| //--------------------------------------------------------------------------------- |
| // |
| // Little Color Management System |
| // Copyright (c) 1998-2017 Marti Maria Saguer |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining |
| // a copy of this software and associated documentation files (the "Software"), |
| // to deal in the Software without restriction, including without limitation |
| // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| // and/or sell copies of the Software, and to permit persons to whom the Software |
| // is furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| // |
| //--------------------------------------------------------------------------------- |
| // |
| |
| #include "lcms2_internal.h" |
| |
| // inter PCS conversions XYZ <-> CIE L* a* b* |
| /* |
| |
| |
| CIE 15:2004 CIELab is defined as: |
| |
| L* = 116*f(Y/Yn) - 16 0 <= L* <= 100 |
| a* = 500*[f(X/Xn) - f(Y/Yn)] |
| b* = 200*[f(Y/Yn) - f(Z/Zn)] |
| |
| and |
| |
| f(t) = t^(1/3) 1 >= t > (24/116)^3 |
| (841/108)*t + (16/116) 0 <= t <= (24/116)^3 |
| |
| |
| Reverse transform is: |
| |
| X = Xn*[a* / 500 + (L* + 16) / 116] ^ 3 if (X/Xn) > (24/116) |
| = Xn*(a* / 500 + L* / 116) / 7.787 if (X/Xn) <= (24/116) |
| |
| |
| |
| PCS in Lab2 is encoded as: |
| |
| 8 bit Lab PCS: |
| |
| L* 0..100 into a 0..ff byte. |
| a* t + 128 range is -128.0 +127.0 |
| b* |
| |
| 16 bit Lab PCS: |
| |
| L* 0..100 into a 0..ff00 word. |
| a* t + 128 range is -128.0 +127.9961 |
| b* |
| |
| |
| |
| Interchange Space Component Actual Range Encoded Range |
| CIE XYZ X 0 -> 1.99997 0x0000 -> 0xffff |
| CIE XYZ Y 0 -> 1.99997 0x0000 -> 0xffff |
| CIE XYZ Z 0 -> 1.99997 0x0000 -> 0xffff |
| |
| Version 2,3 |
| ----------- |
| |
| CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xff00 |
| CIELAB (16 bit) a* -128.0 -> +127.996 0x0000 -> 0x8000 -> 0xffff |
| CIELAB (16 bit) b* -128.0 -> +127.996 0x0000 -> 0x8000 -> 0xffff |
| |
| |
| Version 4 |
| --------- |
| |
| CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xffff |
| CIELAB (16 bit) a* -128.0 -> +127 0x0000 -> 0x8080 -> 0xffff |
| CIELAB (16 bit) b* -128.0 -> +127 0x0000 -> 0x8080 -> 0xffff |
| |
| */ |
| |
| // Conversions |
| void CMSEXPORT cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source) |
| { |
| cmsFloat64Number ISum; |
| |
| ISum = 1./(Source -> X + Source -> Y + Source -> Z); |
| |
| Dest -> x = (Source -> X) * ISum; |
| Dest -> y = (Source -> Y) * ISum; |
| Dest -> Y = Source -> Y; |
| } |
| |
| void CMSEXPORT cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source) |
| { |
| Dest -> X = (Source -> x / Source -> y) * Source -> Y; |
| Dest -> Y = Source -> Y; |
| Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y; |
| } |
| |
| /* |
| The break point (24/116)^3 = (6/29)^3 is a very small amount of tristimulus |
| primary (0.008856). Generally, this only happens for |
| nearly ideal blacks and for some orange / amber colors in transmission mode. |
| For example, the Z value of the orange turn indicator lamp lens on an |
| automobile will often be below this value. But the Z does not |
