blob: bc72ad3b33ba73d4864db715791f0791dd97ddf5 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/parser/cpdf_security_handler.h"
#include <time.h>
#include <algorithm>
#include <utility>
#include <vector>
#include "core/fdrm/crypto/fx_crypt.h"
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_crypto_handler.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_object.h"
#include "core/fpdfapi/parser/cpdf_string.h"
#include "core/fxcrt/fx_extension.h"
namespace {
const uint8_t defpasscode[32] = {
0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41, 0x64, 0x00, 0x4e,
0x56, 0xff, 0xfa, 0x01, 0x08, 0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68,
0x3e, 0x80, 0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a};
void CalcEncryptKey(const CPDF_Dictionary* pEncrypt,
const ByteString& password,
uint8_t* key,
int keylen,
bool bIgnoreMeta,
const ByteString& fileId) {
int revision = pEncrypt->GetIntegerFor("R");
uint8_t passcode[32];
for (uint32_t i = 0; i < 32; i++) {
passcode[i] = i < password.GetLength()
? password[i]
: defpasscode[i - password.GetLength()];
}
CRYPT_md5_context md5;
CRYPT_MD5Start(&md5);
CRYPT_MD5Update(&md5, passcode, 32);
ByteString okey = pEncrypt->GetStringFor("O");
CRYPT_MD5Update(&md5, (uint8_t*)okey.c_str(), okey.GetLength());
uint32_t perm = pEncrypt->GetIntegerFor("P");
CRYPT_MD5Update(&md5, (uint8_t*)&perm, 4);
if (!fileId.IsEmpty())
CRYPT_MD5Update(&md5, (uint8_t*)fileId.c_str(), fileId.GetLength());
if (!bIgnoreMeta && revision >= 3 &&
!pEncrypt->GetIntegerFor("EncryptMetadata", 1)) {
uint32_t tag = 0xFFFFFFFF;
CRYPT_MD5Update(&md5, (uint8_t*)&tag, 4);
}
uint8_t digest[16];
CRYPT_MD5Finish(&md5, digest);
uint32_t copy_len = keylen;
if (copy_len > sizeof(digest))
copy_len = sizeof(digest);
if (revision >= 3) {
for (int i = 0; i < 50; i++)
CRYPT_MD5Generate(digest, copy_len, digest);
}
memset(key, 0, keylen);
memcpy(key, digest, copy_len);
}
bool IsValidKeyLengthForCipher(int cipher, int keylen) {
switch (cipher) {
case FXCIPHER_AES:
return keylen == 16 || keylen == 24 || keylen == 32;
case FXCIPHER_AES2:
return keylen == 32;
case FXCIPHER_RC4:
return keylen >= 5 && keylen <= 16;
case FXCIPHER_NONE:
return true;
default:
NOTREACHED();
}
return false;
}
} // namespace
CPDF_SecurityHandler::CPDF_SecurityHandler()
: m_Version(0),
m_Revision(0),
m_Permissions(0),
m_Cipher(FXCIPHER_NONE),
m_KeyLen(0),
m_bOwnerUnlocked(false) {}
CPDF_SecurityHandler::~CPDF_SecurityHandler() {}
bool CPDF_SecurityHandler::OnInit(const CPDF_Dictionary* pEncryptDict,
const CPDF_Array* pIdArray,
const ByteString& password) {
m_FileId = pIdArray ? pIdArray->GetStringAt(0) : "";
if (!LoadDict(pEncryptDict))
return false;
if (m_Cipher == FXCIPHER_NONE)
return true;
if (!CheckSecurity(password))
return false;
InitCryptoHandler();
return true;
}
bool CPDF_SecurityHandler::CheckSecurity(const ByteString& password) {
if (!password.IsEmpty() &&
CheckPassword(password, true, m_EncryptKey, m_KeyLen)) {
m_bOwnerUnlocked = true;
return true;
}
return CheckPassword(password, false, m_EncryptKey, m_KeyLen);
}
uint32_t CPDF_SecurityHandler::GetPermissions() const {
uint32_t dwPermission = m_bOwnerUnlocked ? 0xFFFFFFFF : m_Permissions;
if (m_pEncryptDict && m_pEncryptDict->GetStringFor("Filter") == "Standard") {
// See PDF Reference 1.7, page 123, table 3.20.
