| //--------------------------------------------------------------------------------- |
| // |
| // Little Color Management System |
| // Copyright (c) 1998-2017 Marti Maria Saguer |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining |
| // a copy of this software and associated documentation files (the "Software"), |
| // to deal in the Software without restriction, including without limitation |
| // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| // and/or sell copies of the Software, and to permit persons to whom the Software |
| // is furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| // |
| //--------------------------------------------------------------------------------- |
| // |
| |
| #include "lcms2_internal.h" |
| |
| |
| //---------------------------------------------------------------------------------- |
| |
| // Optimization for 8 bits, Shaper-CLUT (3 inputs only) |
| typedef struct { |
| |
| cmsContext ContextID; |
| |
| const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer. |
| |
| cmsUInt16Number rx[256], ry[256], rz[256]; |
| cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data |
| |
| |
| } Prelin8Data; |
| |
| |
| // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs) |
| typedef struct { |
| |
| cmsContext ContextID; |
| |
| // Number of channels |
| cmsUInt32Number nInputs; |
| cmsUInt32Number nOutputs; |
| |
| _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance |
| cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS]; |
| |
| _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid |
| const cmsInterpParams* CLUTparams; // (not-owned pointer) |
| |
| |
| _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer) |
| cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer) |
| |
| |
| } Prelin16Data; |
| |
| |
| // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed |
| |
| typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits! |
| |
| #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5)) |
| |
| typedef struct { |
| |
| cmsContext ContextID; |
| |
| cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0) |
| cmsS1Fixed14Number Shaper1G[256]; |
| cmsS1Fixed14Number Shaper1B[256]; |
| |
| cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that) |
| cmsS1Fixed14Number Off[3]; |
| |
| cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255 |
| cmsUInt16Number Shaper2G[16385]; |
| cmsUInt16Number Shaper2B[16385]; |
| |
| } MatShaper8Data; |
| |
| // Curves, optimization is shared between 8 and 16 bits |
| typedef struct { |
| |
| cmsContext ContextID; |
| |
| cmsUInt32Number nCurves; // Number of curves |
| cmsUInt32Number nElements; // Elements in curves |
| cmsUInt16Number** Curves; // Points to a dynamically allocated array |
| |
| } Curves16Data; |
| |
| |
| // Simple optimizations ---------------------------------------------------------------------------------------------------------- |
| |
| |
| // Clamp a fixed point integer to signed 28 bits to avoid overflow in |
| // calculations. Clamp is intended for use with colorants, requiring one bit |
| // for a colorant and another two bits to avoid overflow when combining the |
| // colors. |
| cmsINLINE cmsS1Fixed14Number _FixedClamp(cmsS1Fixed14Number n) { |
| const cmsS1Fixed14Number max_positive = 268435455; // 0x0FFFFFFF; |
| const cmsS1Fixed14Number max_negative = -268435456; // 0xF0000000; |
| // Normally expect the provided number to be in the range [0..1] (but in |
| // fixed 1.14 format), so can perform a quick check for this typical case |
| // to reduce number of compares. |
| const cmsS1Fixed14Number typical_range_mask = 0xFFFF8000; |
| |
| if (!(n & typical_range_mask)) |
| return n; |
| if (n < max_negative) |
| return max_negative; |
| if (n > max_positive) |
| return max_positive; |
| return n; |
| } |
| |
| // Perform one row of matrix multiply with translation for MatShaperEval16(). |
| cmsINLINE cmsInt64Number _MatShaperEvaluateRow(cmsS1Fixed14Number* mat, |
| cmsS1Fixed14Number off, |
| cmsS1Fixed14Number r, |
| cmsS1Fixed14Number g, |
| cmsS1Fixed14Number b) { |
| return ((cmsInt64Number)mat[0] * r + |
| (cmsInt64Number)mat[1] * g + |
| (cmsInt64Number)mat[2] * b + |
| off + 0x2000) >> 14; |
| } |
| |
| // Remove an element in linked chain |
| static |
| void _RemoveElement(cmsStage** head) |
| { |
| cmsStage* mpe = *head; |
| cmsStage* next = mpe ->Next; |
| *head = next; |
| cmsStageFree(mpe); |
| } |
| |
| // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer. |
| static |
| cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp) |
| { |
| cmsStage** pt = &Lut ->Elements; |
| cmsBool AnyOpt = FALSE; |
| |
| while (*pt != NULL) { |
| |
| if ((*pt) ->Implements == UnaryOp) { |
| _RemoveElement(pt); |
| AnyOpt = TRUE; |
| } |
| else |
| pt = &((*pt) -> Next); |
| } |
| |
| return AnyOpt; |
| } |
| |
| // Same, but only if two adjacent elements are found |
| static |
| cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2) |
| { |
| cmsStage** pt1; |
| cmsStage** pt2; |
| cmsBool AnyOpt = FALSE; |
| |
| pt1 = &Lut ->Elements; |
| if (*pt1 == NULL) return AnyOpt; |
| |
| while (*pt1 != NULL) { |
| |
| pt2 = &((*pt1) -> Next); |
| if (*pt2 == NULL) return AnyOpt; |
| |
| if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) { |
| _RemoveElement(pt2); |
| _RemoveElement(pt1); |
| AnyOpt = TRUE; |
| } |
| else |
| pt1 = &((*pt1) -> Next); |
| } |
| |
| return AnyOpt; |
| } |
| |
| |
| static |
| cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b) |
| { |
| return fabs(b - a) < 0.00001f; |
| } |
| |
| static |
| cmsBool isFloatMatrixIdentity(const cmsMAT3* a) |
| { |
| cmsMAT3 Identity; |
| int i, j; |
| |
| _cmsMAT3identity(&Identity); |
| |
| for (i = 0; i < 3; i++) |
| for (j = 0; j < 3; j++) |
| if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE; |
| |
| return TRUE; |
| } |
| // if two adjacent matrices are found, multiply them. |
| static |
| cmsBool _MultiplyMatrix(cmsPipeline* Lut) |
| { |
| cmsStage** pt1; |
| cmsStage** pt2; |
| cmsStage* chain; |
| cmsBool AnyOpt = FALSE; |
| |
| pt1 = &Lut->Elements; |
| if (*pt1 == NULL) return AnyOpt; |
| |
| while (*pt1 != NULL) { |
| |
| pt2 = &((*pt1)->Next); |
| if (*pt2 == NULL) return AnyOpt; |
| |
| if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) { |
| |
| // Get both matrices |
| _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1); |
| _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2); |
| cmsMAT3 res; |
| |
| // Input offset and output offset should be zero to use this optimization |
| if (m1->Offset != NULL || m2 ->Offset != NULL || |
| cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 || |
| cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3) |
| return FALSE; |
| |
| // Multiply both matrices to get the result |
| _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double); |
| |
| // Get the next in chain after the matrices |
| chain = (*pt2)->Next; |
| |
| // Remove both matrices |
| _RemoveElement(pt2); |
| _RemoveElement(pt1); |
| |
| // Now what if the result is a plain identity? |
| if (!isFloatMatrixIdentity(&res)) { |
| |
| // We can not get rid of full matrix |
| cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL); |
| if (Multmat == NULL) return FALSE; // Should never happen |
| |
| // Recover the chain |
| Multmat->Next = chain; |
| *pt1 = Multmat; |
| } |
| |
| AnyOpt = TRUE; |
| } |
| else |
| pt1 = &((*pt1)->Next); |
| } |
| |
| return AnyOpt; |
| } |
| |
| |
| // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed |
| // by a v4 to v2 and vice-versa. The elements are then discarded. |
| static |
| cmsBool PreOptimize(cmsPipeline* Lut) |
| { |
| cmsBool AnyOpt = FALSE, Opt; |
| |
| do { |
| |
| Opt = FALSE; |
| |
| // Remove all identities |
| Opt |= _Remove1Op(Lut, cmsSigIdentityElemType); |
| |
| // Remove XYZ2Lab followed by Lab2XYZ |
| Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType); |
| |
| // Remove Lab2XYZ followed by XYZ2Lab |
| Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType); |
| |
| // Remove V4 to V2 followed by V2 to V4 |
| Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4); |
| |
| // Remove V2 to V4 followed by V4 to V2 |
| Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2); |
| |
| // Remove float pcs Lab conversions |
| Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab); |
| |
| // Remove float pcs Lab conversions |
| Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ); |
| |
| // Simplify matrix. |
| Opt |= _MultiplyMatrix(Lut); |
| |
| if (Opt) AnyOpt = TRUE; |
| |
| } while (Opt); |
| |
| return AnyOpt; |
| } |
| |
| static |
| void Eval16nop1D(register const cmsUInt16Number Input[], |
| register cmsUInt16Number Output[], |
| register const struct _cms_interp_struc* p) |
| { |
| Output[0] = Input[0]; |
| |
| cmsUNUSED_PARAMETER(p); |
| } |
| |
| static |
| void PrelinEval16(register const cmsUInt16Number Input[], |
| register cmsUInt16Number Output[], |
| register const void* D) |
| { |
| Prelin16Data* p16 = (Prelin16Data*) D; |
| cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS]; |
| cmsUInt16Number StageDEF[cmsMAXCHANNELS]; |
| cmsUInt32Number i; |
| |
| for (i=0; i < p16 ->nInputs; i++) { |
| |
| p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]); |
| } |
| |
| p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams); |
| |
| for (i=0; i < p16 ->nOutputs; i++) { |
| |
| p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]); |
| } |
| } |
| |
| |
| static |
| void PrelinOpt16free(cmsContext ContextID, void* ptr) |
| { |
| Prelin16Data* p16 = (Prelin16Data*) ptr; |
| |
| _cmsFree(ContextID, p16 ->EvalCurveOut16); |
| _cmsFree(ContextID, p16 ->ParamsCurveOut16); |
| |
| _cmsFree(ContextID, p16); |
| } |
| |
| static |
| void* Prelin16dup(cmsContext ContextID, const void* ptr) |
| { |
| Prelin16Data* p16 = (Prelin16Data*) ptr; |
| Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data)); |
| |
| if (Duped == NULL) return NULL; |
| |
| Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16)); |
| Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*)); |
| |
| return Duped; |
| } |
| |
| |
| static |
| Prelin16Data* PrelinOpt16alloc(cmsContext ContextID, |
| const cmsInterpParams* ColorMap, |
| cmsUInt32Number nInputs, cmsToneCurve** In, |
| cmsUInt32Number nOutputs, cmsToneCurve** Out ) |
| { |
| cmsUInt32Number i; |
| Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data)); |
| if (p16 == NULL) return NULL; |
| |
| p16 ->nInputs = nInputs; |
| p16 ->nOutputs = nOutputs; |
| |
| |
| for (i=0; i < nInputs; i++) { |
| |
| if (In == NULL) { |
| p16 -> ParamsCurveIn16[i] = NULL; |
| p16 -> EvalCurveIn16[i] = Eval16nop1D; |
| |
| } |
| else { |
| p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams; |
| p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16; |
| } |
| } |
| |
| p16 ->CLUTparams = ColorMap; |
| p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16; |
| |
| |
| p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16)); |
| p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* )); |
| |
| for (i=0; i < nOutputs; i++) { |
| |
| if (Out == NULL) { |
| p16 ->ParamsCurveOut16[i] = NULL; |
| p16 -> EvalCurveOut16[i] = Eval16nop1D; |
| } |
| else { |
| |
| p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams; |
| p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16; |
| } |
| } |
| |
| return p16; |
| } |
| |
| |
| |
| // Resampling --------------------------------------------------------------------------------- |
| |
| #define PRELINEARIZATION_POINTS 4096 |
| |
| // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for |
| // almost any transform. We use floating point precision and then convert from floating point to 16 bits. |
| static |
| cmsInt32Number XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) |
| { |
| cmsPipeline* Lut = (cmsPipeline*) Cargo; |
| cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; |
| cmsUInt32Number i; |
| |
| _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS); |
| _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS); |
| |
| // From 16 bit to floating point |
| for (i=0; i < Lut ->InputChannels; i++) |
| InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0); |
| |
| // Evaluate in floating point |
| cmsPipelineEvalFloat(InFloat, OutFloat, Lut); |
| |
| // Back to 16 bits representation |
| for (i=0; i < Lut ->OutputChannels; i++) |
| Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0); |
| |
| // Always succeed |
| return TRUE; |
| } |
| |
| // Try to see if the curves of a given MPE are linear |
| static |
| cmsBool AllCurvesAreLinear(cmsStage* mpe) |
| { |
| cmsToneCurve** Curves; |
| cmsUInt32Number i, n; |
| |
| Curves = _cmsStageGetPtrToCurveSet(mpe); |
| if (Curves == NULL) return FALSE; |
| |
| n = cmsStageOutputChannels(mpe); |
| |
| for (i=0; i < n; i++) { |
| if (!cmsIsToneCurveLinear(Curves[i])) return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose |
| // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels |
| static |
| cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[], |
| cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn) |
| { |
| _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data; |
| cmsInterpParams* p16 = Grid ->Params; |
| cmsFloat64Number px, py, pz, pw; |
| int x0, y0, z0, w0; |
| int i, index; |
| |
| if (CLUT -> Type != cmsSigCLutElemType) { |
| cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage"); |
| return FALSE; |
| } |
| |
| if (nChannelsIn == 4) { |
| |
| px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
| py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; |
| pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; |
| pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0; |
| |
| x0 = (int) floor(px); |
| y0 = (int) floor(py); |
| z0 = (int) floor(pz); |
| w0 = (int) floor(pw); |
| |
| if (((px - x0) != 0) || |
| ((py - y0) != 0) || |
| ((pz - z0) != 0) || |
| ((pw - w0) != 0)) return FALSE; // Not on exact node |
| |
| index = (int) p16 -> opta[3] * x0 + |
| (int) p16 -> opta[2] * y0 + |
| (int) p16 -> opta[1] * z0 + |
| (int) p16 -> opta[0] * w0; |
| } |
| else |
| if (nChannelsIn == 3) { |
| |
| px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
| py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; |
| pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; |
| |
| x0 = (int) floor(px); |
| y0 = (int) floor(py); |
| z0 = (int) floor(pz); |
| |
| if (((px - x0) != 0) || |
| ((py - y0) != 0) || |
| ((pz - z0) != 0)) return FALSE; // Not on exact node |
| |
| index = (int) p16 -> opta[2] * x0 + |
| (int) p16 -> opta[1] * y0 + |
| (int) p16 -> opta[0] * z0; |
| } |
| else |
| if (nChannelsIn == 1) { |
| |
| px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
| |
| x0 = (int) floor(px); |
| |
| if (((px - x0) != 0)) return FALSE; // Not on exact node |
| |
| index = (int) p16 -> opta[0] * x0; |
| } |
| else { |
| cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn); |
| return FALSE; |
| } |
| |
| for (i = 0; i < (int) nChannelsOut; i++) |
| Grid->Tab.T[index + i] = Value[i]; |
| |
| return TRUE; |
| } |
| |
| // Auxiliary, to see if two values are equal or very different |
| static |
| cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] ) |
| { |
| cmsUInt32Number i; |
| |
| for (i=0; i < n; i++) { |
| |
| if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided |
| if (White1[i] != White2[i]) return FALSE; |
| } |
| return TRUE; |
| } |
| |
| |
| // Locate the node for the white point and fix it to pure white in order to avoid scum dot. |
| static |
| cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace) |
| { |
| cmsUInt16Number *WhitePointIn, *WhitePointOut; |
| cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS]; |
| cmsUInt32Number i, nOuts, nIns; |
| cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL; |
| |
| if (!_cmsEndPointsBySpace(EntryColorSpace, |
| &WhitePointIn, NULL, &nIns)) return FALSE; |
| |
| if (!_cmsEndPointsBySpace(ExitColorSpace, |
| &WhitePointOut, NULL, &nOuts)) return FALSE; |
| |
| // It needs to be fixed? |
| if (Lut ->InputChannels != nIns) return FALSE; |
| if (Lut ->OutputChannels != nOuts) return FALSE; |
| |
| cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut); |
| |
| if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match |
| |
| // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations |
| if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin)) |
| if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT)) |
| if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin)) |
| if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT)) |
| return FALSE; |
| |
| // We need to interpolate white points of both, pre and post curves |
| if (PreLin) { |
| |
| cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin); |
| |
| for (i=0; i < nIns; i++) { |
| WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]); |
| } |
| } |
| else { |
| for (i=0; i < nIns; i++) |
| WhiteIn[i] = WhitePointIn[i]; |
| } |
| |
| // If any post-linearization, we need to find how is represented white before the curve, do |
| // a reverse interpolation in this case. |
| if (PostLin) { |
| |
| cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin); |
| |
| for (i=0; i < nOuts; i++) { |
| |
| cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]); |
| if (InversePostLin == NULL) { |
| WhiteOut[i] = WhitePointOut[i]; |
| |
| } else { |
| |
| WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]); |
| cmsFreeToneCurve(InversePostLin); |
| } |
| } |
| } |
| else { |
| for (i=0; i < nOuts; i++) |
| WhiteOut[i] = WhitePointOut[i]; |
| } |
| |
| // Ok, proceed with patching. May fail and we don't care if it fails |
| PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns); |
| |
| return TRUE; |
| } |
| |
| // ----------------------------------------------------------------------------------------------------------------------------------------------- |
| // This function creates simple LUT from complex ones. The generated LUT has an optional set of |
| // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables. |
| // These curves have to exist in the original LUT in order to be used in the simplified output. |
| // Caller may also use the flags to allow this feature. |
| // LUTS with all curves will be simplified to a single curve. Parametric curves are lost. |
| // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified |
| // ----------------------------------------------------------------------------------------------------------------------------------------------- |
| |
| static |
| cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
| { |
| cmsPipeline* Src = NULL; |
| cmsPipeline* Dest = NULL; |
| cmsStage* mpe; |
| cmsStage* CLUT; |
| cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL; |
| cmsUInt32Number nGridPoints; |
| cmsColorSpaceSignature ColorSpace, OutputColorSpace; |
| cmsStage *NewPreLin = NULL; |
| cmsStage *NewPostLin = NULL; |
| _cmsStageCLutData* DataCLUT; |
| cmsToneCurve** DataSetIn; |
| cmsToneCurve** DataSetOut; |
| Prelin16Data* p16; |
| |
| // This is a loosy optimization! does not apply in floating-point cases |
| if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
| |
| ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)); |
| OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)); |
| |
| // Color space must be specified |
| if (ColorSpace == (cmsColorSpaceSignature)0 || |
| OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; |
| |
| nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); |
| |
| // For empty LUTs, 2 points are enough |
| if (cmsPipelineStageCount(*Lut) == 0) |
| nGridPoints = 2; |
| |
| Src = *Lut; |
| |
| // Named color pipelines cannot be optimized either |
| for (mpe = cmsPipelineGetPtrToFirstStage(Src); |
| mpe != NULL; |
| mpe = cmsStageNext(mpe)) { |
| if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE; |
| } |
| |
| // Allocate an empty LUT |
| Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
| if (!Dest) return FALSE; |
| |
| // Prelinearization tables are kept unless indicated by flags |
| if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) { |
| |
| // Get a pointer to the prelinearization element |
| cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src); |
| |
| // Check if suitable |
| if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) { |
| |
| // Maybe this is a linear tram, so we can avoid the whole stuff |
| if (!AllCurvesAreLinear(PreLin)) { |
| |
| // All seems ok, proceed. |
| NewPreLin = cmsStageDup(PreLin); |
| if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin)) |
| goto Error; |
| |
| // Remove prelinearization. Since we have duplicated the curve |
| // in destination LUT, the sampling should be applied after this stage. |
| cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin); |
| } |
| } |
| } |
| |
| // Allocate the CLUT |
| CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL); |
| if (CLUT == NULL) goto Error; |
| |
| // Add the CLUT to the destination LUT |
| if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) { |
| goto Error; |
| } |
| |
| // Postlinearization tables are kept unless indicated by flags |
| if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) { |
| |
| // Get a pointer to the postlinearization if present |
| cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src); |
| |
