blob: 2e0371f3128d1c42185e3c91831a7f9e63d79f19 [file] [log] [blame]
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "core/include/fxge/fx_ge.h"
#if defined(_SKIA_SUPPORT_)
#include "core/include/fxcodec/fx_codec.h"
#include "SkDashPathEffect.h"
#include "SkTLazy.h"
#include "SkScan.h"
#include "SkRasterClip.h"
#include "SkStroke.h"
#include "core/src/fxge/agg/include/fx_agg_driver.h"
#include "fx_skia_blitter_new.h"
#include "fx_skia_device.h"
extern "C" {
extern void FX_OUTPUT_LOG_FUNC(const char*, ...);
extern int FX_GET_TICK_FUNC();
};
#ifdef _FOXIT_DEBUG_
#define FOXIT_DEBUG1(msg) FX_OUTPUT_LOG_FUNC(msg)
#define FOXIT_DEBUG2(msg, para) FX_OUTPUT_LOG_FUNC(msg, para)
#define FOXIT_DEBUG3(msg, para1, para2) FX_OUTPUT_LOG_FUNC(msg, para1, para2)
#define FOXIT_DEBUG4(msg, para1, para2, para3) \
FX_OUTPUT_LOG_FUNC(msg, para1, para2, para3)
#define FOXIT_DEBUG5(msg, para1, para2, para3, param4) \
FX_OUTPUT_LOG_FUNC(msg, para1, para2, para3, param4)
#else
#define FOXIT_DEBUG1(msg)
#define FOXIT_DEBUG2(msg, para)
#define FOXIT_DEBUG3(msg, para1, para2)
#define FOXIT_DEBUG4(msg, para1, para2, para3)
#define FOXIT_DEBUG5(msg, para1, para2, para3, param4)
#endif
/// Run-length-encoded supersampling antialiased blitter.
class SuperBlitter_skia {
public:
static void DrawPath(const SkPath& srcPath,
SkBlitter* blitter,
const SkRasterClip& rect,
const SkPaint& origPaint);
};
FX_BOOL FxSkDrawTreatAsHairline(const SkPaint& paint, SkScalar* coverage) {
if (SkPaint::kStroke_Style != paint.getStyle())
return FALSE;
FXSYS_assert(coverage);
SkScalar strokeWidth = paint.getStrokeWidth();
if (0 == strokeWidth) {
*coverage = SK_Scalar1;
return TRUE;
}
// if we get here, we need to try to fake a thick-stroke with a modulated
// hairline
if (!paint.isAntiAlias())
return FALSE;
if (strokeWidth <= SK_Scalar1) {
*coverage = strokeWidth;
return TRUE;
}
return FALSE;
}
void SuperBlitter_skia::DrawPath(const SkPath& srcPath,
SkBlitter* blitter,
const SkRasterClip& rect,
const SkPaint& origPaint) {
SkPath* pathPtr = (SkPath*)&srcPath;
bool doFill = true;
SkPath tmpPath;
SkTCopyOnFirstWrite<SkPaint> paint(origPaint);
{
SkScalar coverage;
if (FxSkDrawTreatAsHairline(origPaint, &coverage)) {
if (SK_Scalar1 == coverage) {
paint.writable()->setStrokeWidth(0);
} else if (1) { // xfermodeSupportsCoverageAsAlpha(xfer), we not use
// blend mode here, xfer aways NULL.
