| // Copyright 2019 PDFium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com |
| |
| #include "core/fpdfapi/render/cpdf_rendershading.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "core/fpdfapi/page/cpdf_colorspace.h" |
| #include "core/fpdfapi/page/cpdf_dib.h" |
| #include "core/fpdfapi/page/cpdf_function.h" |
| #include "core/fpdfapi/page/cpdf_meshstream.h" |
| #include "core/fpdfapi/parser/cpdf_array.h" |
| #include "core/fpdfapi/parser/cpdf_dictionary.h" |
| #include "core/fpdfapi/parser/cpdf_stream.h" |
| #include "core/fpdfapi/parser/fpdf_parser_utility.h" |
| #include "core/fpdfapi/render/cpdf_devicebuffer.h" |
| #include "core/fpdfapi/render/cpdf_renderoptions.h" |
| #include "core/fxcrt/fx_safe_types.h" |
| #include "core/fxcrt/fx_system.h" |
| #include "core/fxge/cfx_defaultrenderdevice.h" |
| #include "core/fxge/cfx_fillrenderoptions.h" |
| #include "core/fxge/cfx_pathdata.h" |
| #include "core/fxge/dib/cfx_dibitmap.h" |
| #include "core/fxge/fx_dib.h" |
| #include "third_party/base/span.h" |
| |
| namespace { |
| |
| constexpr int kShadingSteps = 256; |
| |
| uint32_t CountOutputsFromFunctions( |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs) { |
| FX_SAFE_UINT32 total = 0; |
| for (const auto& func : funcs) { |
| if (func) |
| total += func->CountOutputs(); |
| } |
| return total.ValueOrDefault(0); |
| } |
| |
| uint32_t GetValidatedOutputsCount( |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS) { |
| uint32_t funcs_outputs = CountOutputsFromFunctions(funcs); |
| return funcs_outputs ? std::max(funcs_outputs, pCS->CountComponents()) : 0; |
| } |
| |
| std::array<FX_ARGB, kShadingSteps> GetShadingSteps( |
| float t_min, |
| float t_max, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha, |
| size_t results_count) { |
| ASSERT(results_count >= CountOutputsFromFunctions(funcs)); |
| ASSERT(results_count >= pCS->CountComponents()); |
| std::array<FX_ARGB, kShadingSteps> shading_steps; |
| std::vector<float> result_array(results_count); |
| float diff = t_max - t_min; |
| for (int i = 0; i < kShadingSteps; ++i) { |
| float input = diff * i / kShadingSteps + t_min; |
| int offset = 0; |
| for (const auto& func : funcs) { |
| if (func) { |
| int nresults = 0; |
| if (func->Call(&input, 1, &result_array[offset], &nresults)) |
| offset += nresults; |
| } |
| } |
| float R = 0.0f; |
| float G = 0.0f; |
| float B = 0.0f; |
| pCS->GetRGB(result_array, &R, &G, &B); |
| shading_steps[i] = |
| FXARGB_TODIB(ArgbEncode(alpha, FXSYS_roundf(R * 255), |
| FXSYS_roundf(G * 255), FXSYS_roundf(B * 255))); |
| } |
| return shading_steps; |
| } |
| |
| void DrawAxialShading(const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Dictionary* pDict, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha) { |
| ASSERT(pBitmap->GetFormat() == FXDIB_Argb); |
| |
| const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS); |
| if (total_results == 0) |
| return; |
| |
| const CPDF_Array* pCoords = pDict->GetArrayFor("Coords"); |
| if (!pCoords) |
| return; |
| |
| float start_x = pCoords->GetNumberAt(0); |
| float start_y = pCoords->GetNumberAt(1); |
| float end_x = pCoords->GetNumberAt(2); |
| float end_y = pCoords->GetNumberAt(3); |
| float t_min = 0; |
| float t_max = 1.0f; |
| const CPDF_Array* pArray = pDict->GetArrayFor("Domain"); |
| if (pArray) { |