dwPermission &= 0xFFFFFFFC;
dwPermission |= 0xFFFFF0C0;
}
return dwPermission;
}
static bool LoadCryptInfo(const CPDF_Dictionary* pEncryptDict,
const ByteString& name,
int& cipher,
int& keylen) {
int Version = pEncryptDict->GetIntegerFor("V");
cipher = FXCIPHER_RC4;
keylen = 0;
if (Version >= 4) {
const CPDF_Dictionary* pCryptFilters = pEncryptDict->GetDictFor("CF");
if (!pCryptFilters)
return false;
if (name == "Identity") {
cipher = FXCIPHER_NONE;
} else {
const CPDF_Dictionary* pDefFilter = pCryptFilters->GetDictFor(name);
if (!pDefFilter)
return false;
int nKeyBits = 0;
if (Version == 4) {
nKeyBits = pDefFilter->GetIntegerFor("Length", 0);
if (nKeyBits == 0) {
nKeyBits = pEncryptDict->GetIntegerFor("Length", 128);
}
} else {
nKeyBits = pEncryptDict->GetIntegerFor("Length", 256);
}
if (nKeyBits < 40) {
nKeyBits *= 8;
}
keylen = nKeyBits / 8;
ByteString cipher_name = pDefFilter->GetStringFor("CFM");
if (cipher_name == "AESV2" || cipher_name == "AESV3") {
cipher = FXCIPHER_AES;
}
}
} else {
keylen = Version > 1 ? pEncryptDict->GetIntegerFor("Length", 40) / 8 : 5;
}
if (keylen > 32 || keylen < 0) {
return false;
}
return IsValidKeyLengthForCipher(cipher, keylen);
}
bool CPDF_SecurityHandler::LoadDict(const CPDF_Dictionary* pEncryptDict) {
m_pEncryptDict = pEncryptDict;
m_Version = pEncryptDict->GetIntegerFor("V");
m_Revision = pEncryptDict->GetIntegerFor("R");
m_Permissions = pEncryptDict->GetIntegerFor("P", -1);
if (m_Version < 4)
return LoadCryptInfo(pEncryptDict, ByteString(), m_Cipher, m_KeyLen);
ByteString stmf_name = pEncryptDict->GetStringFor("StmF");
ByteString strf_name = pEncryptDict->GetStringFor("StrF");
if (stmf_name != strf_name)
return false;
return LoadCryptInfo(pEncryptDict, strf_name, m_Cipher, m_KeyLen);
}
bool CPDF_SecurityHandler::LoadDict(const CPDF_Dictionary* pEncryptDict,
int& cipher,
int& key_len) {
m_pEncryptDict = pEncryptDict;
m_Version = pEncryptDict->GetIntegerFor("V");
m_Revision = pEncryptDict->GetIntegerFor("R");
m_Permissions = pEncryptDict->GetIntegerFor("P", -1);
ByteString strf_name;
ByteString stmf_name;
if (m_Version >= 4) {
stmf_name = pEncryptDict->GetStringFor("StmF");
strf_name = pEncryptDict->GetStringFor("StrF");
if (stmf_name != strf_name)
return false;
}
if (!LoadCryptInfo(pEncryptDict, strf_name, cipher, key_len))
return false;
m_Cipher = cipher;
m_KeyLen = key_len;
return true;
}
#define FX_GET_32WORD(n, b, i) \
{ \
(n) = (uint32_t)( \
((uint64_t)(b)[(i)] << 24) | ((uint64_t)(b)[(i) + 1] << 16) | \
((uint64_t)(b)[(i) + 2] << 8) | ((uint64_t)(b)[(i) + 3])); \
}
int BigOrder64BitsMod3(uint8_t* data) {
uint64_t ret = 0;
for (int i = 0; i < 4; ++i) {
uint32_t value;
FX_GET_32WORD(value, data, 4 * i);