U8CPU newAlpha;
// this is the old technique, which we preserve for now so
// we don't change previous results (testing)
// the new way seems fine, its just (a tiny bit) different
int scale = (int)SkScalarMul(coverage, 256);
newAlpha = origPaint.getAlpha() * scale >> 8;
SkPaint* writablePaint = paint.writable();
writablePaint->setStrokeWidth(0);
writablePaint->setAlpha(newAlpha);
}
}
}
if (paint->getPathEffect() || paint->getStyle() != SkPaint::kFill_Style) {
SkIRect devBounds = rect.getBounds();
// outset to have slop for antialasing and hairlines
devBounds.outset(1, 1);
SkRect cullRect = SkRect::Make(devBounds);
doFill = paint->getFillPath(*pathPtr, &tmpPath, &cullRect);
pathPtr = &tmpPath;
}
// avoid possibly allocating a new path in transform if we can
SkPath* devPathPtr = pathPtr;
void (*proc)(const SkPath&, const SkRasterClip&, SkBlitter*);
if (doFill) {
if (paint->isAntiAlias()) {
proc = SkScan::AntiFillPath;
} else {
proc = SkScan::FillPath;
}
} else { // hairline
if (paint->isAntiAlias()) {
proc = SkScan::AntiHairPath;
} else {
proc = SkScan::HairPath;
}
}
proc(*devPathPtr, rect, blitter);
}
class CSkia_PathData {
public:
CSkia_PathData() {}
~CSkia_PathData() {}
SkPath m_PathData;
void BuildPath(const CFX_PathData* pPathData,
const CFX_Matrix* pObject2Device);
};
void CSkia_PathData::BuildPath(const CFX_PathData* pPathData,
const CFX_Matrix* pObject2Device) {
const CFX_PathData* pFPath = pPathData;
int nPoints = pFPath->GetPointCount();
FX_PATHPOINT* pPoints = pFPath->GetPoints();
for (int i = 0; i < nPoints; i++) {
FX_FIXFLOAT x = pPoints[i].m_PointX, y = pPoints[i].m_PointY;
if (pObject2Device)
pObject2Device->Transform(x, y);
int point_type = pPoints[i].m_Flag & FXPT_TYPE;
if (point_type == FXPT_MOVETO) {
m_PathData.moveTo(x, y);
} else if (point_type == FXPT_LINETO) {
if (pPoints[i - 1].m_Flag == FXPT_MOVETO &&
(i == nPoints - 1 || pPoints[i + 1].m_Flag == FXPT_MOVETO) &&
FXSYS_abs(pPoints[i].m_PointX - pPoints[i - 1].m_PointX) < 0.4f &&
FXSYS_abs(pPoints[i].m_PointY - pPoints[i - 1].m_PointY) < 0.4f)
// PDF line includes the destination point, unlike Windows line.
// We received some PDF which actually draws zero length lines. TESTDOC:
// summer cha show.pdf
// Therefore, we have to extend the line by 0.4 pixel here.
// But only for standalone segment. TESTDOC: bug #1434 - maze.pdf;
// TESTDOC: bug#1508 di704P_QIG_111.pdf
x += 0.4;
// TODO: we should actually tell skia vertex generator to process zero
// length stroked line
// (only butts are drawn)
m_PathData.lineTo(x, y);
} else if (point_type == FXPT_BEZIERTO) {
FX_FIXFLOAT x2 = pPoints[i + 1].m_PointX, y2 = pPoints[i + 1].m_PointY;
FX_FIXFLOAT x3 = pPoints[i + 2].m_PointX, y3 = pPoints[i + 2].m_PointY;
if (pObject2Device) {
pObject2Device->Transform(x2, y2);
pObject2Device->Transform(x3, y3);
}
m_PathData.cubicTo(x, y, x2, y2, x3, y3);
i += 2;
}
if (pPoints[i].m_Flag & FXPT_CLOSEFIGURE)
m_PathData.close();
}
}
// convert a stroking path to scanlines
static void SkRasterizeStroke(SkPaint& spaint,
SkPath* dstPathData,
SkPath& path_data,
const CFX_Matrix* pObject2Device,
const CFX_GraphStateData* pGraphState,