| // Check if suitable |
| if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) { |
| |
| // Maybe this is a linear tram, so we can avoid the whole stuff |
| if (!AllCurvesAreLinear(PostLin)) { |
| |
| // All seems ok, proceed. |
| NewPostLin = cmsStageDup(PostLin); |
| if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin)) |
| goto Error; |
| |
| // In destination LUT, the sampling should be applied after this stage. |
| cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin); |
| } |
| } |
| } |
| |
| // Now its time to do the sampling. We have to ignore pre/post linearization |
| // The source LUT without pre/post curves is passed as parameter. |
| if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) { |
| Error: |
| // Ops, something went wrong, Restore stages |
| if (KeepPreLin != NULL) { |
| if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) { |
| _cmsAssert(0); // This never happens |
| } |
| } |
| if (KeepPostLin != NULL) { |
| if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) { |
| _cmsAssert(0); // This never happens |
| } |
| } |
| cmsPipelineFree(Dest); |
| return FALSE; |
| } |
| |
| // Done. |
| |
| if (KeepPreLin != NULL) cmsStageFree(KeepPreLin); |
| if (KeepPostLin != NULL) cmsStageFree(KeepPostLin); |
| cmsPipelineFree(Src); |
| |
| DataCLUT = (_cmsStageCLutData*) CLUT ->Data; |
| |
| if (NewPreLin == NULL) DataSetIn = NULL; |
| else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves; |
| |
| if (NewPostLin == NULL) DataSetOut = NULL; |
| else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves; |
| |
| |
| if (DataSetIn == NULL && DataSetOut == NULL) { |
| |
| _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL); |
| } |
| else { |
| |
| p16 = PrelinOpt16alloc(Dest ->ContextID, |
| DataCLUT ->Params, |
| Dest ->InputChannels, |
| DataSetIn, |
| Dest ->OutputChannels, |
| DataSetOut); |
| |
| _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); |
| } |
| |
| |
| // Don't fix white on absolute colorimetric |
| if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) |
| *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; |
| |
| if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { |
| |
| FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace); |
| } |
| |
| *Lut = Dest; |
| return TRUE; |
| |
| cmsUNUSED_PARAMETER(Intent); |
| } |
| |
| |
| // ----------------------------------------------------------------------------------------------------------------------------------------------- |
| // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on |
| // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works |
| // for RGB transforms. See the paper for more details |
| // ----------------------------------------------------------------------------------------------------------------------------------------------- |
| |
| |
| // Normalize endpoints by slope limiting max and min. This assures endpoints as well. |
| // Descending curves are handled as well. |
| static |
| void SlopeLimiting(cmsToneCurve* g) |
| { |
| int BeginVal, EndVal; |
| int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2% |
| int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98% |
| cmsFloat64Number Val, Slope, beta; |
| int i; |
| |
| if (cmsIsToneCurveDescending(g)) { |
| BeginVal = 0xffff; EndVal = 0; |
| } |
| else { |
| BeginVal = 0; EndVal = 0xffff; |
| } |
| |
| // Compute slope and offset for begin of curve |
| Val = g ->Table16[AtBegin]; |
| Slope = (Val - BeginVal) / AtBegin; |
| beta = Val - Slope * AtBegin; |
| |
| for (i=0; i < AtBegin; i++) |
| g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); |
| |
| // Compute slope and offset for the end |
| Val = g ->Table16[AtEnd]; |
| Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases |
| beta = Val - Slope * AtEnd; |
| |
| for (i = AtEnd; i < (int) g ->nEntries; i++) |
| g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); |
| } |
| |
| |
| // Precomputes tables for 8-bit on input devicelink. |
| static |
| Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3]) |
| { |
| int i; |
| cmsUInt16Number Input[3]; |
| cmsS15Fixed16Number v1, v2, v3; |
| Prelin8Data* p8; |
| |
| p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data)); |
| if (p8 == NULL) return NULL; |
| |
| // Since this only works for 8 bit input, values comes always as x * 257, |
| // we can safely take msb byte (x << 8 + x) |
| |
| for (i=0; i < 256; i++) { |
| |
| if (G != NULL) { |
| |
| // Get 16-bit representation |
| Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i)); |
| Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i)); |
| Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i)); |
| } |
| else { |
| Input[0] = FROM_8_TO_16(i); |
| Input[1] = FROM_8_TO_16(i); |
| Input[2] = FROM_8_TO_16(i); |
| } |
| |
| |
| // Move to 0..1.0 in fixed domain |
| v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0])); |
| v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1])); |
| v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2])); |
| |
| // Store the precalculated table of nodes |
| p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1)); |
| p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2)); |
| p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3)); |
| |
| // Store the precalculated table of offsets |
| p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1); |
| p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2); |
| p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3); |
| } |
| |
| p8 ->ContextID = ContextID; |
| p8 ->p = p; |
| |
| return p8; |
| } |
| |
| static |
| void Prelin8free(cmsContext ContextID, void* ptr) |
| { |
| _cmsFree(ContextID, ptr); |
| } |
| |
| static |
| void* Prelin8dup(cmsContext ContextID, const void* ptr) |
| { |
| return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data)); |
| } |
| |
| |
| |
| // A optimized interpolation for 8-bit input. |
| #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
| static |
| void PrelinEval8(register const cmsUInt16Number Input[], |
| register cmsUInt16Number Output[], |
| register const void* D) |
| { |
| |
| cmsUInt8Number r, g, b; |
| cmsS15Fixed16Number rx, ry, rz; |
| cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
| int OutChan; |
| register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; |
| Prelin8Data* p8 = (Prelin8Data*) D; |
| register const cmsInterpParams* p = p8 ->p; |
| int TotalOut = (int) p -> nOutputs; |
| const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table; |
| |
| r = (cmsUInt8Number) (Input[0] >> 8); |
| g = (cmsUInt8Number) (Input[1] >> 8); |
| b = (cmsUInt8Number) (Input[2] >> 8); |
| |
| X0 = X1 = (cmsS15Fixed16Number) p8->X0[r]; |
| Y0 = Y1 = (cmsS15Fixed16Number) p8->Y0[g]; |
| Z0 = Z1 = (cmsS15Fixed16Number) p8->Z0[b]; |
| |
| rx = p8 ->rx[r]; |
| ry = p8 ->ry[g]; |
| rz = p8 ->rz[b]; |
| |
| X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]); |
| Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]); |
| Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]); |
| |
| |
| // These are the 6 Tetrahedral |
| for (OutChan=0; OutChan < TotalOut; OutChan++) { |
| |