ret <<= 32;
ret |= value;
ret %= 3;
}
return (int)ret;
}
void Revision6_Hash(const ByteString& password,
const uint8_t* salt,
const uint8_t* vector,
uint8_t* hash) {
CRYPT_sha2_context sha;
CRYPT_SHA256Start(&sha);
CRYPT_SHA256Update(&sha, password.raw_str(), password.GetLength());
CRYPT_SHA256Update(&sha, salt, 8);
if (vector)
CRYPT_SHA256Update(&sha, vector, 48);
uint8_t digest[32];
CRYPT_SHA256Finish(&sha, digest);
std::vector<uint8_t> buf;
uint8_t* input = digest;
uint8_t* key = input;
uint8_t* iv = input + 16;
uint8_t* E = nullptr;
int iBufLen = 0;
std::vector<uint8_t> interDigest;
int i = 0;
int iBlockSize = 32;
CRYPT_aes_context aes;
memset(&aes, 0, sizeof(aes));
while (i < 64 || i < E[iBufLen - 1] + 32) {
int iRoundSize = password.GetLength() + iBlockSize;
if (vector) {
iRoundSize += 48;
}
iBufLen = iRoundSize * 64;
buf.resize(iBufLen);
E = buf.data();
std::vector<uint8_t> content;
for (int j = 0; j < 64; ++j) {
content.insert(std::end(content), password.raw_str(),
password.raw_str() + password.GetLength());
content.insert(std::end(content), input, input + iBlockSize);
if (vector) {
content.insert(std::end(content), vector, vector + 48);
}
}
CRYPT_AESSetKey(&aes, 16, key, 16, true);
CRYPT_AESSetIV(&aes, iv);
CRYPT_AESEncrypt(&aes, E, content.data(), iBufLen);
int iHash = 0;
switch (BigOrder64BitsMod3(E)) {
case 0:
iHash = 0;
iBlockSize = 32;
break;
case 1:
iHash = 1;
iBlockSize = 48;
break;
default:
iHash = 2;
iBlockSize = 64;
break;
}
interDigest.resize(iBlockSize);
input = interDigest.data();
if (iHash == 0) {
CRYPT_SHA256Generate(E, iBufLen, input);
} else if (iHash == 1) {
CRYPT_SHA384Generate(E, iBufLen, input);
} else if (iHash == 2) {
CRYPT_SHA512Generate(E, iBufLen, input);
}
key = input;
iv = input + 16;
++i;
}
if (hash) {
memcpy(hash, input, 32);
}
}
bool CPDF_SecurityHandler::AES256_CheckPassword(const ByteString& password,
bool bOwner,
uint8_t* key) {
if (!m_pEncryptDict)
return false;
ByteString okey = m_pEncryptDict->GetStringFor("O");
if (okey.GetLength() < 48)
return false;
ByteString ukey = m_pEncryptDict->GetStringFor("U");
if (ukey.GetLength() < 48)
return false;
const uint8_t* pkey = bOwner ? okey.raw_str() : ukey.raw_str();
CRYPT_sha2_context sha;
uint8_t digest[32];
if (m_Revision >= 6) {
Revision6_Hash(password, (const uint8_t*)pkey + 32,
bOwner ? ukey.raw_str() : nullptr, digest);
} else {
CRYPT_SHA256Start(&sha);
CRYPT_SHA256Update(&sha, password.raw_str(), password.GetLength());
CRYPT_SHA256Update(&sha, pkey + 32, 8);
if (bOwner)
CRYPT_SHA256Update(&sha, ukey.raw_str(), 48);
CRYPT_SHA256Finish(&sha, digest);
}
if (memcmp(digest, pkey, 32) != 0)
return false;
if (!key)
return true;