FX_FIXFLOAT scale = FIX8_ONE,
FX_BOOL bStrokeAdjust = FALSE,
FX_BOOL bTextMode = FALSE) {
SkPaint::Cap cap;
switch (pGraphState->m_LineCap) {
case CFX_GraphStateData::LineCapRound:
cap = SkPaint::kRound_Cap;
break;
case CFX_GraphStateData::LineCapSquare:
cap = SkPaint::kSquare_Cap;
break;
default:
cap = SkPaint::kButt_Cap;
break;
}
SkPaint::Join join;
switch (pGraphState->m_LineJoin) {
case CFX_GraphStateData::LineJoinRound:
join = SkPaint::kRound_Join;
break;
case CFX_GraphStateData::LineJoinBevel:
join = SkPaint::kBevel_Join;
break;
default:
join = SkPaint::kMiter_Join;
break;
}
FX_FIXFLOAT width = pGraphState->m_LineWidth * scale;
FX_FIXFLOAT unit = fix32_to_8(fixdiv_8_8_to_32(
FIX8_ONE, (pObject2Device->GetXUnit() + pObject2Device->GetYUnit()) / 2));
if (width <= unit)
width = unit;
if (pGraphState->m_DashArray) {
int count = (pGraphState->m_DashCount + 1) / 2;
SkScalar* intervals = FX_Alloc2D(SkScalar, count, sizeof(SkScalar));
// Set dash pattern
for (int i = 0; i < count; i++) {
FX_FIXFLOAT on = pGraphState->m_DashArray[i * 2];
if (on <= 0.000001f)
on = FIX8_ONE / 10;
FX_FIXFLOAT off = i * 2 + 1 == pGraphState->m_DashCount
? on
: pGraphState->m_DashArray[i * 2 + 1];
if (off < 0)
off = 0;
intervals[i * 2] = on * scale;
intervals[i * 2 + 1] = off * scale;
}
SkDashPathEffect* pEffect = new SkDashPathEffect(
intervals, count * 2, pGraphState->m_DashPhase * scale);
spaint.setPathEffect(pEffect)->unref();
spaint.setStrokeWidth(width);
spaint.setStrokeMiter(pGraphState->m_MiterLimit);
spaint.setStrokeCap(cap);
spaint.setStrokeJoin(join);
spaint.getFillPath(path_data, dstPathData);
SkMatrix smatrix;
smatrix.setAll(pObject2Device->a, pObject2Device->c, pObject2Device->e,
pObject2Device->b, pObject2Device->d, pObject2Device->f, 0,
0, 1);
dstPathData->transform(smatrix);
FX_Free(intervals);
} else {
SkStroke stroker;
stroker.setCap(cap);
stroker.setJoin(join);
stroker.setMiterLimit(pGraphState->m_MiterLimit);
stroker.setWidth(width);
stroker.setDoFill(FALSE);
stroker.strokePath(path_data, dstPathData);
SkMatrix smatrix;
smatrix.setAll(pObject2Device->a, pObject2Device->c, pObject2Device->e,
pObject2Device->b, pObject2Device->d, pObject2Device->f, 0,
0, 1);
dstPathData->transform(smatrix);
}
}
CFX_SkiaDeviceDriver::CFX_SkiaDeviceDriver(CFX_DIBitmap* pBitmap,
int dither_bits,
FX_BOOL bRgbByteOrder,
CFX_DIBitmap* pOriDevice,
FX_BOOL bGroupKnockout) {
m_pAggDriver = new CFX_AggDeviceDriver(pBitmap, dither_bits, bRgbByteOrder,
pOriDevice, bGroupKnockout);
}
CFX_SkiaDeviceDriver::~CFX_SkiaDeviceDriver() {
delete m_pAggDriver;
}
FX_BOOL CFX_SkiaDeviceDriver::DrawDeviceText(int nChars,
const FXTEXT_CHARPOS* pCharPos,
CFX_Font* pFont,
CFX_FontCache* pCache,
const CFX_Matrix* pObject2Device,
FX_FIXFLOAT font_size,
FX_DWORD color,
int alpha_flag,
void* pIccTransform) {
return m_pAggDriver->DrawDeviceText(nChars, pCharPos, pFont, pCache,
pObject2Device, font_size, color,
alpha_flag, pIccTransform);
}
int CFX_SkiaDeviceDriver::GetDeviceCaps(int caps_id) {
return m_pAggDriver->GetDeviceCaps(caps_id);
}
void CFX_SkiaDeviceDriver::SaveState() {
m_pAggDriver->SaveState();