| contribute to the perceived color directly. |
| */ |
| |
| static |
| cmsFloat64Number f(cmsFloat64Number t) |
| { |
| const cmsFloat64Number Limit = (24.0/116.0) * (24.0/116.0) * (24.0/116.0); |
| |
| if (t <= Limit) |
| return (841.0/108.0) * t + (16.0/116.0); |
| else |
| return pow(t, 1.0/3.0); |
| } |
| |
| static |
| cmsFloat64Number f_1(cmsFloat64Number t) |
| { |
| const cmsFloat64Number Limit = (24.0/116.0); |
| |
| if (t <= Limit) { |
| return (108.0/841.0) * (t - (16.0/116.0)); |
| } |
| |
| return t * t * t; |
| } |
| |
| |
| // Standard XYZ to Lab. it can handle negative XZY numbers in some cases |
| void CMSEXPORT cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const cmsCIEXYZ* xyz) |
| { |
| cmsFloat64Number fx, fy, fz; |
| |
| if (WhitePoint == NULL) |
| WhitePoint = cmsD50_XYZ(); |
| |
| fx = f(xyz->X / WhitePoint->X); |
| fy = f(xyz->Y / WhitePoint->Y); |
| fz = f(xyz->Z / WhitePoint->Z); |
| |
| Lab->L = 116.0*fy - 16.0; |
| Lab->a = 500.0*(fx - fy); |
| Lab->b = 200.0*(fy - fz); |
| } |
| |
| |
| // Standard XYZ to Lab. It can return negative XYZ in some cases |
| void CMSEXPORT cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz, const cmsCIELab* Lab) |
| { |
| cmsFloat64Number x, y, z; |
| |
| if (WhitePoint == NULL) |
| WhitePoint = cmsD50_XYZ(); |
| |
| y = (Lab-> L + 16.0) / 116.0; |
| x = y + 0.002 * Lab -> a; |
| z = y - 0.005 * Lab -> b; |
| |
| xyz -> X = f_1(x) * WhitePoint -> X; |
| xyz -> Y = f_1(y) * WhitePoint -> Y; |
| xyz -> Z = f_1(z) * WhitePoint -> Z; |
| |
| } |
| |
| static |
| cmsFloat64Number L2float2(cmsUInt16Number v) |
| { |
| return (cmsFloat64Number) v / 652.800; |
| } |
| |
| // the a/b part |
| static |
| cmsFloat64Number ab2float2(cmsUInt16Number v) |
| { |
| return ((cmsFloat64Number) v / 256.0) - 128.0; |
| } |
| |
| static |
| cmsUInt16Number L2Fix2(cmsFloat64Number L) |
| { |
| return _cmsQuickSaturateWord(L * 652.8); |
| } |
| |
| static |
| cmsUInt16Number ab2Fix2(cmsFloat64Number ab) |
| { |
| return _cmsQuickSaturateWord((ab + 128.0) * 256.0); |
| } |
| |
| |
| static |
| cmsFloat64Number L2float4(cmsUInt16Number v) |
| { |
| return (cmsFloat64Number) v / 655.35; |
| } |
| |
| // the a/b part |
| static |
| cmsFloat64Number ab2float4(cmsUInt16Number v) |
| { |
| return ((cmsFloat64Number) v / 257.0) - 128.0; |
| } |
| |
| |
| void CMSEXPORT cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wLab[3]) |
| { |
| Lab->L = L2float2(wLab[0]); |
| Lab->a = ab2float2(wLab[1]); |
| Lab->b = ab2float2(wLab[2]); |
| } |
| |
| |
| void CMSEXPORT cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3]) |
| { |
| Lab->L = L2float4(wLab[0]); |
| Lab->a = ab2float4(wLab[1]); |
| Lab->b = ab2float4(wLab[2]); |
| } |
| |
| static |
| cmsFloat64Number Clamp_L_doubleV2(cmsFloat64Number L) |
| { |
| const cmsFloat64Number L_max = (cmsFloat64Number) (0xFFFF * 100.0) / 0xFF00; |
| |
| if (L < 0) L = 0; |
| if (L > L_max) L = L_max; |
| |
| return L; |
| } |
| |
| |
| static |
| cmsFloat64Number Clamp_ab_doubleV2(cmsFloat64Number ab) |
| { |
