| /* |
| * The copyright in this software is being made available under the 2-clauses |
| * BSD License, included below. This software may be subject to other third |
| * party and contributor rights, including patent rights, and no such rights |
| * are granted under this license. |
| * |
| * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium |
| * Copyright (c) 2002-2014, Professor Benoit Macq |
| * Copyright (c) 2001-2003, David Janssens |
| * Copyright (c) 2002-2003, Yannick Verschueren |
| * Copyright (c) 2003-2007, Francois-Olivier Devaux |
| * Copyright (c) 2003-2014, Antonin Descampe |
| * Copyright (c) 2005, Herve Drolon, FreeImage Team |
| * Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR |
| * Copyright (c) 2012, CS Systemes d'Information, France |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #if defined(__SSE__) && !defined(_M_IX86) && !defined(__i386) |
| #define USE_SSE |
| #include <xmmintrin.h> |
| #endif |
| #if defined(__SSE2__) && !defined(_M_IX86) && !defined(__i386) |
| #define USE_SSE2 |
| #include <emmintrin.h> |
| #endif |
| #if defined(__SSE4_1__) && !defined(_M_IX86) && !defined(__i386) |
| #define USE_SSE4 |
| #include <smmintrin.h> |
| #endif |
| |
| #include "opj_includes.h" |
| |
| /* <summary> */ |
| /* This table contains the norms of the basis function of the reversible MCT. */ |
| /* </summary> */ |
| static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 }; |
| |
| /* <summary> */ |
| /* This table contains the norms of the basis function of the irreversible MCT. */ |
| /* </summary> */ |
| static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 }; |
| |
| const OPJ_FLOAT64 * opj_mct_get_mct_norms() |
| { |
| return opj_mct_norms; |
| } |
| |
| const OPJ_FLOAT64 * opj_mct_get_mct_norms_real() |
| { |
| return opj_mct_norms_real; |
| } |
| |
| /* <summary> */ |
| /* Forward reversible MCT. */ |
| /* </summary> */ |
| #ifdef USE_SSE2 |
| void opj_mct_encode( |
| OPJ_INT32* OPJ_RESTRICT c0, |
| OPJ_INT32* OPJ_RESTRICT c1, |
| OPJ_INT32* OPJ_RESTRICT c2, |
| OPJ_SIZE_T n) |
| { |
| OPJ_SIZE_T i; |
| const OPJ_SIZE_T len = n; |
| /* buffer are aligned on 16 bytes */ |
| assert(((size_t)c0 & 0xf) == 0); |
| assert(((size_t)c1 & 0xf) == 0); |
| assert(((size_t)c2 & 0xf) == 0); |
| |
| for (i = 0; i < (len & ~3U); i += 4) { |
| __m128i y, u, v; |
| __m128i r = _mm_load_si128((const __m128i *) & (c0[i])); |
| __m128i g = _mm_load_si128((const __m128i *) & (c1[i])); |
| __m128i b = _mm_load_si128((const __m128i *) & (c2[i])); |
| y = _mm_add_epi32(g, g); |
| y = _mm_add_epi32(y, b); |
| y = _mm_add_epi32(y, r); |
| y = _mm_srai_epi32(y, 2); |
| u = _mm_sub_epi32(b, g); |
| v = _mm_sub_epi32(r, g); |
| _mm_store_si128((__m128i *) & (c0[i]), y); |
| _mm_store_si128((__m128i *) & (c1[i]), u); |
| _mm_store_si128((__m128i *) & (c2[i]), v); |
| } |
| |
| for (; i < len; ++i) { |
| OPJ_INT32 r = c0[i]; |
| OPJ_INT32 g = c1[i]; |