| c0 = DENS(X0, Y0, Z0); |
| |
| if (rx >= ry && ry >= rz) |
| { |
| c1 = DENS(X1, Y0, Z0) - c0; |
| c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
| c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| } |
| else |
| if (rx >= rz && rz >= ry) |
| { |
| c1 = DENS(X1, Y0, Z0) - c0; |
| c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
| } |
| else |
| if (rz >= rx && rx >= ry) |
| { |
| c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
| c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| c3 = DENS(X0, Y0, Z1) - c0; |
| } |
| else |
| if (ry >= rx && rx >= rz) |
| { |
| c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
| c2 = DENS(X0, Y1, Z0) - c0; |
| c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| } |
| else |
| if (ry >= rz && rz >= rx) |
| { |
| c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| c2 = DENS(X0, Y1, Z0) - c0; |
| c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
| } |
| else |
| if (rz >= ry && ry >= rx) |
| { |
| c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
| c3 = DENS(X0, Y0, Z1) - c0; |
| } |
| else { |
| c1 = c2 = c3 = 0; |
| } |
| |
| Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
| Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16)); |
| |
| } |
| } |
| |
| #undef DENS |
| |
| |
| // Curves that contain wide empty areas are not optimizeable |
| static |
| cmsBool IsDegenerated(const cmsToneCurve* g) |
| { |
| cmsUInt32Number i, Zeros = 0, Poles = 0; |
| cmsUInt32Number nEntries = g ->nEntries; |
| |
| for (i=0; i < nEntries; i++) { |
| |
| if (g ->Table16[i] == 0x0000) Zeros++; |
| if (g ->Table16[i] == 0xffff) Poles++; |
| } |
| |
| if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables |
| if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros |
| if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles |
| |
| return FALSE; |
| } |
| |
| // -------------------------------------------------------------------------------------------------------------- |
| // We need xput over here |
| |
| static |
| cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
| { |
| cmsPipeline* OriginalLut; |
| cmsUInt32Number nGridPoints; |
| cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS]; |
| cmsUInt32Number t, i; |
| cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS]; |
| cmsBool lIsSuitable, lIsLinear; |
| cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL; |
| cmsStage* OptimizedCLUTmpe; |
| cmsColorSpaceSignature ColorSpace, OutputColorSpace; |
| cmsStage* OptimizedPrelinMpe; |
| cmsStage* mpe; |
| cmsToneCurve** OptimizedPrelinCurves; |
| _cmsStageCLutData* OptimizedPrelinCLUT; |
| |
| |
| // This is a loosy optimization! does not apply in floating-point cases |
| if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
| |
| // Only on chunky RGB |
| if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE; |
| if (T_PLANAR(*InputFormat)) return FALSE; |
| |
| if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE; |
| if (T_PLANAR(*OutputFormat)) return FALSE; |
| |
| // On 16 bits, user has to specify the feature |
| if (!_cmsFormatterIs8bit(*InputFormat)) { |
| if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE; |
| } |
| |
| OriginalLut = *Lut; |
| |
| // Named color pipelines cannot be optimized either |
| for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut); |
| mpe != NULL; |
| mpe = cmsStageNext(mpe)) { |
| if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE; |
| } |
| |
| ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)); |
| OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)); |
| |
| // Color space must be specified |
| if (ColorSpace == (cmsColorSpaceSignature)0 || |
| OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; |
| |
| nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); |
| |
| // Empty gamma containers |
| memset(Trans, 0, sizeof(Trans)); |
| memset(TransReverse, 0, sizeof(TransReverse)); |
| |
| // If the last stage of the original lut are curves, and those curves are |
| // degenerated, it is likely the transform is squeezing and clipping |
| // the output from previous CLUT. We cannot optimize this case |
| { |
| cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut); |
| |
| if (cmsStageType(last) == cmsSigCurveSetElemType) { |
| |
| _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last); |
| for (i = 0; i < Data->nCurves; i++) { |
| if (IsDegenerated(Data->TheCurves[i])) |
| goto Error; |
| } |
| } |
| } |
| |
| for (t = 0; t < OriginalLut ->InputChannels; t++) { |
| Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL); |
| if (Trans[t] == NULL) goto Error; |
| } |
| |
| // Populate the curves |
| for (i=0; i < PRELINEARIZATION_POINTS; i++) { |
| |
| v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); |
| |
| // Feed input with a gray ramp |
| for (t=0; t < OriginalLut ->InputChannels; t++) |
| In[t] = v; |
| |
| // Evaluate the gray value |
| cmsPipelineEvalFloat(In, Out, OriginalLut); |
| |
| // Store result in curve |
| for (t=0; t < OriginalLut ->InputChannels; t++) |
| Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0); |
| } |
| |
| // Slope-limit the obtained curves |
| for (t = 0; t < OriginalLut ->InputChannels; t++) |
| SlopeLimiting(Trans[t]); |
| |
| // Check for validity |
| lIsSuitable = TRUE; |
| lIsLinear = TRUE; |
| for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) { |
| |
| // Exclude if already linear |
| if (!cmsIsToneCurveLinear(Trans[t])) |
| lIsLinear = FALSE; |
| |
| // Exclude if non-monotonic |
| if (!cmsIsToneCurveMonotonic(Trans[t])) |
| lIsSuitable = FALSE; |
| |
| if (IsDegenerated(Trans[t])) |
| lIsSuitable = FALSE; |
| } |
| |
| // If it is not suitable, just quit |
| if (!lIsSuitable) goto Error; |
| |
| // Invert curves if possible |
| for (t = 0; t < OriginalLut ->InputChannels; t++) { |
| TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]); |
| if (TransReverse[t] == NULL) goto Error; |
| } |
| |
| // Now inset the reversed curves at the begin of transform |
| LutPlusCurves = cmsPipelineDup(OriginalLut); |
| if (LutPlusCurves == NULL) goto Error; |
| |
| if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse))) |
| goto Error; |
| |
| // Create the result LUT |
| OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels); |
| if (OptimizedLUT == NULL) goto Error; |
| |
| OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans); |
| |
| // Create and insert the curves at the beginning |
| if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe)) |
| goto Error; |
| |
| // Allocate the CLUT for result |
| OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL); |
| |
| // Add the CLUT to the destination LUT |
| if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe)) |
| goto Error; |
| |
| // Resample the LUT |
| if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error; |
| |
| // Free resources |
| for (t = 0; t < OriginalLut ->InputChannels; t++) { |
| |
| if (Trans[t]) cmsFreeToneCurve(Trans[t]); |
| if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); |
| } |
| |
| cmsPipelineFree(LutPlusCurves); |
| |
| |
| OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe); |
| OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data; |
| |
| // Set the evaluator if 8-bit |
| if (_cmsFormatterIs8bit(*InputFormat)) { |
| |
| Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID, |
| OptimizedPrelinCLUT ->Params, |
| OptimizedPrelinCurves); |
| if (p8 == NULL) return FALSE; |
| |
| _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup); |
| |
| } |
| else |
| { |
| Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID, |
| OptimizedPrelinCLUT ->Params, |
| 3, OptimizedPrelinCurves, 3, NULL); |
| if (p16 == NULL) return FALSE; |
| |
| _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); |
| |
| } |
| |
| // Don't fix white on absolute colorimetric |
| if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) |
| *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; |
| |
| if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { |
| |
| if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) { |
| |
| return FALSE; |
| } |
| } |
| |
| // And return the obtained LUT |
| |
| cmsPipelineFree(OriginalLut); |
| *Lut = OptimizedLUT; |
| return TRUE; |
| |
| Error: |
| |
| for (t = 0; t < OriginalLut ->InputChannels; t++) { |
| |
| if (Trans[t]) cmsFreeToneCurve(Trans[t]); |
| if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); |
| } |
| |
| if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves); |
| if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT); |
| |
| return FALSE; |
| |
| cmsUNUSED_PARAMETER(Intent); |
| cmsUNUSED_PARAMETER(lIsLinear); |
| } |
| |
| |
| // Curves optimizer ------------------------------------------------------------------------------------------------------------------ |
| |
| static |
| void CurvesFree(cmsContext ContextID, void* ptr) |
| { |
| Curves16Data* Data = (Curves16Data*) ptr; |
| cmsUInt32Number i; |
| |
| for (i=0; i < Data -> nCurves; i++) { |
| |
| _cmsFree(ContextID, Data ->Curves[i]); |
| } |
| |
| _cmsFree(ContextID, Data ->Curves); |
| _cmsFree(ContextID, ptr); |
| } |
| |
| static |
| void* CurvesDup(cmsContext ContextID, const void* ptr) |
| { |
| Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data)); |
| cmsUInt32Number i; |
| |
| if (Data == NULL) return NULL; |
| |
| Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*)); |
| |
| for (i=0; i < Data -> nCurves; i++) { |
| Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number)); |
| } |
| |
| return (void*) Data; |
| } |
| |
| // Precomputes tables for 8-bit on input devicelink. |
| static |
| Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G) |
| { |
| cmsUInt32Number i, j; |
| Curves16Data* c16; |
| |
| c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data)); |
| if (c16 == NULL) return NULL; |
| |
| c16 ->nCurves = nCurves; |
| c16 ->nElements = nElements; |
| |
| c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*)); |
| if (c16->Curves == NULL) { |
| _cmsFree(ContextID, c16); |
| return NULL; |
| } |
| |
| for (i=0; i < nCurves; i++) { |
| |
| c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number)); |
| |
| if (c16->Curves[i] == NULL) { |
| |
| for (j=0; j < i; j++) { |
| _cmsFree(ContextID, c16->Curves[j]); |
| } |
| _cmsFree(ContextID, c16->Curves); |
| _cmsFree(ContextID, c16); |
| return NULL; |
| } |
| |
| if (nElements == 256U) { |
| |
| for (j=0; j < nElements; j++) { |
| |
| c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j)); |
| } |
| } |
| else { |
| |
| for (j=0; j < nElements; j++) { |
| c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j); |
| } |
| } |
| } |
| |
| return c16; |
| } |
| |
| static |
| void FastEvaluateCurves8(register const cmsUInt16Number In[], |
| register cmsUInt16Number Out[], |
| register const void* D) |
| { |
| Curves16Data* Data = (Curves16Data*) D; |
| int x; |
| cmsUInt32Number i; |
| |
| for (i=0; i < Data ->nCurves; i++) { |
| |
| x = (In[i] >> 8); |
| Out[i] = Data -> Curves[i][x]; |
| } |
| } |
| |
| |
| static |
| void FastEvaluateCurves16(register const cmsUInt16Number In[], |
| register cmsUInt16Number Out[], |
| register const void* D) |
| { |
| Curves16Data* Data = (Curves16Data*) D; |
| cmsUInt32Number i; |
| |
| for (i=0; i < Data ->nCurves; i++) { |
| Out[i] = Data -> Curves[i][In[i]]; |
| } |
| } |
| |
| |
| static |
| void FastIdentity16(register const cmsUInt16Number In[], |
| register cmsUInt16Number Out[], |
| register const void* D) |
| { |
| cmsPipeline* Lut = (cmsPipeline*) D; |
| cmsUInt32Number i; |
| |
| for (i=0; i < Lut ->InputChannels; i++) { |
| Out[i] = In[i]; |
| } |
| } |
| |
| |
| // If the target LUT holds only curves, the optimization procedure is to join all those |
| // curves together. That only works on curves and does not work on matrices. |
| static |
| cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
| { |
| cmsToneCurve** GammaTables = NULL; |
| cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; |
| cmsUInt32Number i, j; |
| cmsPipeline* Src = *Lut; |
| cmsPipeline* Dest = NULL; |
| cmsStage* mpe; |
| cmsStage* ObtainedCurves = NULL; |
| |
| |
| // This is a loosy optimization! does not apply in floating-point cases |
| if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
| |
| // Only curves in this LUT? |
| for (mpe = cmsPipelineGetPtrToFirstStage(Src); |
| mpe != NULL; |
| mpe = cmsStageNext(mpe)) { |
| if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE; |
| } |
| |
| // Allocate an empty LUT |
| Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
| if (Dest == NULL) return FALSE; |
| |
| // Create target curves |
| GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*)); |
| if (GammaTables == NULL) goto Error; |
| |
| for (i=0; i < Src ->InputChannels; i++) { |
| GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL); |
| if (GammaTables[i] == NULL) goto Error; |
| } |
| |
| // Compute 16 bit result by using floating point |
| for (i=0; i < PRELINEARIZATION_POINTS; i++) { |
| |
| for (j=0; j < Src ->InputChannels; j++) |
| InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); |
| |
| cmsPipelineEvalFloat(InFloat, OutFloat, Src); |
| |
| for (j=0; j < Src ->InputChannels; j++) |
| GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0); |
| } |
| |
| ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables); |
| if (ObtainedCurves == NULL) goto Error; |
| |
| for (i=0; i < Src ->InputChannels; i++) { |
| cmsFreeToneCurve(GammaTables[i]); |
| GammaTables[i] = NULL; |
| } |
| |
| if (GammaTables != NULL) { |
| _cmsFree(Src->ContextID, GammaTables); |
| GammaTables = NULL; |
| } |
| |
| // Maybe the curves are linear at the end |
| if (!AllCurvesAreLinear(ObtainedCurves)) { |
| |
| if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves)) |
| goto Error; |
| |
| // If the curves are to be applied in 8 bits, we can save memory |
| if (_cmsFormatterIs8bit(*InputFormat)) { |
| |
| _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data; |
| Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves); |
| |
| if (c16 == NULL) goto Error; |
| *dwFlags |= cmsFLAGS_NOCACHE; |
| _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup); |
| |
| } |
| else { |
| |
| _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves); |
| Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves); |
| |
| if (c16 == NULL) goto Error; |
| *dwFlags |= cmsFLAGS_NOCACHE; |
| _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup); |
| } |
| } |
| else { |
| |
| // LUT optimizes to nothing. Set the identity LUT |
| cmsStageFree(ObtainedCurves); |
| ObtainedCurves = NULL; |
| |
| if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels))) |
| goto Error; |
| |
| *dwFlags |= cmsFLAGS_NOCACHE; |
| _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL); |
| } |
| |
| // We are done. |
| cmsPipelineFree(Src); |
| *Lut = Dest; |
| return TRUE; |
| |
| Error: |
| |
| if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves); |
| if (GammaTables != NULL) { |
| for (i=0; i < Src ->InputChannels; i++) { |
| if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]); |
| } |
| |
| _cmsFree(Src ->ContextID, GammaTables); |
| } |
| |
| if (Dest != NULL) cmsPipelineFree(Dest); |
| return FALSE; |
| |
| cmsUNUSED_PARAMETER(Intent); |
| cmsUNUSED_PARAMETER(InputFormat); |
| cmsUNUSED_PARAMETER(OutputFormat); |
| cmsUNUSED_PARAMETER(dwFlags); |
| } |
| |
| // ------------------------------------------------------------------------------------------------------------------------------------- |
| // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles |
| |
| |
| static |
| void FreeMatShaper(cmsContext ContextID, void* Data) |
| { |
| if (Data != NULL) _cmsFree(ContextID, Data); |
| } |
| |
| static |
| void* DupMatShaper(cmsContext ContextID, const void* Data) |
| { |
| return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data)); |
| } |
| |
| |
| // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point |
| // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits, |
| // in total about 50K, and the performance boost is huge! |
| static |
| void MatShaperEval16(register const cmsUInt16Number In[], |
| register cmsUInt16Number Out[], |
| register const void* D) |
| { |
| MatShaper8Data* p = (MatShaper8Data*) D; |
| cmsS1Fixed14Number r, g, b; |
| cmsInt64Number l1, l2, l3; |
| cmsUInt32Number ri, gi, bi; |
| |
| // In this case (and only in this case!) we can use this simplification since |
| // In[] is assured to come from a 8 bit number. (a << 8 | a) |
| ri = In[0] & 0xFFU; |
| gi = In[1] & 0xFFU; |
| bi = In[2] & 0xFFU; |
| |
| // Across first shaper, which also converts to 1.14 fixed point |
| r = _FixedClamp(p->Shaper1R[ri]); |
| g = _FixedClamp(p->Shaper1G[gi]); |
| b = _FixedClamp(p->Shaper1B[bi]); |
| |
| // Evaluate the matrix in 1.14 fixed point |
| l1 = _MatShaperEvaluateRow(p->Mat[0], p->Off[0], r, g, b); |
| l2 = _MatShaperEvaluateRow(p->Mat[1], p->Off[1], r, g, b); |
| l3 = _MatShaperEvaluateRow(p->Mat[2], p->Off[2], r, g, b); |
| |
| // Now we have to clip to 0..1.0 range |
| ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1); |
| gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2); |
| bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3); |
| |
| // And across second shaper, |
| Out[0] = p->Shaper2R[ri]; |
| Out[1] = p->Shaper2G[gi]; |
| Out[2] = p->Shaper2B[bi]; |
| |
| } |
| |
| // This table converts from 8 bits to 1.14 after applying the curve |
| static |
| void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve) |
| { |
| int i; |
| cmsFloat32Number R, y; |
| |
| for (i=0; i < 256; i++) { |
| |
| R = (cmsFloat32Number) (i / 255.0); |
| y = cmsEvalToneCurveFloat(Curve, R); |
| |
| if (y < 131072.0) |
| Table[i] = DOUBLE_TO_1FIXED14(y); |
| else |
| Table[i] = 0x7fffffff; |
| } |
| } |
| |
| // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve |
| static |
| void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput) |
| { |
| int i; |
| cmsFloat32Number R, Val; |
| |
| for (i=0; i < 16385; i++) { |
| |
| R = (cmsFloat32Number) (i / 16384.0); |
| Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0 |
| |
| if (Val < 0) |
| Val = 0; |
| |
| if (Val > 1.0) |
| Val = 1.0; |
| |
| if (Is8BitsOutput) { |
| |
| // If 8 bits output, we can optimize further by computing the / 257 part. |
| // first we compute the resulting byte and then we store the byte times |
| // 257. This quantization allows to round very quick by doing a >> 8, but |
| // since the low byte is always equal to msb, we can do a & 0xff and this works! |
| cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0); |
| cmsUInt8Number b = FROM_16_TO_8(w); |
| |
| Table[i] = FROM_8_TO_16(b); |
| } |
| else Table[i] = _cmsQuickSaturateWord(Val * 65535.0); |
| } |
| } |
| |
| // Compute the matrix-shaper structure |
| static |
| cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat) |
| { |
| MatShaper8Data* p; |
| int i, j; |
| cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat); |
| |
| // Allocate a big chuck of memory to store precomputed tables |
| p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data)); |
| if (p == NULL) return FALSE; |
| |
| p -> ContextID = Dest -> ContextID; |
| |
| // Precompute tables |
| FillFirstShaper(p ->Shaper1R, Curve1[0]); |
| FillFirstShaper(p ->Shaper1G, Curve1[1]); |
| FillFirstShaper(p ->Shaper1B, Curve1[2]); |
| |
| FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits); |
| FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits); |
| FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits); |
| |
| // Convert matrix to nFixed14. Note that those values may take more than 16 bits |
| for (i=0; i < 3; i++) { |
| for (j=0; j < 3; j++) { |
| p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]); |
| } |
| } |
| |
| for (i=0; i < 3; i++) { |
| |
| if (Off == NULL) { |
| p ->Off[i] = 0; |
| } |
| else { |
| p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]); |
| } |
| } |
| |
| // Mark as optimized for faster formatter |
| if (Is8Bits) |
| *OutputFormat |= OPTIMIZED_SH(1); |
| |
| // Fill function pointers |
| _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper); |
| return TRUE; |
| } |
| |
| // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast! |
| static |
| cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
| { |
| cmsStage* Curve1, *Curve2; |
| cmsStage* Matrix1, *Matrix2; |
| cmsMAT3 res; |
| cmsBool IdentityMat; |
| cmsPipeline* Dest, *Src; |
| cmsFloat64Number* Offset; |
| |
| // Only works on RGB to RGB |
| if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE; |
| |
| // Only works on 8 bit input |
| if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE; |
| |
| // Seems suitable, proceed |
| Src = *Lut; |
| |
| // Check for: |
| // |
| // shaper-matrix-matrix-shaper |
| // shaper-matrix-shaper |
| // |
| // Both of those constructs are possible (first because abs. colorimetric). |
| // additionally, In the first case, the input matrix offset should be zero. |
| |
| IdentityMat = FALSE; |
| if (cmsPipelineCheckAndRetreiveStages(Src, 4, |
| cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, |
| &Curve1, &Matrix1, &Matrix2, &Curve2)) { |
| |
| // Get both matrices |
| _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1); |
| _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2); |
| |
| // Input offset should be zero |