| if (ab < MIN_ENCODEABLE_ab2) ab = MIN_ENCODEABLE_ab2; |
| if (ab > MAX_ENCODEABLE_ab2) ab = MAX_ENCODEABLE_ab2; |
| |
| return ab; |
| } |
| |
| void CMSEXPORT cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab* fLab) |
| { |
| cmsCIELab Lab; |
| |
| Lab.L = Clamp_L_doubleV2(fLab ->L); |
| Lab.a = Clamp_ab_doubleV2(fLab ->a); |
| Lab.b = Clamp_ab_doubleV2(fLab ->b); |
| |
| wLab[0] = L2Fix2(Lab.L); |
| wLab[1] = ab2Fix2(Lab.a); |
| wLab[2] = ab2Fix2(Lab.b); |
| } |
| |
| |
| static |
| cmsFloat64Number Clamp_L_doubleV4(cmsFloat64Number L) |
| { |
| if (L < 0) L = 0; |
| if (L > 100.0) L = 100.0; |
| |
| return L; |
| } |
| |
| static |
| cmsFloat64Number Clamp_ab_doubleV4(cmsFloat64Number ab) |
| { |
| if (ab < MIN_ENCODEABLE_ab4) ab = MIN_ENCODEABLE_ab4; |
| if (ab > MAX_ENCODEABLE_ab4) ab = MAX_ENCODEABLE_ab4; |
| |
| return ab; |
| } |
| |
| static |
| cmsUInt16Number L2Fix4(cmsFloat64Number L) |
| { |
| return _cmsQuickSaturateWord(L * 655.35); |
| } |
| |
| static |
| cmsUInt16Number ab2Fix4(cmsFloat64Number ab) |
| { |
| return _cmsQuickSaturateWord((ab + 128.0) * 257.0); |
| } |
| |
| void CMSEXPORT cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* fLab) |
| { |
| cmsCIELab Lab; |
| |
| Lab.L = Clamp_L_doubleV4(fLab ->L); |
| Lab.a = Clamp_ab_doubleV4(fLab ->a); |
| Lab.b = Clamp_ab_doubleV4(fLab ->b); |
| |
| wLab[0] = L2Fix4(Lab.L); |
| wLab[1] = ab2Fix4(Lab.a); |
| wLab[2] = ab2Fix4(Lab.b); |
| } |
| |
| // Auxiliary: convert to Radians |
| static |
| cmsFloat64Number RADIANS(cmsFloat64Number deg) |
| { |
| return (deg * M_PI) / 180.; |
| } |
| |
| |
| // Auxiliary: atan2 but operating in degrees and returning 0 if a==b==0 |
| static |
| cmsFloat64Number atan2deg(cmsFloat64Number a, cmsFloat64Number b) |
| { |
| cmsFloat64Number h; |
| |
| if (a == 0 && b == 0) |
| h = 0; |
| else |
| h = atan2(a, b); |
| |
| h *= (180. / M_PI); |
| |
| while (h > 360.) |
| h -= 360.; |
| |
| while ( h < 0) |
| h += 360.; |
| |
| return h; |
| } |
| |
| |
| // Auxiliary: Square |
| static |
| cmsFloat64Number Sqr(cmsFloat64Number v) |
| { |
| return v * v; |
| } |
| // From cylindrical coordinates. No check is performed, then negative values are allowed |
| void CMSEXPORT cmsLab2LCh(cmsCIELCh* LCh, const cmsCIELab* Lab) |
| { |
| LCh -> L = Lab -> L; |
| LCh -> C = pow(Sqr(Lab ->a) + Sqr(Lab ->b), 0.5); |
| LCh -> h = atan2deg(Lab ->b, Lab ->a); |
| } |
| |
| |
| // To cylindrical coordinates. No check is performed, then negative values are allowed |
| void CMSEXPORT cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh) |
| { |
| cmsFloat64Number h = (LCh -> h * M_PI) / 180.0; |
| |
| Lab -> L = LCh -> L; |
| Lab -> a = LCh -> C * cos(h); |
| Lab -> b = LCh -> C * sin(h); |
| } |
| |
| // In XYZ All 3 components are encoded using 1.15 fixed point |
| static |
| cmsUInt16Number XYZ2Fix(cmsFloat64Number d) |
| { |
| return _cmsQuickSaturateWord(d * 32768.0); |
| } |
| |
| void CMSEXPORT cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ) |
| { |
| cmsCIEXYZ xyz; |
| |
| xyz.X = fXYZ -> X; |
| xyz.Y = fXYZ -> Y; |