}
void CFX_SkiaDeviceDriver::RestoreState(FX_BOOL bKeepSaved) {
m_pAggDriver->RestoreState(bKeepSaved);
}
void CFX_SkiaDeviceDriver::SetClipMask(rasterizer_scanline_aa& rasterizer) {
m_pAggDriver->SetClipMask(rasterizer);
}
void CFX_SkiaDeviceDriver::SetClipMask(SkPath& skPath, SkPaint* spaint) {
SkIRect clip_box;
clip_box.set(0, 0, fix0_to_8(GetDeviceCaps(FXDC_PIXEL_WIDTH)),
fix0_to_8(GetDeviceCaps(FXDC_PIXEL_HEIGHT)));
clip_box.intersect(m_pAggDriver->m_pClipRgn->GetBox().left,
m_pAggDriver->m_pClipRgn->GetBox().top,
m_pAggDriver->m_pClipRgn->GetBox().right,
m_pAggDriver->m_pClipRgn->GetBox().bottom);
SkPath* pathPtr = &skPath;
SkRect path_rect = skPath.getBounds();
clip_box.intersect(FXSYS_floor(path_rect.fLeft), FXSYS_floor(path_rect.fTop),
FXSYS_floor(path_rect.fRight) + 1,
FXSYS_floor(path_rect.fBottom) + 1);
CFX_DIBitmapRef mask;
CFX_DIBitmap* pThisLayer = mask.New();
pThisLayer->Create(clip_box.width(), clip_box.height(), FXDIB_8bppMask);
pThisLayer->Clear(0);
CFX_SkiaA8Renderer render;
render.Init(pThisLayer, clip_box.fLeft, clip_box.fTop);
SkRasterClip rasterClip(clip_box);
SuperBlitter_skia::DrawPath(skPath, (SkBlitter*)&render, rasterClip, *spaint);
// Finally, we have got the mask that we need, intersect with current clip
// region
m_pAggDriver->m_pClipRgn->IntersectMaskF(clip_box.fLeft, clip_box.fTop, mask);
}
FX_BOOL CFX_SkiaDeviceDriver::SetClip_PathFill(
const CFX_PathData* pPathData, // path info
const CFX_Matrix* pObject2Device, // optional transformation
int fill_mode // fill mode, WINDING or ALTERNATE
) {
if (!m_pAggDriver->m_pClipRgn) {
m_pAggDriver->m_pClipRgn = new CFX_ClipRgn(
GetDeviceCaps(FXDC_PIXEL_WIDTH), GetDeviceCaps(FXDC_PIXEL_HEIGHT));
}
if (pPathData->GetPointCount() == 5 || pPathData->GetPointCount() == 4) {
CFX_FloatRect rectf;
if (pPathData->IsRect(pObject2Device, &rectf)) {
rectf.Intersect(
CFX_FloatRect(0, 0, (FX_FIXFLOAT)GetDeviceCaps(FXDC_PIXEL_WIDTH),
(FX_FIXFLOAT)GetDeviceCaps(FXDC_PIXEL_HEIGHT)));
FX_RECT rect = rectf.GetOutterRect();
m_pAggDriver->m_pClipRgn->IntersectRect(rect);
return TRUE;
}
}
CSkia_PathData path_data;
path_data.BuildPath(pPathData, pObject2Device);
path_data.m_PathData.close();
path_data.m_PathData.setFillType((fill_mode & 3) == FXFILL_WINDING
? SkPath::kWinding_FillType
: SkPath::kEvenOdd_FillType);
SkPaint spaint;
spaint.setColor(0xffffffff);
spaint.setAntiAlias(TRUE);
spaint.setStyle(SkPaint::kFill_Style);
SetClipMask(path_data.m_PathData, &spaint);
return TRUE;
}
FX_BOOL CFX_SkiaDeviceDriver::SetClip_PathStroke(
const CFX_PathData* pPathData, // path info
const CFX_Matrix* pObject2Device, // optional transformation
const CFX_GraphStateData* pGraphState // graphic state, for pen attributes
) {
if (!m_pAggDriver->m_pClipRgn) {
m_pAggDriver->m_pClipRgn = new CFX_ClipRgn(
GetDeviceCaps(FXDC_PIXEL_WIDTH), GetDeviceCaps(FXDC_PIXEL_HEIGHT));
}
// build path data
CSkia_PathData path_data;
path_data.BuildPath(pPathData, NULL);
path_data.m_PathData.setFillType(SkPath::kWinding_FillType);
SkPaint spaint;
spaint.setColor(0xffffffff);
spaint.setStyle(SkPaint::kStroke_Style);
spaint.setAntiAlias(TRUE);