| OPJ_INT32 b = c2[i]; |
| OPJ_INT32 y = (r + (g * 2) + b) >> 2; |
| OPJ_INT32 u = b - g; |
| OPJ_INT32 v = r - g; |
| c0[i] = y; |
| c1[i] = u; |
| c2[i] = v; |
| } |
| } |
| #else |
| void opj_mct_encode( |
| OPJ_INT32* OPJ_RESTRICT c0, |
| OPJ_INT32* OPJ_RESTRICT c1, |
| OPJ_INT32* OPJ_RESTRICT c2, |
| OPJ_SIZE_T n) |
| { |
| OPJ_SIZE_T i; |
| const OPJ_SIZE_T len = n; |
| |
| for (i = 0; i < len; ++i) { |
| OPJ_INT32 r = c0[i]; |
| OPJ_INT32 g = c1[i]; |
| OPJ_INT32 b = c2[i]; |
| OPJ_INT32 y = (r + (g * 2) + b) >> 2; |
| OPJ_INT32 u = b - g; |
| OPJ_INT32 v = r - g; |
| c0[i] = y; |
| c1[i] = u; |
| c2[i] = v; |
| } |
| } |
| #endif |
| |
| /* <summary> */ |
| /* Inverse reversible MCT. */ |
| /* </summary> */ |
| #ifdef USE_SSE2 |
| void opj_mct_decode( |
| OPJ_INT32* OPJ_RESTRICT c0, |
| OPJ_INT32* OPJ_RESTRICT c1, |
| OPJ_INT32* OPJ_RESTRICT c2, |
| OPJ_SIZE_T n) |
| { |
| OPJ_SIZE_T i; |
| const OPJ_SIZE_T len = n; |
| |
| for (i = 0; i < (len & ~3U); i += 4) { |
| __m128i r, g, b; |
| __m128i y = _mm_load_si128((const __m128i *) & (c0[i])); |
| __m128i u = _mm_load_si128((const __m128i *) & (c1[i])); |
| __m128i v = _mm_load_si128((const __m128i *) & (c2[i])); |
| g = y; |
| g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2)); |
| r = _mm_add_epi32(v, g); |
| b = _mm_add_epi32(u, g); |
| _mm_store_si128((__m128i *) & (c0[i]), r); |
| _mm_store_si128((__m128i *) & (c1[i]), g); |
| _mm_store_si128((__m128i *) & (c2[i]), b); |
| } |
| for (; i < len; ++i) { |
| OPJ_INT32 y = c0[i]; |
| OPJ_INT32 u = c1[i]; |
| OPJ_INT32 v = c2[i]; |
| OPJ_INT32 g = y - ((u + v) >> 2); |
| OPJ_INT32 r = v + g; |
| OPJ_INT32 b = u + g; |
| c0[i] = r; |
| c1[i] = g; |
| c2[i] = b; |
| } |
| } |
| #else |
| void opj_mct_decode( |
| OPJ_INT32* OPJ_RESTRICT c0, |
| OPJ_INT32* OPJ_RESTRICT c1, |
| OPJ_INT32* OPJ_RESTRICT c2, |
| OPJ_SIZE_T n) |
| { |
| OPJ_UINT32 i; |
| for (i = 0; i < n; ++i) { |
| OPJ_INT32 y = c0[i]; |
| OPJ_INT32 u = c1[i]; |
| OPJ_INT32 v = c2[i]; |
| OPJ_INT32 g = y - ((u + v) >> 2); |
| OPJ_INT32 r = v + g; |
| OPJ_INT32 b = u + g; |
| c0[i] = r; |
| c1[i] = g; |
| c2[i] = b; |
| } |
| } |
| #endif |
| |
| /* <summary> */ |
| /* Get norm of basis function of reversible MCT. */ |
| /* </summary> */ |
| OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno) |
| { |
| return opj_mct_norms[compno]; |
| } |
| |
| /* <summary> */ |
| /* Forward irreversible MCT. */ |
| /* </summary> */ |
| #ifdef USE_SSE4 |
| void opj_mct_encode_real( |
| OPJ_INT32* OPJ_RESTRICT c0, |
| OPJ_INT32* OPJ_RESTRICT c1, |
| OPJ_INT32* OPJ_RESTRICT c2, |
| OPJ_SIZE_T n) |
| { |
| OPJ_SIZE_T i; |
| const OPJ_SIZE_T len = n; |
| |
| const __m128i ry = _mm_set1_epi32(2449); |
| const __m128i gy = _mm_set1_epi32(4809); |
| const __m128i by = _mm_set1_epi32(934); |
| const __m128i ru = _mm_set1_epi32(1382); |
| const __m128i gu = _mm_set1_epi32(2714); |
| /* const __m128i bu = _mm_set1_epi32(4096); */ |