| xyz.Z = fXYZ -> Z; |
| |
| // Clamp to encodeable values. |
| if (xyz.Y <= 0) { |
| |
| xyz.X = 0; |
| xyz.Y = 0; |
| xyz.Z = 0; |
| } |
| |
| if (xyz.X > MAX_ENCODEABLE_XYZ) |
| xyz.X = MAX_ENCODEABLE_XYZ; |
| |
| if (xyz.X < 0) |
| xyz.X = 0; |
| |
| if (xyz.Y > MAX_ENCODEABLE_XYZ) |
| xyz.Y = MAX_ENCODEABLE_XYZ; |
| |
| if (xyz.Y < 0) |
| xyz.Y = 0; |
| |
| if (xyz.Z > MAX_ENCODEABLE_XYZ) |
| xyz.Z = MAX_ENCODEABLE_XYZ; |
| |
| if (xyz.Z < 0) |
| xyz.Z = 0; |
| |
| |
| XYZ[0] = XYZ2Fix(xyz.X); |
| XYZ[1] = XYZ2Fix(xyz.Y); |
| XYZ[2] = XYZ2Fix(xyz.Z); |
| } |
| |
| |
| // To convert from Fixed 1.15 point to cmsFloat64Number |
| static |
| cmsFloat64Number XYZ2float(cmsUInt16Number v) |
| { |
| cmsS15Fixed16Number fix32; |
| |
| // From 1.15 to 15.16 |
| fix32 = v << 1; |
| |
| // From fixed 15.16 to cmsFloat64Number |
| return _cms15Fixed16toDouble(fix32); |
| } |
| |
| |
| void CMSEXPORT cmsXYZEncoded2Float(cmsCIEXYZ* fXYZ, const cmsUInt16Number XYZ[3]) |
| { |
| fXYZ -> X = XYZ2float(XYZ[0]); |
| fXYZ -> Y = XYZ2float(XYZ[1]); |
| fXYZ -> Z = XYZ2float(XYZ[2]); |
| } |
| |
| |
| // Returns dE on two Lab values |
| cmsFloat64Number CMSEXPORT cmsDeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) |
| { |
| cmsFloat64Number dL, da, db; |
| |
| dL = fabs(Lab1 -> L - Lab2 -> L); |
| da = fabs(Lab1 -> a - Lab2 -> a); |
| db = fabs(Lab1 -> b - Lab2 -> b); |
| |
| return pow(Sqr(dL) + Sqr(da) + Sqr(db), 0.5); |
| } |
| |
| |
| // Return the CIE94 Delta E |
| cmsFloat64Number CMSEXPORT cmsCIE94DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) |
| { |
| cmsCIELCh LCh1, LCh2; |
| cmsFloat64Number dE, dL, dC, dh, dhsq; |
| cmsFloat64Number c12, sc, sh; |
| |
| dL = fabs(Lab1 ->L - Lab2 ->L); |
| |
| cmsLab2LCh(&LCh1, Lab1); |
| cmsLab2LCh(&LCh2, Lab2); |
| |
| dC = fabs(LCh1.C - LCh2.C); |
| dE = cmsDeltaE(Lab1, Lab2); |
| |
| dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC); |
| if (dhsq < 0) |
| dh = 0; |
| else |
| dh = pow(dhsq, 0.5); |
| |
| c12 = sqrt(LCh1.C * LCh2.C); |
| |
| sc = 1.0 + (0.048 * c12); |
| sh = 1.0 + (0.014 * c12); |
| |
| return sqrt(Sqr(dL) + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh)); |
| } |
| |
| |
| // Auxiliary |
| static |
| cmsFloat64Number ComputeLBFD(const cmsCIELab* Lab) |
| { |
| cmsFloat64Number yt; |
| |
| if (Lab->L > 7.996969) |
| yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100; |
| else |
| yt = 100 * (Lab->L / 903.3); |
| |
| return (54.6 * (M_LOG10E * (log(yt + 1.5))) - 9.6); |
| } |
| |
| |
| |
| // bfd - gets BFD(1:1) difference between Lab1, Lab2 |
| cmsFloat64Number CMSEXPORT cmsBFDdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) |
| { |
| cmsFloat64Number lbfd1,lbfd2,AveC,Aveh,dE,deltaL, |
| deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd; |
| cmsCIELCh LCh1, LCh2; |
| |
| |
| lbfd1 = ComputeLBFD(Lab1); |
| lbfd2 = ComputeLBFD(Lab2); |
| deltaL = lbfd2 - lbfd1; |
| |
| cmsLab2LCh(&LCh1, Lab1); |
| cmsLab2LCh(&LCh2, Lab2); |
| |
| deltaC = LCh2.C - LCh1.C; |
| AveC = (LCh1.C+LCh2.C)/2; |
| Aveh = (LCh1.h+LCh2.h)/2; |
| |
| dE = cmsDeltaE(Lab1, Lab2); |