if (m_Revision >= 6) {
Revision6_Hash(password, (const uint8_t*)pkey + 40,
bOwner ? ukey.raw_str() : nullptr, digest);
} else {
CRYPT_SHA256Start(&sha);
CRYPT_SHA256Update(&sha, password.raw_str(), password.GetLength());
CRYPT_SHA256Update(&sha, pkey + 40, 8);
if (bOwner)
CRYPT_SHA256Update(&sha, ukey.raw_str(), 48);
CRYPT_SHA256Finish(&sha, digest);
}
ByteString ekey = m_pEncryptDict->GetStringFor(bOwner ? "OE" : "UE");
if (ekey.GetLength() < 32)
return false;
CRYPT_aes_context aes;
memset(&aes, 0, sizeof(aes));
CRYPT_AESSetKey(&aes, 16, digest, 32, false);
uint8_t iv[16];
memset(iv, 0, 16);
CRYPT_AESSetIV(&aes, iv);
CRYPT_AESDecrypt(&aes, key, ekey.raw_str(), 32);
CRYPT_AESSetKey(&aes, 16, key, 32, false);
CRYPT_AESSetIV(&aes, iv);
ByteString perms = m_pEncryptDict->GetStringFor("Perms");
if (perms.IsEmpty())
return false;
uint8_t perms_buf[16];
memset(perms_buf, 0, sizeof(perms_buf));
size_t copy_len =
std::min(sizeof(perms_buf), static_cast<size_t>(perms.GetLength()));
memcpy(perms_buf, perms.raw_str(), copy_len);
uint8_t buf[16];
CRYPT_AESDecrypt(&aes, buf, perms_buf, 16);
if (buf[9] != 'a' || buf[10] != 'd' || buf[11] != 'b')
return false;
if (FXDWORD_GET_LSBFIRST(buf) != m_Permissions)
return false;
// Relax this check as there appear to be some non-conforming documents
// in the wild. The value in the buffer is the truth; if it requires us
// to encrypt metadata, but the dictionary says otherwise, then we may
// have a tampered doc. Otherwise, give it a pass.
return buf[8] == 'F' || IsMetadataEncrypted();
}
bool CPDF_SecurityHandler::CheckPassword(const ByteString& password,
bool bOwner,
uint8_t* key,
int32_t key_len) {
if (m_Revision >= 5)
return AES256_CheckPassword(password, bOwner, key);
uint8_t keybuf[32];
if (!key)
key = keybuf;
if (bOwner)
return CheckOwnerPassword(password, key, key_len);
return CheckUserPassword(password, false, key, key_len) ||
CheckUserPassword(password, true, key, key_len);
}
bool CPDF_SecurityHandler::CheckUserPassword(const ByteString& password,
bool bIgnoreEncryptMeta,
uint8_t* key,
int32_t key_len) {
CalcEncryptKey(m_pEncryptDict.Get(), password, key, key_len,
bIgnoreEncryptMeta, m_FileId);
ByteString ukey =
m_pEncryptDict ? m_pEncryptDict->GetStringFor("U") : ByteString();
if (ukey.GetLength() < 16) {
return false;
}
uint8_t ukeybuf[32];
if (m_Revision == 2) {
memcpy(ukeybuf, defpasscode, 32);
CRYPT_ArcFourCryptBlock(ukeybuf, 32, key, key_len);
} else {
uint8_t test[32], tmpkey[32];
uint32_t copy_len = sizeof(test);
if (copy_len > (uint32_t)ukey.GetLength()) {
copy_len = ukey.GetLength();
}
memset(test, 0, sizeof(test));
memset(tmpkey, 0, sizeof(tmpkey));
memcpy(test, ukey.c_str(), copy_len);