| if (Data1->Offset != NULL) return FALSE; |
| |
| // Multiply both matrices to get the result |
| _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double); |
| |
| // Only 2nd matrix has offset, or it is zero |
| Offset = Data2->Offset; |
| |
| // Now the result is in res + Data2 -> Offset. Maybe is a plain identity? |
| if (_cmsMAT3isIdentity(&res) && Offset == NULL) { |
| |
| // We can get rid of full matrix |
| IdentityMat = TRUE; |
| } |
| |
| } |
| else { |
| |
| if (cmsPipelineCheckAndRetreiveStages(Src, 3, |
| cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, |
| &Curve1, &Matrix1, &Curve2)) { |
| |
| _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1); |
| |
| // Copy the matrix to our result |
| memcpy(&res, Data->Double, sizeof(res)); |
| |
| // Preserve the Odffset (may be NULL as a zero offset) |
| Offset = Data->Offset; |
| |
| if (_cmsMAT3isIdentity(&res) && Offset == NULL) { |
| |
| // We can get rid of full matrix |
| IdentityMat = TRUE; |
| } |
| } |
| else |
| return FALSE; // Not optimizeable this time |
| |
| } |
| |
| // Allocate an empty LUT |
| Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
| if (!Dest) return FALSE; |
| |
| // Assamble the new LUT |
| if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1))) |
| goto Error; |
| |
| if (!IdentityMat) { |
| |
| if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset))) |
| goto Error; |
| } |
| |
| if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2))) |
| goto Error; |
| |
| // If identity on matrix, we can further optimize the curves, so call the join curves routine |
| if (IdentityMat) { |
| |
| OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags); |
| } |
| else { |
| _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1); |
| _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2); |
| |
| // In this particular optimization, cache does not help as it takes more time to deal with |
| // the cache that with the pixel handling |
| *dwFlags |= cmsFLAGS_NOCACHE; |
| |
| // Setup the optimizarion routines |
| SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat); |
| } |
| |
| cmsPipelineFree(Src); |
| *Lut = Dest; |
| return TRUE; |
| Error: |
| // Leave Src unchanged |
| cmsPipelineFree(Dest); |
| return FALSE; |
| } |
| |
| |
| // ------------------------------------------------------------------------------------------------------------------------------------- |
| // Optimization plug-ins |
| |
| // List of optimizations |
| typedef struct _cmsOptimizationCollection_st { |
| |
| _cmsOPToptimizeFn OptimizePtr; |
| |
| struct _cmsOptimizationCollection_st *Next; |
| |
| } _cmsOptimizationCollection; |
| |
| |
| // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling |
| static _cmsOptimizationCollection DefaultOptimization[] = { |
| |
| { OptimizeByJoiningCurves, &DefaultOptimization[1] }, |
| { OptimizeMatrixShaper, &DefaultOptimization[2] }, |
| { OptimizeByComputingLinearization, &DefaultOptimization[3] }, |
| { OptimizeByResampling, NULL } |
| }; |
| |
| // The linked list head |
| _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL }; |
| |
| |
| // Duplicates the zone of memory used by the plug-in in the new context |
| static |
| void DupPluginOptimizationList(struct _cmsContext_struct* ctx, |
| const struct _cmsContext_struct* src) |
| { |
| _cmsOptimizationPluginChunkType newHead = { NULL }; |
| _cmsOptimizationCollection* entry; |
| _cmsOptimizationCollection* Anterior = NULL; |
| _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin]; |
| |
| _cmsAssert(ctx != NULL); |
| _cmsAssert(head != NULL); |
| |
| // Walk the list copying all nodes |
| for (entry = head->OptimizationCollection; |
| entry != NULL; |
| entry = entry ->Next) { |
| |
| _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection)); |
| |
| if (newEntry == NULL) |
| return; |
| |
| // We want to keep the linked list order, so this is a little bit tricky |
| newEntry -> Next = NULL; |
| if (Anterior) |
| Anterior -> Next = newEntry; |
| |
| Anterior = newEntry; |
| |
| if (newHead.OptimizationCollection == NULL) |
| newHead.OptimizationCollection = newEntry; |
| } |
| |
| ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType)); |
| } |
| |
| void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx, |
| const struct _cmsContext_struct* src) |
| { |
| if (src != NULL) { |
| |
| // Copy all linked list |
| DupPluginOptimizationList(ctx, src); |
| } |
| else { |
| static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL }; |
| ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType)); |
| } |
| } |
| |
| |
| // Register new ways to optimize |
| cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data) |
| { |
| cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data; |
| _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); |
| _cmsOptimizationCollection* fl; |
| |
| if (Data == NULL) { |
| |
| ctx->OptimizationCollection = NULL; |
| return TRUE; |
| } |
| |
| // Optimizer callback is required |
| if (Plugin ->OptimizePtr == NULL) return FALSE; |
| |
| fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection)); |
| if (fl == NULL) return FALSE; |
| |
| // Copy the parameters |
| fl ->OptimizePtr = Plugin ->OptimizePtr; |
| |
| // Keep linked list |
| fl ->Next = ctx->OptimizationCollection; |
| |
| // Set the head |
| ctx ->OptimizationCollection = fl; |
| |
| // All is ok |
| return TRUE; |
| } |
| |
| // The entry point for LUT optimization |
| cmsBool _cmsOptimizePipeline(cmsContext ContextID, |
| cmsPipeline** PtrLut, |
| cmsUInt32Number Intent, |
| cmsUInt32Number* InputFormat, |
| cmsUInt32Number* OutputFormat, |
| cmsUInt32Number* dwFlags) |
| { |
| _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); |
| _cmsOptimizationCollection* Opts; |
| cmsBool AnySuccess = FALSE; |
| |
| // A CLUT is being asked, so force this specific optimization |
| if (*dwFlags & cmsFLAGS_FORCE_CLUT) { |
| |
| PreOptimize(*PtrLut); |
| return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags); |
| } |
| |
| // Anything to optimize? |
| if ((*PtrLut) ->Elements == NULL) { |
| _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); |
| return TRUE; |
| } |
| |
| // Try to get rid of identities and trivial conversions. |
| AnySuccess = PreOptimize(*PtrLut); |
| |
| // After removal do we end with an identity? |
| if ((*PtrLut) ->Elements == NULL) { |
| _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); |
| return TRUE; |
| } |
| |
| // Do not optimize, keep all precision |
| if (*dwFlags & cmsFLAGS_NOOPTIMIZE) |
| return FALSE; |
| |
| // Try plug-in optimizations |
| for (Opts = ctx->OptimizationCollection; |
| Opts != NULL; |
| Opts = Opts ->Next) { |
| |
| // If one schema succeeded, we are done |
| if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { |
| |
| return TRUE; // Optimized! |
| } |
| } |
| |
| // Try built-in optimizations |
| for (Opts = DefaultOptimization; |
| Opts != NULL; |
| Opts = Opts ->Next) { |
| |
| if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { |
| |
| return TRUE; |
| } |
| } |
| |
| // Only simple optimizations succeeded |
| return AnySuccess; |
| } |
| |
| |
| |