| /* const __m128i rv = _mm_set1_epi32(4096); */ |
| const __m128i gv = _mm_set1_epi32(3430); |
| const __m128i bv = _mm_set1_epi32(666); |
| const __m128i mulround = _mm_shuffle_epi32(_mm_cvtsi32_si128(4096), |
| _MM_SHUFFLE(1, 0, 1, 0)); |
| |
| for (i = 0; i < (len & ~3U); i += 4) { |
| __m128i lo, hi; |
| __m128i y, u, v; |
| __m128i r = _mm_load_si128((const __m128i *) & (c0[i])); |
| __m128i g = _mm_load_si128((const __m128i *) & (c1[i])); |
| __m128i b = _mm_load_si128((const __m128i *) & (c2[i])); |
| |
| lo = r; |
| hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, ry); |
| hi = _mm_mul_epi32(hi, ry); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| y = _mm_blend_epi16(lo, hi, 0xCC); |
| |
| lo = g; |
| hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, gy); |
| hi = _mm_mul_epi32(hi, gy); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC)); |
| |
| lo = b; |
| hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, by); |
| hi = _mm_mul_epi32(hi, by); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC)); |
| _mm_store_si128((__m128i *) & (c0[i]), y); |
| |
| /*lo = b; |
| hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, mulround); |
| hi = _mm_mul_epi32(hi, mulround);*/ |
| lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 2, 0))); |
| hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 3, 1))); |
| lo = _mm_slli_epi64(lo, 12); |
| hi = _mm_slli_epi64(hi, 12); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| u = _mm_blend_epi16(lo, hi, 0xCC); |
| |
| lo = r; |
| hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, ru); |
| hi = _mm_mul_epi32(hi, ru); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC)); |
| |
| lo = g; |
| hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, gu); |
| hi = _mm_mul_epi32(hi, gu); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC)); |
| _mm_store_si128((__m128i *) & (c1[i]), u); |
| |
| /*lo = r; |
| hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, mulround); |
| hi = _mm_mul_epi32(hi, mulround);*/ |
| lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 2, 0))); |
| hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 3, 1))); |
| lo = _mm_slli_epi64(lo, 12); |
| hi = _mm_slli_epi64(hi, 12); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| v = _mm_blend_epi16(lo, hi, 0xCC); |
| |
| lo = g; |
| hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, gv); |
| hi = _mm_mul_epi32(hi, gv); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC)); |
| |
| lo = b; |
| hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); |
| lo = _mm_mul_epi32(lo, bv); |
| hi = _mm_mul_epi32(hi, bv); |
| lo = _mm_add_epi64(lo, mulround); |
| hi = _mm_add_epi64(hi, mulround); |
| lo = _mm_srli_epi64(lo, 13); |
| hi = _mm_slli_epi64(hi, 32 - 13); |
| v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC)); |
| _mm_store_si128((__m128i *) & (c2[i]), v); |
| } |
| for (; i < len; ++i) { |
| OPJ_INT32 r = c0[i]; |