| |
| if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC))) |
| deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC)); |
| else |
| deltah =0; |
| |
| |
| dc = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521; |
| g = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000)); |
| t = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))- |
| 0.040*cos((2*Aveh-136)/(180/M_PI))+ |
| 0.070*cos((3*Aveh-31)/(180/M_PI))+ |
| 0.049*cos((4*Aveh+114)/(180/M_PI))- |
| 0.015*cos((5*Aveh-103)/(180/M_PI))); |
| |
| dh = dc*(g*t+1-g); |
| rh = -0.260*cos((Aveh-308)/(180/M_PI))- |
| 0.379*cos((2*Aveh-160)/(180/M_PI))- |
| 0.636*cos((3*Aveh+254)/(180/M_PI))+ |
| 0.226*cos((4*Aveh+140)/(180/M_PI))- |
| 0.194*cos((5*Aveh+280)/(180/M_PI)); |
| |
| rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000)); |
| rt = rh*rc; |
| |
| bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh))); |
| |
| return bfd; |
| } |
| |
| |
| // cmc - CMC(l:c) difference between Lab1, Lab2 |
| cmsFloat64Number CMSEXPORT cmsCMCdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, cmsFloat64Number l, cmsFloat64Number c) |
| { |
| cmsFloat64Number dE,dL,dC,dh,sl,sc,sh,t,f,cmc; |
| cmsCIELCh LCh1, LCh2; |
| |
| if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0; |
| |
| cmsLab2LCh(&LCh1, Lab1); |
| cmsLab2LCh(&LCh2, Lab2); |
| |
| |
| dL = Lab2->L-Lab1->L; |
| dC = LCh2.C-LCh1.C; |
| |
| dE = cmsDeltaE(Lab1, Lab2); |
| |
| if (Sqr(dE)>(Sqr(dL)+Sqr(dC))) |
| dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC)); |
| else |
| dh =0; |
| |
| if ((LCh1.h > 164) && (LCh1.h < 345)) |
| t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI)))); |
| else |
| t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI)))); |
| |
| sc = 0.0638 * LCh1.C / (1 + 0.0131 * LCh1.C) + 0.638; |
| sl = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L); |
| |
| if (Lab1->L<16) |
| sl = 0.511; |
| |
| f = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900)); |
| sh = sc*(t*f+1-f); |
| cmc = sqrt(Sqr(dL/(l*sl))+Sqr(dC/(c*sc))+Sqr(dh/sh)); |
| |
| return cmc; |
| } |
| |
| // dE2000 The weightings KL, KC and KH can be modified to reflect the relative |
| // importance of lightness, chroma and hue in different industrial applications |
| cmsFloat64Number CMSEXPORT cmsCIE2000DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, |
| cmsFloat64Number Kl, cmsFloat64Number Kc, cmsFloat64Number Kh) |
| { |
| cmsFloat64Number L1 = Lab1->L; |
| cmsFloat64Number a1 = Lab1->a; |
| cmsFloat64Number b1 = Lab1->b; |
| cmsFloat64Number C = sqrt( Sqr(a1) + Sqr(b1) ); |
| |
| cmsFloat64Number Ls = Lab2 ->L; |
| cmsFloat64Number as = Lab2 ->a; |
| cmsFloat64Number bs = Lab2 ->b; |
| cmsFloat64Number Cs = sqrt( Sqr(as) + Sqr(bs) ); |
| |
| cmsFloat64Number G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) )); |
| |
| cmsFloat64Number a_p = (1 + G ) * a1; |
| cmsFloat64Number b_p = b1; |
| cmsFloat64Number C_p = sqrt( Sqr(a_p) + Sqr(b_p)); |
| cmsFloat64Number h_p = atan2deg(b_p, a_p); |
| |
| |
| cmsFloat64Number a_ps = (1 + G) * as; |
