required is that the lifetime an object containing an
// UnownedPtr must be strictly less than the object to which it points.
//
// The same checks are also performed at assignment time to prove that the
// old value was not a dangling pointer, either.
//
// The array indexing operation [] is not supported on an unowned ptr,
// because an unowned ptr expresses a one to one relationship with some
// other heap object. Use pdfium::span<> for the cases where indexing
// into an unowned array is desired, which performs the same checks.
namespace pdfium {
template <typename T>
class span;
} // namespace pdfium
namespace fxcrt {
template <class T>
class TRIVIAL_ABI GSL_POINTER UnownedPtr {
public:
constexpr UnownedPtr() noexcept = default;
// Deliberately implicit to allow returning nullptrs.
// NOLINTNEXTLINE(runtime/explicit)
constexpr UnownedPtr(std::nullptr_t ptr) {}
explicit constexpr UnownedPtr(T* pObj) noexcept : m_pObj(pObj) {}
// Copy-construct an UnownedPtr.
// Required in addition to copy conversion constructor below.
constexpr UnownedPtr(const UnownedPtr& that) noexcept
: m_pObj(static_cast<T*>(that)) {}
// Move-construct an UnownedPtr. After construction, |that| will be NULL.
// Required in addition to move conversion constructor below.
constexpr UnownedPtr(UnownedPtr&& that) noexcept : m_pObj(that.Release()) {}
// Copy-conversion constructor.
template <class U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
UnownedPtr(const UnownedPtr<U>& that) : UnownedPtr(static_cast<U*>(that)) {}
// Move-conversion constructor.
template <class U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
UnownedPtr(UnownedPtr<U>&& that) noexcept {
Reset(that.Release());
}
// Assign an UnownedPtr from nullptr.
UnownedPtr& operator=(std::nullptr_t) noexcept {
Reset();
return *this;
}
// Assign an UnownedPtr from a raw ptr.
UnownedPtr& operator=(T* that) noexcept {
Reset(that);
return *this;
}
// Copy-assign an UnownedPtr.
// Required in addition to copy conversion assignment below.
UnownedPtr& operator=(const UnownedPtr& that) noexcept {
if (*this != that)
Reset(static_cast<T*>(that));
return *this;
}
// Move-assign an UnownedPtr. After assignment, |that| will be NULL.
// Required in addition to move conversion assignment below.
UnownedPtr& operator=(UnownedPtr&& that) noexcept {
if (*this != that)
Reset(that.Release());
return *this;
}
// Copy-convert assignment.
template <class U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
UnownedPtr& operator=(const UnownedPtr<U>& that) noexcept {
if (*this != that)
Reset(that);
return *this;
}
// Move-convert assignment. After assignment, |that| will be NULL.
template <class U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
UnownedPtr& operator=(UnownedPtr<U>&& that) noexcept {
if (*this != that)
Reset(that.Release());
return *this;
}
~UnownedPtr() {
ProbeForLowSeverityLifetimeIssue();
m_pObj = nullptr;
}
void Reset(T* obj = nullptr) {
ProbeForLowSeverityLifetimeIssue();
m_pObj = obj;
}
bool operator==(std::nullptr_t ptr) const { return m_pObj == nullptr; }
bool operator==(const UnownedPtr& that) const {
return m_pObj == static_cast<T*>(that);
}
bool operator<(const UnownedPtr& that) const {
return std::less<T*>()(m_pObj, static_cast<T*>(that));
}
operator T*() const noexcept { return m_pObj; }
T* Get() const noexcept { return m_pObj; }
T* Release() {
ProbeForLowSeverityLifetimeIssue();
T* pTemp = nullptr;
std::swap(pTemp, m_pObj);
return pTemp;
}
explicit operator bool() const { return !!m_pObj; }
T& operator*() const { return *m_pObj; }
T* operator->() const { return m_pObj; }
private:
friend class pdfium::span<T>;
inline void ProbeForLowSeverityLifetimeIssue() {
#if defined(ADDRESS_SANITIZER)
if (m_pObj)
reinterpret_cast<const volatile uint8_t*>(m_pObj)[0];
#endif
}
inline void ReleaseBadPointer() {
#if defined(ADDRESS_SANITIZER)
m_pObj = nullptr;
#endif
}
T* m_pObj = nullptr;
};
} // namespace fxcrt
using fxcrt::UnownedPtr;
namespace pdfium {
// Type-deducing wrapper to make an UnownedPtr from an ordinary pointer,
// since equivalent constructor is explicit.
template <typename T>
UnownedPtr<T> WrapUnowned(T* that) {
return UnownedPtr<T>(that);
}
} // namespace pdfium
#endif // CORE_FXCRT_UNOWNED_PTR_H_