| OPJ_INT32 g = c1[i]; |
| OPJ_INT32 b = c2[i]; |
| OPJ_INT32 y = opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, |
| 4809) + opj_int_fix_mul(b, 934); |
| OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, |
| 2714) + opj_int_fix_mul(b, 4096); |
| OPJ_INT32 v = opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, |
| 3430) - opj_int_fix_mul(b, 666); |
| c0[i] = y; |
| c1[i] = u; |
| c2[i] = v; |
| } |
| } |
| #else |
| void opj_mct_encode_real( |
| OPJ_INT32* OPJ_RESTRICT c0, |
| OPJ_INT32* OPJ_RESTRICT c1, |
| OPJ_INT32* OPJ_RESTRICT c2, |
| OPJ_SIZE_T n) |
| { |
| OPJ_UINT32 i; |
| for (i = 0; i < n; ++i) { |
| OPJ_INT32 r = c0[i]; |
| OPJ_INT32 g = c1[i]; |
| OPJ_INT32 b = c2[i]; |
| OPJ_INT32 y = opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, |
| 4809) + opj_int_fix_mul(b, 934); |
| OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, |
| 2714) + opj_int_fix_mul(b, 4096); |
| OPJ_INT32 v = opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, |
| 3430) - opj_int_fix_mul(b, 666); |
| c0[i] = y; |
| c1[i] = u; |
| c2[i] = v; |
| } |
| } |
| #endif |
| |
| /* <summary> */ |
| /* Inverse irreversible MCT. */ |
| /* </summary> */ |
| void opj_mct_decode_real( |
| OPJ_FLOAT32* OPJ_RESTRICT c0, |
| OPJ_FLOAT32* OPJ_RESTRICT c1, |
| OPJ_FLOAT32* OPJ_RESTRICT c2, |
| OPJ_SIZE_T n) |
| { |
| OPJ_UINT32 i; |
| #ifdef USE_SSE |
| __m128 vrv, vgu, vgv, vbu; |
| vrv = _mm_set1_ps(1.402f); |
| vgu = _mm_set1_ps(0.34413f); |
| vgv = _mm_set1_ps(0.71414f); |
| vbu = _mm_set1_ps(1.772f); |
| for (i = 0; i < (n >> 3); ++i) { |
| __m128 vy, vu, vv; |
| __m128 vr, vg, vb; |
| |
| vy = _mm_load_ps(c0); |
| vu = _mm_load_ps(c1); |
| vv = _mm_load_ps(c2); |
| vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); |
| vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); |
| vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); |
| _mm_store_ps(c0, vr); |
| _mm_store_ps(c1, vg); |
| _mm_store_ps(c2, vb); |
| c0 += 4; |
| c1 += 4; |
| c2 += 4; |
| |
| vy = _mm_load_ps(c0); |
| vu = _mm_load_ps(c1); |
| vv = _mm_load_ps(c2); |
| vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); |
| vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); |
| vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); |
| _mm_store_ps(c0, vr); |
| _mm_store_ps(c1, vg); |
| _mm_store_ps(c2, vb); |
| c0 += 4; |
| c1 += 4; |
| c2 += 4; |
| } |
| n &= 7; |
| #endif |
| for (i = 0; i < n; ++i) { |
| OPJ_FLOAT32 y = c0[i]; |
| OPJ_FLOAT32 u = c1[i]; |
| OPJ_FLOAT32 v = c2[i]; |
| OPJ_FLOAT32 r = y + (v * 1.402f); |
| OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f)); |
| OPJ_FLOAT32 b = y + (u * 1.772f); |
| c0[i] = r; |
| c1[i] = g; |
| c2[i] = b; |
| } |
| } |
| |
| /* <summary> */ |
| /* Get norm of basis function of irreversible MCT. */ |
| /* </summary> */ |
| OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno) |
| { |
| return opj_mct_norms_real[compno]; |