| cmsFloat64Number b_ps = bs; |
| cmsFloat64Number C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps)); |
| cmsFloat64Number h_ps = atan2deg(b_ps, a_ps); |
| |
| cmsFloat64Number meanC_p =(C_p + C_ps) / 2; |
| |
| cmsFloat64Number hps_plus_hp = h_ps + h_p; |
| cmsFloat64Number hps_minus_hp = h_ps - h_p; |
| |
| cmsFloat64Number meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 : |
| (hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 : |
| (hps_plus_hp - 360)/2; |
| |
| cmsFloat64Number delta_h = (hps_minus_hp) <= -180.000001 ? (hps_minus_hp + 360) : |
| (hps_minus_hp) > 180 ? (hps_minus_hp - 360) : |
| (hps_minus_hp); |
| cmsFloat64Number delta_L = (Ls - L1); |
| cmsFloat64Number delta_C = (C_ps - C_p ); |
| |
| |
| cmsFloat64Number delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANS(delta_h) / 2); |
| |
| cmsFloat64Number T = 1 - 0.17 * cos(RADIANS(meanh_p-30)) |
| + 0.24 * cos(RADIANS(2*meanh_p)) |
| + 0.32 * cos(RADIANS(3*meanh_p + 6)) |
| - 0.2 * cos(RADIANS(4*meanh_p - 63)); |
| |
| cmsFloat64Number Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) ); |
| |
| cmsFloat64Number Sc = 1 + 0.045 * (C_p + C_ps)/2; |
| cmsFloat64Number Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T; |
| |
| cmsFloat64Number delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25))); |
| |
| cmsFloat64Number Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0))); |
| |
| cmsFloat64Number Rt = -sin(2 * RADIANS(delta_ro)) * Rc; |
| |
| cmsFloat64Number deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) + |
| Sqr(delta_C/(Sc * Kc)) + |
| Sqr(delta_H/(Sh * Kh)) + |
| Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh))); |
| |
| return deltaE00; |
| } |
| |
| // This function returns a number of gridpoints to be used as LUT table. It assumes same number |
| // of gripdpoints in all dimensions. Flags may override the choice. |
| cmsUInt32Number _cmsReasonableGridpointsByColorspace(cmsColorSpaceSignature Colorspace, cmsUInt32Number dwFlags) |
| { |
| cmsUInt32Number nChannels; |
| |
| // Already specified? |
| if (dwFlags & 0x00FF0000) { |
| // Yes, grab'em |
| return (dwFlags >> 16) & 0xFF; |
| } |
| |
| nChannels = cmsChannelsOf(Colorspace); |
| |
| // HighResPrecalc is maximum resolution |
| if (dwFlags & cmsFLAGS_HIGHRESPRECALC) { |
| |
| if (nChannels > 4) |
| return 7; // 7 for Hifi |
| |
| if (nChannels == 4) // 23 for CMYK |
| return 23; |
| |
| return 49; // 49 for RGB and others |
| } |
| |
| |
| // LowResPrecal is lower resolution |
| if (dwFlags & cmsFLAGS_LOWRESPRECALC) { |
| |
| if (nChannels > 4) |
| return 6; // 6 for more than 4 channels |
| |
| if (nChannels == 1) |
| return 33; // For monochrome |
| |
| return 17; // 17 for remaining |
| } |
| |
| // Default values |
| if (nChannels > 4) |
| return 7; // 7 for Hifi |
| |
| if (nChannels == 4) |
| return 17; // 17 for CMYK |
| |
| return 33; // 33 for RGB |
| } |
| |
| |
| cmsBool _cmsEndPointsBySpace(cmsColorSpaceSignature Space, |
| cmsUInt16Number **White, |
| cmsUInt16Number **Black, |
| cmsUInt32Number *nOutputs) |
| { |
| // Only most common spaces |