SkPath dst_path;
SkRasterizeStroke(spaint, &dst_path, path_data.m_PathData, pObject2Device,
pGraphState, 1, FALSE, 0);
spaint.setStyle(SkPaint::kFill_Style);
SetClipMask(dst_path, &spaint);
return TRUE;
}
FX_BOOL CFX_SkiaDeviceDriver::RenderRasterizer(
rasterizer_scanline_aa& rasterizer,
FX_DWORD color,
FX_BOOL bFullCover,
FX_BOOL bGroupKnockout,
int alpha_flag,
void* pIccTransform) {
return m_pAggDriver->RenderRasterizer(
rasterizer, color, bFullCover, bGroupKnockout, alpha_flag, pIccTransform);
}
FX_BOOL CFX_SkiaDeviceDriver::RenderRasterizerSkia(SkPath& skPath,
const SkPaint& origPaint,
SkIRect& rect,
FX_DWORD color,
FX_BOOL bFullCover,
FX_BOOL bGroupKnockout,
int alpha_flag,
void* pIccTransform,
FX_BOOL bFill) {
CFX_DIBitmap* pt = bGroupKnockout ? m_pAggDriver->GetBackDrop() : NULL;
CFX_SkiaRenderer render;
if (!render.Init(m_pAggDriver->m_pBitmap, pt, m_pAggDriver->m_pClipRgn, color,
bFullCover, m_pAggDriver->m_bRgbByteOrder, alpha_flag,
pIccTransform))
return FALSE;
SkRasterClip rasterClip(rect);
SuperBlitter_skia::DrawPath(skPath, (SkBlitter*)&render, rasterClip,
origPaint);
return TRUE;
}
FX_BOOL CFX_SkiaDeviceDriver::DrawPath(
const CFX_PathData* pPathData, // path info
const CFX_Matrix* pObject2Device, // optional transformation
const CFX_GraphStateData* pGraphState, // graphic state, for pen attributes
FX_DWORD fill_color, // fill color
FX_DWORD stroke_color, // stroke color
int fill_mode, // fill mode, WINDING or ALTERNATE. 0 for not filled
int alpha_flag,
void* pIccTransform) {
if (!GetBuffer())
return TRUE;
FOXIT_DEBUG1("CFX_SkiaDeviceDriver::DrawPath: entering");
SkIRect rect;
rect.set(0, 0, GetDeviceCaps(FXDC_PIXEL_WIDTH),
GetDeviceCaps(FXDC_PIXEL_HEIGHT));
if ((fill_mode & 3) && fill_color) {
// We have to transform before building path data, otherwise we'll have
// flatting problem
// when we enlarge a small path (flatten before transformed)
// TESTDOC: Bug #5115 - DS_S1Dimpact_lr.pdf
// build path data
CSkia_PathData path_data;
path_data.BuildPath(pPathData, pObject2Device);
// path_data.m_PathData.close();
path_data.m_PathData.setFillType((fill_mode & 3) == FXFILL_WINDING
? SkPath::kWinding_FillType
: SkPath::kEvenOdd_FillType);
SkPaint spaint;
spaint.setAntiAlias(TRUE);
spaint.setStyle(SkPaint::kFill_Style);
spaint.setColor(fill_color);
if (!RenderRasterizerSkia(path_data.m_PathData, spaint, rect, fill_color,
fill_mode & FXFILL_FULLCOVER, FALSE, alpha_flag,
pIccTransform))
return FALSE;
}
int stroke_alpha = FXGETFLAG_COLORTYPE(alpha_flag)
? FXGETFLAG_ALPHA_STROKE(alpha_flag)
: FXARGB_A(stroke_color);
if (pGraphState && stroke_alpha) {
// We split the matrix into two parts: first part doing the scaling, so we
// won't have the
// flatness problem, second part doing the transformation, so we don't have
// stroking geo problem.
// TESTDOC: Bug #5253 - test[1].pdf
CFX_Matrix matrix1, matrix2;
if (pObject2Device) {
matrix1.a = FXSYS_fabs(pObject2Device->a) > FXSYS_fabs(pObject2Device->b)
? FXSYS_fabs(pObject2Device->a)
: FXSYS_fabs(pObject2Device->b);
matrix1.d = matrix1.a; // FXSYS_fabs(pObject2Device->c) >
// FXSYS_fabs(pObject2Device->d) ?
