[image: Google Git] Sign in

pdfium / pdfium / refs/heads/chromium/3093 / . / third_party / yasm / README.pdfium
blob: 81b286f5c8f533db9d45d2c64b3cffd6ff8abc7f [file] [log] [blame]
		Name: yasm
		URL: http://www.tortall.net/projects/yasm/
		Version: 1.2.0
		License: 2-clause or 3-clause BSD licensed, with the exception of bitvect, which is triple-licensed under the Artistic license, GPL, and LGPL
		License File: source/patched-yasm/COPYING
		License Android Compatible: yes
		Security Critical: no
		
		With these patches merged:
		* https://github.com/yasm/yasm/commit/a2cbb10ee1b90b73647667ac849c74d65761d412
		* https://github.com/yasm/yasm/commit/01ab853e68ef8aeded716d6f5b34895200f66a51
		* https://github.com/yasm/yasm/commit/82fafa7b5619e702c8681c959ade0746498e3cbc
		* https://github.com/yasm/yasm/commit/2bd66514b6b100887c19d8598da38347b3cff40e
		* https://github.com/yasm/yasm/commit/ab19547382660d81e0b4a0232dccb38f44c52a36
		* https://github.com/yasm/yasm/commit/9728322335cba96500861ef766b1546d096e5600
		* CHROMIUM.diff: this patch makes yasm deterministic.
		
		
		See also the yasm.gyp file for a description of the yasm build process.
		
		Instructions for recreating the yasm.gyp file.
		 1) Get a clean version of the yasm source tree. The clean tree can be found
		 at:
		
		 src/third_party/yasm/source/yasm
		
		 2) Run configure on the pristine source from a different directory (eg.,
		 /tmp/yasm_build). Running configure from another directory will keep
		 the source tree clean.
		
		 3) Next, capture all the output from a build of yasm. We will use the build
		 log as a reference for making the yasm.gyp file.
		
		 make yasm > yasm_build_log 2> yasm_build_err
		
		 4) Check yasm_build_err to see if there are any anomalies beyond yasm's
		 compiler warnings.
		
		 5) Grab the generated Makefile, libyasm-stdint.h, config.h, and put into
		 the correct platform location. For android platform, copy the files
		 generated for linux, but make sure that ENABLE_NLS is not defined to
		 allow mac host compiles to work. For ios, copy the files from mac.
		
		 src/third_party/yasm/source/config/[platform]
		
		 While we do not directly use the "Makefile" to build, it is needed by
		 the "genmodule" subprogram as input for creating the available modules
		 list.
		
		 6) Make sure all the subprograms are represented in yasm.gyp.
		
		 grep '^gcc' yasm_build_log |
		 grep -v ' -DHAVE_CONFIG_H '
		
		 The yasm build creates a bunch of subprograms that in-turn generate
		 more .c files in the build. Luckily the commands to generate the
		 subprogram do not have -DHAVE_CONFIG_H as a cflag.
		
		 From this list, make sure all the subprograms that are build have
		 appropriate targets in the yasm.gyp.
		
		 You will notice, when you get to the next step, that there are some
		 .c source files that are compiled both for yasm, and for genperf.
		
		 Those should go into the genperf_libs target so that they can be
		 shared by the genperf and yasm targets. Find those files by appending
		
		 | grep 'gp-'
		
		 to the command above.
		
		 7) Find all the source files used to build yasm proper.
		
		 grep -E '^gcc' yasm_build_log |
		 grep ' -DHAVE_CONFIG_H ' |
		 awk '{print $NF }' |
		 sed -e "s/'\.\/'\`//" | # Removes some garbage from the build line.
		 sort -u |
		 sed -e "s/\(.*\)/'\1',/" # Add quotes to each line.
		
		 Reversing the -DHAVE_CONFIG_H filter from the command above should
		 list the compile lines for yasm proper.
		
		 This should get you close, but you will need to manually examine this
		 list. However, some of the built products are still included in the
		 command above. Generally, if the source file is in the root directory,
		 it's a generated file.
		
		 Inspect the current yasm.gyp for a list of the subprograms and their
		 outputs.
		
		 Update the sources list in the yasm target accordingly. Read step #9
		 as well if you update the source list to avoid problems.
		
		 8) Update the actions for each of the subprograms.
		
		 Here is the real fun. For each subprogram created, you will need to
		 update the actions and rules in yasm.gyp that invoke the subprogram to
		 generate the files needed by the rest of the build.
		
		 I don't have any good succinct instructions for this. Grep the build
		 log for each subprogram invocation (eg., "./genversion"), look at
		 its command inputs and output, then verify our yasm.gyp does something
		 similar.
		
		 The good news is things likely only link or compile if this is done
		 right so you'll know if there is a problem.
		
		 Again, refer to the existing yasm.gyp for a guide to how the generated
		 files are used.
		
		 Here are a few gotchas:
		 1) genmodule, by default, writes module.c into the current
		 directory. This does not play nicely with gyp. We patch the
		 source during build to allow specifying a specific output file.
		
		 2) Most of the generated files, even though they are .c files, are
		 #included by other files in the build. Make sure they end up
		 in a directory that is in the include path for the build.
		 One of <(shared_generated_dir) or <(generated_dir) should work.
		
		 3) Some of the genperf output is #included while others need to be
		 compiled directly. That is why there are 2 different rules for
		 .gperf files in two targets.
		
		 9) Check for python scripts that are run.
		
		 grep python yasm_build_log
		
		 Yasm uses python scripts to generate the assembly code description
		 files in C++. Make sure to get these put into the gyp file properly as
		 well. An example is gen_x86_insn.py for x86 assembly.
		
		 Note that at least the gen_x86_insn.py script suffers from the same
		 problem as genmacro in that it outputs to the current directory by
		 default. The yasm.gyp build patches this file before invoking it to
		 allow specifying an output directory.
		
		 10) Recreate the 'AdditionalOptions!': ['/analyze'] block so that VC++
		 /analyze builds won't fail.
		
		 11) If all that's is finished, attempt to build....and cross your fingers.

 Powered by Gitiles| Privacy| Termstxt json