for (int32_t i = 19; i >= 0; i--) {
for (int j = 0; j < key_len; j++)
tmpkey[j] = key[j] ^ static_cast<uint8_t>(i);
CRYPT_ArcFourCryptBlock(test, 32, tmpkey, key_len);
}
CRYPT_md5_context md5;
CRYPT_MD5Start(&md5);
CRYPT_MD5Update(&md5, defpasscode, 32);
if (!m_FileId.IsEmpty()) {
CRYPT_MD5Update(&md5, (uint8_t*)m_FileId.c_str(), m_FileId.GetLength());
}
CRYPT_MD5Finish(&md5, ukeybuf);
return memcmp(test, ukeybuf, 16) == 0;
}
return memcmp(ukey.c_str(), ukeybuf, 16) == 0;
}
ByteString CPDF_SecurityHandler::GetUserPassword(
const ByteString& owner_password,
int32_t key_len) const {
ByteString okey = m_pEncryptDict->GetStringFor("O");
uint8_t passcode[32];
for (uint32_t i = 0; i < 32; i++) {
passcode[i] = i < owner_password.GetLength()
? owner_password[i]
: defpasscode[i - owner_password.GetLength()];
}
uint8_t digest[16];
CRYPT_MD5Generate(passcode, 32, digest);
if (m_Revision >= 3) {
for (uint32_t i = 0; i < 50; i++) {
CRYPT_MD5Generate(digest, 16, digest);
}
}
uint8_t enckey[32];
memset(enckey, 0, sizeof(enckey));
uint32_t copy_len = key_len;
if (copy_len > sizeof(digest)) {
copy_len = sizeof(digest);
}
memcpy(enckey, digest, copy_len);
int okeylen = okey.GetLength();
if (okeylen > 32) {
okeylen = 32;
}
uint8_t okeybuf[64];
memset(okeybuf, 0, sizeof(okeybuf));
memcpy(okeybuf, okey.c_str(), okeylen);
if (m_Revision == 2) {
CRYPT_ArcFourCryptBlock(okeybuf, okeylen, enckey, key_len);
} else {
for (int32_t i = 19; i >= 0; i--) {
uint8_t tempkey[32];
memset(tempkey, 0, sizeof(tempkey));
for (int j = 0; j < m_KeyLen; j++)
tempkey[j] = enckey[j] ^ static_cast<uint8_t>(i);
CRYPT_ArcFourCryptBlock(okeybuf, okeylen, tempkey, key_len);
}
}
int len = 32;
while (len && defpasscode[len - 1] == okeybuf[len - 1]) {
len--;
}
return ByteString(okeybuf, len);
}
bool CPDF_SecurityHandler::CheckOwnerPassword(const ByteString& password,
uint8_t* key,
int32_t key_len) {
ByteString user_pass = GetUserPassword(password, key_len);
if (CheckUserPassword(user_pass, false, key, key_len))
return true;
return CheckUserPassword(user_pass, true, key, key_len);
}
bool CPDF_SecurityHandler::IsMetadataEncrypted() const {
return m_pEncryptDict->GetBooleanFor("EncryptMetadata", true);
}
void CPDF_SecurityHandler::OnCreateInternal(CPDF_Dictionary* pEncryptDict,
const CPDF_Array* pIdArray,
const ByteString& user_password,
const ByteString& owner_password,
bool bDefault) {
ASSERT(pEncryptDict);
int cipher = 0;
int key_len = 0;
if (!LoadDict(pEncryptDict, cipher, key_len)) {
return;
}
ByteString owner_password_copy = owner_password;
if (bDefault && owner_password.IsEmpty())
owner_password_copy = user_password;
if (m_Revision >= 5) {
int t = static_cast<int>(FXSYS_time(nullptr));