// pObject2Device->c : pObject2Device->d;
matrix2.Set(pObject2Device->a / matrix1.a, pObject2Device->b / matrix1.a,
pObject2Device->c / matrix1.d, pObject2Device->d / matrix1.d,
pObject2Device->e, pObject2Device->f);
}
// build path data
CSkia_PathData path_data;
path_data.BuildPath(pPathData, &matrix1);
path_data.m_PathData.setFillType(SkPath::kWinding_FillType);
SkPaint spaint;
spaint.setColor(stroke_color);
spaint.setStyle(SkPaint::kStroke_Style);
spaint.setAntiAlias(TRUE);
SkPath dst_path;
SkRasterizeStroke(spaint, &dst_path, path_data.m_PathData, &matrix2,
pGraphState, matrix1.a, FALSE, 0);
spaint.setStyle(SkPaint::kFill_Style);
int fill_flag = FXGETFLAG_COLORTYPE(alpha_flag) << 8 |
FXGETFLAG_ALPHA_STROKE(alpha_flag);
if (!RenderRasterizerSkia(dst_path, spaint, rect, stroke_color,
fill_mode & FXFILL_FULLCOVER, FALSE, fill_flag,
pIccTransform, FALSE))
return FALSE;
}
return TRUE;
}
FX_BOOL CFX_SkiaDeviceDriver::SetPixel(int x,
int y,
FX_DWORD color,
int alpha_flag,
void* pIccTransform) {
return m_pAggDriver->SetPixel(x, y, color, alpha_flag, pIccTransform);
}
FX_BOOL CFX_SkiaDeviceDriver::FillRect(const FX_RECT* pRect,
FX_DWORD fill_color,
int alpha_flag,
void* pIccTransform) {
return m_pAggDriver->FillRect(pRect, fill_color, alpha_flag, pIccTransform);
}
FX_BOOL CFX_SkiaDeviceDriver::GetClipBox(FX_RECT* pRect) {
return m_pAggDriver->GetClipBox(pRect);
}
FX_BOOL CFX_SkiaDeviceDriver::GetDIBits(CFX_DIBitmap* pBitmap,
int left,
int top,
void* pIccTransform,
FX_BOOL bDEdge) {
return m_pAggDriver->GetDIBits(pBitmap, left, top, pIccTransform, bDEdge);
}
FX_BOOL CFX_SkiaDeviceDriver::SetDIBits(const CFX_DIBSource* pBitmap,
FX_DWORD argb,
const FX_RECT* pSrcRect,
int left,
int top,
int blend_type,
int alpha_flag,
void* pIccTransform) {
return m_pAggDriver->SetDIBits(pBitmap, argb, pSrcRect, left, top, blend_type,
alpha_flag, pIccTransform);
}
FX_BOOL CFX_SkiaDeviceDriver::StretchDIBits(const CFX_DIBSource* pSource,
FX_DWORD argb,
int dest_left,
int dest_top,
int dest_width,
int dest_height,
const FX_RECT* pClipRect,
FX_DWORD flags,
int alpha_flag,
void* pIccTransform) {
return m_pAggDriver->StretchDIBits(pSource, argb, dest_left, dest_top,
dest_width, dest_height, pClipRect, flags,
alpha_flag, pIccTransform);
}
FX_BOOL CFX_SkiaDeviceDriver::StartDIBits(const CFX_DIBSource* pSource,
int bitmap_alpha,
FX_DWORD argb,
const CFX_Matrix* pMatrix,
FX_DWORD render_flags,
void*& handle,
int alpha_flag,
void* pIccTransform) {
return m_pAggDriver->StartDIBits(pSource, bitmap_alpha, argb, pMatrix,
render_flags, handle, alpha_flag,
pIccTransform);
}
FX_BOOL CFX_SkiaDeviceDriver::ContinueDIBits(void* pHandle, IFX_Pause* pPause) {
return m_pAggDriver->ContinueDIBits(pHandle, pPause);
}
void CFX_SkiaDeviceDriver::CancelDIBits(void* pHandle) {
m_pAggDriver->CancelDIBits(pHandle);
}
CFX_SkiaDevice::CFX_SkiaDevice() {
m_bOwnedBitmap = FALSE;
}
FX_BOOL CFX_SkiaDevice::Attach(CFX_DIBitmap* pBitmap,
int dither_bits,
FX_BOOL bRgbByteOrder,
CFX_DIBitmap* pOriDevice,
FX_BOOL bGroupKnockout) {
if (!pBitmap)
return FALSE;
SetBitmap(pBitmap);
CFX_SkiaDeviceDriver* pDriver = new CFX_SkiaDeviceDriver(
pBitmap, dither_bits, bRgbByteOrder, pOriDevice, bGroupKnockout);
SetDeviceDriver(pDriver);
return TRUE;
}
FX_BOOL CFX_SkiaDevice::Create(int width,
int height,
FXDIB_Format format,
int dither_bits,
CFX_DIBitmap* pOriDevice) {
m_bOwnedBitmap = TRUE;
CFX_DIBitmap* pBitmap = new CFX_DIBitmap;
if (!pBitmap->Create(width, height, format)) {
delete pBitmap;
return FALSE;
}
SetBitmap(pBitmap);
CFX_SkiaDeviceDriver* pDriver =
new CFX_SkiaDeviceDriver(pBitmap, dither_bits, FALSE, pOriDevice, FALSE);
SetDeviceDriver(pDriver);
return TRUE;
}
CFX_SkiaDevice::~CFX_SkiaDevice() {
if (m_bOwnedBitmap && GetBitmap())
delete GetBitmap();
}
#endif