blob: 75a5209abdf0c66e2da53fbc404eb54a43ee513e [file] [log] [blame]
// Copyright 2015 The PDFium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "core/fxcrt/fx_memory.h"
#include <limits>
#include <memory>
#include "build/build_config.h"
#include "core/fxcrt/compiler_specific.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(PDF_USE_PARTITION_ALLOC)
#include "partition_alloc/partition_address_space.h"
#endif
namespace {
constexpr size_t kMaxByteAlloc = std::numeric_limits<size_t>::max();
constexpr size_t kMaxIntAlloc = kMaxByteAlloc / sizeof(int);
constexpr size_t kOverflowIntAlloc = kMaxIntAlloc + 100;
constexpr size_t kWidth = 640;
constexpr size_t kOverflowIntAlloc2D = kMaxIntAlloc / kWidth + 10;
constexpr size_t kCloseToMaxIntAlloc = kMaxIntAlloc - 100;
constexpr size_t kCloseToMaxByteAlloc = kMaxByteAlloc - 100;
} // namespace
TEST(fxcrt, FXAllocZero) {
uint8_t* ptr = FX_Alloc(uint8_t, 0);
uint8_t* ptr2 = FX_Alloc(uint8_t, 0);
EXPECT_TRUE(ptr); // Malloc(0) is distinguishable from OOM.
EXPECT_NE(ptr, ptr2); // Each malloc(0) is distinguishable.
FX_Free(ptr2);
FX_Free(ptr);
}
TEST(fxcrt, FXAllocOOM) {
EXPECT_DEATH_IF_SUPPORTED((void)FX_Alloc(int, kCloseToMaxIntAlloc), "");
int* ptr = FX_Alloc(int, 1);
EXPECT_TRUE(ptr);
EXPECT_DEATH_IF_SUPPORTED((void)FX_Realloc(int, ptr, kCloseToMaxIntAlloc),
"");
FX_Free(ptr);
}
TEST(fxcrt, FXAllocOverflow) {
// |ptr| needs to be defined and used to avoid Clang optimizes away the
// FX_Alloc() statement overzealously for optimized builds.
int* ptr = nullptr;
EXPECT_DEATH_IF_SUPPORTED(ptr = FX_Alloc(int, kOverflowIntAlloc), "") << ptr;
ptr = FX_Alloc(int, 1);
EXPECT_TRUE(ptr);
EXPECT_DEATH_IF_SUPPORTED((void)FX_Realloc(int, ptr, kOverflowIntAlloc), "");
FX_Free(ptr);
}
TEST(fxcrt, FXAllocOverflow2D) {
// |ptr| needs to be defined and used to avoid Clang optimizes away the
// FX_Alloc() statement overzealously for optimized builds.
int* ptr = nullptr;
EXPECT_DEATH_IF_SUPPORTED(ptr = FX_Alloc2D(int, kWidth, kOverflowIntAlloc2D),
"")
<< ptr;
}
TEST(fxcrt, FXTryAllocOOM) {
EXPECT_FALSE(FX_TryAlloc(int, kCloseToMaxIntAlloc));
int* ptr = FX_Alloc(int, 1);
EXPECT_TRUE(ptr);
EXPECT_FALSE(FX_TryRealloc(int, ptr, kCloseToMaxIntAlloc));
FX_Free(ptr);
}
TEST(fxcrt, FXTryAllocUninit) {
int* ptr = FX_TryAllocUninit(int, 4);
EXPECT_TRUE(ptr);
FX_Free(ptr);
ptr = FX_TryAllocUninit2D(int, 4, 4);
EXPECT_TRUE(ptr);
FX_Free(ptr);
}
TEST(fxcrt, FXTryAllocUninitOOM) {
EXPECT_FALSE(FX_TryAllocUninit(int, kCloseToMaxIntAlloc));
EXPECT_FALSE(FX_TryAllocUninit2D(int, kWidth, kOverflowIntAlloc2D));
}
#if !defined(COMPILER_GCC)
TEST(fxcrt, FXTryAllocOverflow) {
// |ptr| needs to be defined and used to avoid Clang optimizes away the
// calloc() statement overzealously for optimized builds.
int* ptr = (int*)calloc(sizeof(int), kOverflowIntAlloc);
EXPECT_FALSE(ptr) << ptr;
ptr = FX_Alloc(int, 1);
EXPECT_TRUE(ptr);
*ptr = 1492; // Arbitrary sentinel.