CRYPT_sha2_context sha;
CRYPT_SHA256Start(&sha);
CRYPT_SHA256Update(&sha, (uint8_t*)&t, sizeof t);
CRYPT_SHA256Update(&sha, m_EncryptKey, 32);
CRYPT_SHA256Update(&sha, (uint8_t*)"there", 5);
CRYPT_SHA256Finish(&sha, m_EncryptKey);
AES256_SetPassword(pEncryptDict, user_password, false, m_EncryptKey);
if (bDefault) {
AES256_SetPassword(pEncryptDict, owner_password_copy, true, m_EncryptKey);
AES256_SetPerms(pEncryptDict, m_Permissions,
pEncryptDict->GetBooleanFor("EncryptMetadata", true),
m_EncryptKey);
}
return;
}
if (bDefault) {
uint8_t passcode[32];
for (uint32_t i = 0; i < 32; i++) {
passcode[i] = i < owner_password_copy.GetLength()
? owner_password_copy[i]
: defpasscode[i - owner_password_copy.GetLength()];
}
uint8_t digest[16];
CRYPT_MD5Generate(passcode, 32, digest);
if (m_Revision >= 3) {
for (uint32_t i = 0; i < 50; i++)
CRYPT_MD5Generate(digest, 16, digest);
}
uint8_t enckey[32];
memcpy(enckey, digest, key_len);
for (uint32_t i = 0; i < 32; i++) {
passcode[i] = i < user_password.GetLength()
? user_password[i]
: defpasscode[i - user_password.GetLength()];
}
CRYPT_ArcFourCryptBlock(passcode, 32, enckey, key_len);
uint8_t tempkey[32];
if (m_Revision >= 3) {
for (uint8_t i = 1; i <= 19; i++) {
for (int j = 0; j < key_len; j++)
tempkey[j] = enckey[j] ^ i;
CRYPT_ArcFourCryptBlock(passcode, 32, tempkey, key_len);
}
}
pEncryptDict->SetNewFor<CPDF_String>("O", ByteString(passcode, 32), false);
}
ByteString fileId;
if (pIdArray) {
fileId = pIdArray->GetStringAt(0);
}
CalcEncryptKey(m_pEncryptDict.Get(), user_password, m_EncryptKey, key_len,
false, fileId);
if (m_Revision < 3) {
uint8_t tempbuf[32];
memcpy(tempbuf, defpasscode, 32);
CRYPT_ArcFourCryptBlock(tempbuf, 32, m_EncryptKey, key_len);
pEncryptDict->SetNewFor<CPDF_String>("U", ByteString(tempbuf, 32), false);
} else {
CRYPT_md5_context md5;
CRYPT_MD5Start(&md5);
CRYPT_MD5Update(&md5, defpasscode, 32);
if (!fileId.IsEmpty()) {
CRYPT_MD5Update(&md5, (uint8_t*)fileId.c_str(), fileId.GetLength());
}
uint8_t digest[32];
CRYPT_MD5Finish(&md5, digest);
CRYPT_ArcFourCryptBlock(digest, 16, m_EncryptKey, key_len);
uint8_t tempkey[32];
for (uint8_t i = 1; i <= 19; i++) {
for (int j = 0; j < key_len; j++) {
tempkey[j] = m_EncryptKey[j] ^ i;
}
CRYPT_ArcFourCryptBlock(digest, 16, tempkey, key_len);
}
CRYPT_MD5Generate(digest, 16, digest + 16);
pEncryptDict->SetNewFor<CPDF_String>("U", ByteString(digest, 32), false);
}
}
void CPDF_SecurityHandler::OnCreate(CPDF_Dictionary* pEncryptDict,
const CPDF_Array* pIdArray,
const ByteString& user_password,
const ByteString& owner_password) {
OnCreateInternal(pEncryptDict, pIdArray, user_password, owner_password, true);
InitCryptoHandler();
}