| |
| static cmsUInt16Number RGBblack[4] = { 0, 0, 0 }; |
| static cmsUInt16Number RGBwhite[4] = { 0xffff, 0xffff, 0xffff }; |
| static cmsUInt16Number CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff }; // 400% of ink |
| static cmsUInt16Number CMYKwhite[4] = { 0, 0, 0, 0 }; |
| static cmsUInt16Number LABblack[4] = { 0, 0x8080, 0x8080 }; // V4 Lab encoding |
| static cmsUInt16Number LABwhite[4] = { 0xFFFF, 0x8080, 0x8080 }; |
| static cmsUInt16Number CMYblack[4] = { 0xffff, 0xffff, 0xffff }; |
| static cmsUInt16Number CMYwhite[4] = { 0, 0, 0 }; |
| static cmsUInt16Number Grayblack[4] = { 0 }; |
| static cmsUInt16Number GrayWhite[4] = { 0xffff }; |
| |
| switch (Space) { |
| |
| case cmsSigGrayData: if (White) *White = GrayWhite; |
| if (Black) *Black = Grayblack; |
| if (nOutputs) *nOutputs = 1; |
| return TRUE; |
| |
| case cmsSigRgbData: if (White) *White = RGBwhite; |
| if (Black) *Black = RGBblack; |
| if (nOutputs) *nOutputs = 3; |
| return TRUE; |
| |
| case cmsSigLabData: if (White) *White = LABwhite; |
| if (Black) *Black = LABblack; |
| if (nOutputs) *nOutputs = 3; |
| return TRUE; |
| |
| case cmsSigCmykData: if (White) *White = CMYKwhite; |
| if (Black) *Black = CMYKblack; |
| if (nOutputs) *nOutputs = 4; |
| return TRUE; |
| |
| case cmsSigCmyData: if (White) *White = CMYwhite; |
| if (Black) *Black = CMYblack; |
| if (nOutputs) *nOutputs = 3; |
| return TRUE; |
| |
| default:; |
| } |
| |
| return FALSE; |
| } |
| |
| |
| |
| // Several utilities ------------------------------------------------------- |
| |
| // Translate from our colorspace to ICC representation |
| |
| cmsColorSpaceSignature CMSEXPORT _cmsICCcolorSpace(int OurNotation) |
| { |
| switch (OurNotation) { |
| |
| case 1: |
| case PT_GRAY: return cmsSigGrayData; |
| |
| case 2: |
| case PT_RGB: return cmsSigRgbData; |
| |
| case PT_CMY: return cmsSigCmyData; |
| case PT_CMYK: return cmsSigCmykData; |
| case PT_YCbCr:return cmsSigYCbCrData; |
| case PT_YUV: return cmsSigLuvData; |
| case PT_XYZ: return cmsSigXYZData; |
| |
| case PT_LabV2: |
| case PT_Lab: return cmsSigLabData; |
| |
| case PT_YUVK: return cmsSigLuvKData; |
| case PT_HSV: return cmsSigHsvData; |
| case PT_HLS: return cmsSigHlsData; |
| case PT_Yxy: return cmsSigYxyData; |
| |
| case PT_MCH1: return cmsSigMCH1Data; |
| case PT_MCH2: return cmsSigMCH2Data; |
| case PT_MCH3: return cmsSigMCH3Data; |
| case PT_MCH4: return cmsSigMCH4Data; |
| case PT_MCH5: return cmsSigMCH5Data; |
| case PT_MCH6: return cmsSigMCH6Data; |
| case PT_MCH7: return cmsSigMCH7Data; |
| case PT_MCH8: return cmsSigMCH8Data; |
| |
| case PT_MCH9: return cmsSigMCH9Data; |
| case PT_MCH10: return cmsSigMCHAData; |
| case PT_MCH11: return cmsSigMCHBData; |
| case PT_MCH12: return cmsSigMCHCData; |
| case PT_MCH13: return cmsSigMCHDData; |
| case PT_MCH14: return cmsSigMCHEData; |
| case PT_MCH15: return cmsSigMCHFData; |
| |
| default: return (cmsColorSpaceSignature) 0; |
| } |
| } |
| |
| |
| int CMSEXPORT _cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace) |
| { |
| switch (ProfileSpace) { |