EXPECT_FALSE(FX_TryRealloc(int, ptr, kOverflowIntAlloc));
EXPECT_EQ(1492, *ptr);
FX_Free(ptr);
}
#endif
TEST(fxcrt, FXMEMDefaultOOM) {
EXPECT_FALSE(FXMEM_DefaultAlloc(kCloseToMaxByteAlloc));
void* ptr = FXMEM_DefaultAlloc(1);
EXPECT_TRUE(ptr);
EXPECT_FALSE(FXMEM_DefaultRealloc(ptr, kCloseToMaxByteAlloc));
FXMEM_DefaultFree(ptr);
}
TEST(fxcrt, AllocZeroesMemory) {
uint8_t* ptr = FX_Alloc(uint8_t, 32);
ASSERT_TRUE(ptr);
for (size_t i = 0; i < 32; ++i) {
// SAFETY: required for testing, length and loop bounds 32.
EXPECT_EQ(0, UNSAFE_BUFFERS(ptr[i]));
}
FX_Free(ptr);
}
TEST(fxcrt, FXAlign) {
static_assert(std::numeric_limits<size_t>::max() % 2 == 1,
"numeric limit must be odd for this test");
size_t s0 = 0;
size_t s1 = 1;
size_t s2 = 2;
size_t sbig = std::numeric_limits<size_t>::max() - 2;
EXPECT_EQ(0u, FxAlignToBoundary<2>(s0));
EXPECT_EQ(2u, FxAlignToBoundary<2>(s1));
EXPECT_EQ(2u, FxAlignToBoundary<2>(s2));
EXPECT_EQ(std::numeric_limits<size_t>::max() - 1, FxAlignToBoundary<2>(sbig));
int i0 = 0;
int i511 = 511;
int i512 = 512;
int ineg = -513;
EXPECT_EQ(0, FxAlignToBoundary<512>(i0));
EXPECT_EQ(512, FxAlignToBoundary<512>(i511));
EXPECT_EQ(512, FxAlignToBoundary<512>(i512));
EXPECT_EQ(-512, FxAlignToBoundary<512>(ineg));
}
#if defined(PDF_USE_PARTITION_ALLOC)
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && \
PA_BUILDFLAG(HAS_64_BIT_POINTERS)
TEST(FxMemory, NewOperatorResultIsPA) {
auto obj = std::make_unique<double>(4.0);
EXPECT_TRUE(partition_alloc::IsManagedByPartitionAlloc(
reinterpret_cast<uintptr_t>(obj.get())));
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
EXPECT_TRUE(partition_alloc::IsManagedByPartitionAllocBRPPool(
reinterpret_cast<uintptr_t>(obj.get())));
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
}
TEST(FxMemory, MallocResultIsPA) {
void* obj = malloc(16);
EXPECT_TRUE(partition_alloc::IsManagedByPartitionAlloc(
reinterpret_cast<uintptr_t>(obj)));
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
EXPECT_TRUE(partition_alloc::IsManagedByPartitionAllocBRPPool(
reinterpret_cast<uintptr_t>(obj)));
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
free(obj);
}
TEST(FxMemory, StackObjectIsNotPA) {
int x = 3;
EXPECT_FALSE(partition_alloc::IsManagedByPartitionAlloc(
reinterpret_cast<uintptr_t>(&x)));
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
EXPECT_FALSE(partition_alloc::IsManagedByPartitionAllocBRPPool(
reinterpret_cast<uintptr_t>(&x)));
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
}
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) &&
// PA_BUILDFLAG(HAS_64_BIT_POINTERS)
#endif // defined(PDF_USE_PARTITION_ALLOC)