void CPDF_SecurityHandler::OnCreate(CPDF_Dictionary* pEncryptDict,
const CPDF_Array* pIdArray,
const ByteString& user_password) {
OnCreateInternal(pEncryptDict, pIdArray, user_password, ByteString(), false);
InitCryptoHandler();
}
void CPDF_SecurityHandler::AES256_SetPassword(CPDF_Dictionary* pEncryptDict,
const ByteString& password,
bool bOwner,
const uint8_t* key) {
CRYPT_sha1_context sha;
CRYPT_SHA1Start(&sha);
CRYPT_SHA1Update(&sha, key, 32);
CRYPT_SHA1Update(&sha, (uint8_t*)"hello", 5);
uint8_t digest[20];
CRYPT_SHA1Finish(&sha, digest);
ByteString ukey = pEncryptDict->GetStringFor("U");
CRYPT_sha2_context sha2;
uint8_t digest1[48];
if (m_Revision >= 6) {
Revision6_Hash(password, digest, bOwner ? ukey.raw_str() : nullptr,
digest1);
} else {
CRYPT_SHA256Start(&sha2);
CRYPT_SHA256Update(&sha2, password.raw_str(), password.GetLength());
CRYPT_SHA256Update(&sha2, digest, 8);
if (bOwner) {
CRYPT_SHA256Update(&sha2, ukey.raw_str(), ukey.GetLength());
}
CRYPT_SHA256Finish(&sha2, digest1);
}
memcpy(digest1 + 32, digest, 16);
pEncryptDict->SetNewFor<CPDF_String>(bOwner ? "O" : "U",
ByteString(digest1, 48), false);
if (m_Revision >= 6) {
Revision6_Hash(password, digest + 8, bOwner ? ukey.raw_str() : nullptr,
digest1);
} else {
CRYPT_SHA256Start(&sha2);
CRYPT_SHA256Update(&sha2, password.raw_str(), password.GetLength());
CRYPT_SHA256Update(&sha2, digest + 8, 8);
if (bOwner) {
CRYPT_SHA256Update(&sha2, ukey.raw_str(), ukey.GetLength());
}
CRYPT_SHA256Finish(&sha2, digest1);
}
CRYPT_aes_context aes;
memset(&aes, 0, sizeof(aes));
CRYPT_AESSetKey(&aes, 16, digest1, 32, true);
uint8_t iv[16];
memset(iv, 0, 16);
CRYPT_AESSetIV(&aes, iv);
CRYPT_AESEncrypt(&aes, digest1, key, 32);
pEncryptDict->SetNewFor<CPDF_String>(bOwner ? "OE" : "UE",
ByteString(digest1, 32), false);
}
void CPDF_SecurityHandler::AES256_SetPerms(CPDF_Dictionary* pEncryptDict,
uint32_t permissions,
bool bEncryptMetadata,
const uint8_t* key) {
uint8_t buf[16];
buf[0] = (uint8_t)permissions;
buf[1] = (uint8_t)(permissions >> 8);
buf[2] = (uint8_t)(permissions >> 16);
buf[3] = (uint8_t)(permissions >> 24);
buf[4] = 0xff;
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
buf[8] = bEncryptMetadata ? 'T' : 'F';
buf[9] = 'a';
buf[10] = 'd';
buf[11] = 'b';
CRYPT_aes_context aes;
memset(&aes, 0, sizeof(aes));
CRYPT_AESSetKey(&aes, 16, key, 32, true);
uint8_t iv[16];
memset(iv, 0, 16);
CRYPT_AESSetIV(&aes, iv);
uint8_t buf1[16];
CRYPT_AESEncrypt(&aes, buf1, buf, 16);
pEncryptDict->SetNewFor<CPDF_String>("Perms", ByteString(buf1, 16), false);
}
void CPDF_SecurityHandler::InitCryptoHandler() {
m_pCryptoHandler =
pdfium::MakeUnique<CPDF_CryptoHandler>(m_Cipher, m_EncryptKey, m_KeyLen);
}