| |
| case cmsSigGrayData: return PT_GRAY; |
| case cmsSigRgbData: return PT_RGB; |
| case cmsSigCmyData: return PT_CMY; |
| case cmsSigCmykData: return PT_CMYK; |
| case cmsSigYCbCrData:return PT_YCbCr; |
| case cmsSigLuvData: return PT_YUV; |
| case cmsSigXYZData: return PT_XYZ; |
| case cmsSigLabData: return PT_Lab; |
| case cmsSigLuvKData: return PT_YUVK; |
| case cmsSigHsvData: return PT_HSV; |
| case cmsSigHlsData: return PT_HLS; |
| case cmsSigYxyData: return PT_Yxy; |
| |
| case cmsSig1colorData: |
| case cmsSigMCH1Data: return PT_MCH1; |
| |
| case cmsSig2colorData: |
| case cmsSigMCH2Data: return PT_MCH2; |
| |
| case cmsSig3colorData: |
| case cmsSigMCH3Data: return PT_MCH3; |
| |
| case cmsSig4colorData: |
| case cmsSigMCH4Data: return PT_MCH4; |
| |
| case cmsSig5colorData: |
| case cmsSigMCH5Data: return PT_MCH5; |
| |
| case cmsSig6colorData: |
| case cmsSigMCH6Data: return PT_MCH6; |
| |
| case cmsSigMCH7Data: |
| case cmsSig7colorData:return PT_MCH7; |
| |
| case cmsSigMCH8Data: |
| case cmsSig8colorData:return PT_MCH8; |
| |
| case cmsSigMCH9Data: |
| case cmsSig9colorData:return PT_MCH9; |
| |
| case cmsSigMCHAData: |
| case cmsSig10colorData:return PT_MCH10; |
| |
| case cmsSigMCHBData: |
| case cmsSig11colorData:return PT_MCH11; |
| |
| case cmsSigMCHCData: |
| case cmsSig12colorData:return PT_MCH12; |
| |
| case cmsSigMCHDData: |
| case cmsSig13colorData:return PT_MCH13; |
| |
| case cmsSigMCHEData: |
| case cmsSig14colorData:return PT_MCH14; |
| |
| case cmsSigMCHFData: |
| case cmsSig15colorData:return PT_MCH15; |
| |
| default: return (cmsColorSpaceSignature) 0; |
| } |
| } |
| |
| |
| cmsUInt32Number CMSEXPORT cmsChannelsOf(cmsColorSpaceSignature ColorSpace) |
| { |
| switch (ColorSpace) { |
| |
| case cmsSigMCH1Data: |
| case cmsSig1colorData: |
| case cmsSigGrayData: return 1; |
| |
| case cmsSigMCH2Data: |
| case cmsSig2colorData: return 2; |
| |
| case cmsSigXYZData: |
| case cmsSigLabData: |
| case cmsSigLuvData: |
| case cmsSigYCbCrData: |
| case cmsSigYxyData: |
| case cmsSigRgbData: |
| case cmsSigHsvData: |
| case cmsSigHlsData: |
| case cmsSigCmyData: |
| case cmsSigMCH3Data: |
| case cmsSig3colorData: return 3; |
| |
| case cmsSigLuvKData: |
| case cmsSigCmykData: |
| case cmsSigMCH4Data: |
| case cmsSig4colorData: return 4; |
| |
| case cmsSigMCH5Data: |
| case cmsSig5colorData: return 5; |
| |
| case cmsSigMCH6Data: |
| case cmsSig6colorData: return 6; |
| |
| case cmsSigMCH7Data: |
| case cmsSig7colorData: return 7; |
| |
| case cmsSigMCH8Data: |
| case cmsSig8colorData: return 8; |
| |
| case cmsSigMCH9Data: |
| case cmsSig9colorData: return 9; |
| |
| case cmsSigMCHAData: |
| case cmsSig10colorData: return 10; |
| |
| case cmsSigMCHBData: |
| case cmsSig11colorData: return 11; |
| |
| case cmsSigMCHCData: |
| case cmsSig12colorData: return 12; |
| |
| case cmsSigMCHDData: |
| case cmsSig13colorData: return 13; |
| |
| case cmsSigMCHEData: |
| case cmsSig14colorData: return 14; |
| |
| case cmsSigMCHFData: |
| case cmsSig15colorData: return 15; |
| |
| default: return 3; |
| } |
| } |