| } |
| |
| |
| OPJ_BOOL opj_mct_encode_custom( |
| OPJ_BYTE * pCodingdata, |
| OPJ_SIZE_T n, |
| OPJ_BYTE ** pData, |
| OPJ_UINT32 pNbComp, |
| OPJ_UINT32 isSigned) |
| { |
| OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata; |
| OPJ_SIZE_T i; |
| OPJ_UINT32 j; |
| OPJ_UINT32 k; |
| OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp; |
| OPJ_INT32 * lCurrentData = 00; |
| OPJ_INT32 * lCurrentMatrix = 00; |
| OPJ_INT32 ** lData = (OPJ_INT32 **) pData; |
| OPJ_UINT32 lMultiplicator = 1 << 13; |
| OPJ_INT32 * lMctPtr; |
| |
| OPJ_ARG_NOT_USED(isSigned); |
| |
| lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof( |
| OPJ_INT32)); |
| if (! lCurrentData) { |
| return OPJ_FALSE; |
| } |
| |
| lCurrentMatrix = lCurrentData + pNbComp; |
| |
| for (i = 0; i < lNbMatCoeff; ++i) { |
| lCurrentMatrix[i] = (OPJ_INT32)(*(lMct++) * (OPJ_FLOAT32)lMultiplicator); |
| } |
| |
| for (i = 0; i < n; ++i) { |
| lMctPtr = lCurrentMatrix; |
| for (j = 0; j < pNbComp; ++j) { |
| lCurrentData[j] = (*(lData[j])); |
| } |
| |
| for (j = 0; j < pNbComp; ++j) { |
| *(lData[j]) = 0; |
| for (k = 0; k < pNbComp; ++k) { |
| *(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]); |
| ++lMctPtr; |
| } |
| |
| ++lData[j]; |
| } |
| } |
| |
| opj_free(lCurrentData); |
| |
| return OPJ_TRUE; |
| } |
| |
| OPJ_BOOL opj_mct_decode_custom( |
| OPJ_BYTE * pDecodingData, |
| OPJ_SIZE_T n, |
| OPJ_BYTE ** pData, |
| OPJ_UINT32 pNbComp, |
| OPJ_UINT32 isSigned) |
| { |
| OPJ_FLOAT32 * lMct; |
| OPJ_SIZE_T i; |
| OPJ_UINT32 j; |
| OPJ_UINT32 k; |
| |
| OPJ_FLOAT32 * lCurrentData = 00; |
| OPJ_FLOAT32 * lCurrentResult = 00; |
| OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData; |
| |
| OPJ_ARG_NOT_USED(isSigned); |
| |
| lCurrentData = (OPJ_FLOAT32 *) opj_malloc(2 * pNbComp * sizeof(OPJ_FLOAT32)); |
| if (! lCurrentData) { |
| return OPJ_FALSE; |
| } |
| lCurrentResult = lCurrentData + pNbComp; |
| |
| for (i = 0; i < n; ++i) { |
| lMct = (OPJ_FLOAT32 *) pDecodingData; |
| for (j = 0; j < pNbComp; ++j) { |
| lCurrentData[j] = (OPJ_FLOAT32)(*(lData[j])); |
| } |
| for (j = 0; j < pNbComp; ++j) { |
| lCurrentResult[j] = 0; |
| for (k = 0; k < pNbComp; ++k) { |
| lCurrentResult[j] += *(lMct++) * lCurrentData[k]; |
| } |
| *(lData[j]++) = (OPJ_FLOAT32)(lCurrentResult[j]); |
| } |
| } |
| opj_free(lCurrentData); |
| return OPJ_TRUE; |
| } |
| |
| void opj_calculate_norms(OPJ_FLOAT64 * pNorms, |
| OPJ_UINT32 pNbComps, |
| OPJ_FLOAT32 * pMatrix) |
| { |
| OPJ_UINT32 i, j, lIndex; |
| OPJ_FLOAT32 lCurrentValue; |
| OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms; |
| OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix; |
| |
| for (i = 0; i < pNbComps; ++i) { |
| lNorms[i] = 0; |
| lIndex = i; |
| |
| for (j = 0; j < pNbComps; ++j) { |
| lCurrentValue = lMatrix[lIndex]; |
| lIndex += pNbComps; |
| lNorms[i] += lCurrentValue * lCurrentValue; |
| } |
| lNorms[i] = sqrt(lNorms[i]); |
| } |
| } |