| t_min = pArray->GetNumberAt(0); |
| t_max = pArray->GetNumberAt(1); |
| } |
| pArray = pDict->GetArrayFor("Extend"); |
| const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false); |
| const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false); |
| |
| int width = pBitmap->GetWidth(); |
| int height = pBitmap->GetHeight(); |
| float x_span = end_x - start_x; |
| float y_span = end_y - start_y; |
| float axis_len_square = (x_span * x_span) + (y_span * y_span); |
| |
| std::array<FX_ARGB, kShadingSteps> shading_steps = |
| GetShadingSteps(t_min, t_max, funcs, pCS, alpha, total_results); |
| |
| int pitch = pBitmap->GetPitch(); |
| CFX_Matrix matrix = mtObject2Bitmap.GetInverse(); |
| for (int row = 0; row < height; row++) { |
| uint32_t* dib_buf = |
| reinterpret_cast<uint32_t*>(pBitmap->GetBuffer() + row * pitch); |
| for (int column = 0; column < width; column++) { |
| CFX_PointF pos = matrix.Transform( |
| CFX_PointF(static_cast<float>(column), static_cast<float>(row))); |
| float scale = |
| (((pos.x - start_x) * x_span) + ((pos.y - start_y) * y_span)) / |
| axis_len_square; |
| int index = (int32_t)(scale * (kShadingSteps - 1)); |
| if (index < 0) { |
| if (!bStartExtend) |
| continue; |
| |
| index = 0; |
| } else if (index >= kShadingSteps) { |
| if (!bEndExtend) |
| continue; |
| |
| index = kShadingSteps - 1; |
| } |
| dib_buf[column] = shading_steps[index]; |
| } |
| } |
| } |
| |
| void DrawRadialShading(const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Dictionary* pDict, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha) { |
| ASSERT(pBitmap->GetFormat() == FXDIB_Argb); |
| |
| const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS); |
| if (total_results == 0) |
| return; |
| |
| const CPDF_Array* pCoords = pDict->GetArrayFor("Coords"); |
| if (!pCoords) |
| return; |
| |
| float start_x = pCoords->GetNumberAt(0); |
| float start_y = pCoords->GetNumberAt(1); |
| float start_r = pCoords->GetNumberAt(2); |
| float end_x = pCoords->GetNumberAt(3); |
| float end_y = pCoords->GetNumberAt(4); |
| float end_r = pCoords->GetNumberAt(5); |
| float t_min = 0; |
| float t_max = 1.0f; |
| const CPDF_Array* pArray = pDict->GetArrayFor("Domain"); |
| if (pArray) { |
| t_min = pArray->GetNumberAt(0); |
| t_max = pArray->GetNumberAt(1); |
| } |
| pArray = pDict->GetArrayFor("Extend"); |
| const bool bStartExtend = pArray && pArray->GetBooleanAt(0, false); |
| const bool bEndExtend = pArray && pArray->GetBooleanAt(1, false); |
| |
| std::array<FX_ARGB, kShadingSteps> shading_steps = |
| GetShadingSteps(t_min, t_max, funcs, pCS, alpha, total_results); |
| |
| const float dx = end_x - start_x; |
| const float dy = end_y - start_y; |
| const float dr = end_r - start_r; |
| const float a = dx * dx + dy * dy - dr * dr; |
| const bool a_is_float_zero = IsFloatZero(a); |
| |
| int width = pBitmap->GetWidth(); |
| int height = pBitmap->GetHeight(); |
| int pitch = pBitmap->GetPitch(); |
| |
| bool bDecreasing = |
| (dr < 0 && static_cast<int>(sqrt(dx * dx + dy * dy)) < -dr); |
| |
| CFX_Matrix matrix = mtObject2Bitmap.GetInverse(); |
| for (int row = 0; row < height; row++) { |
| uint32_t* dib_buf = |
| reinterpret_cast<uint32_t*>(pBitmap->GetBuffer() + row * pitch); |
| for (int column = 0; column < width; column++) { |
| CFX_PointF pos = matrix.Transform( |
| CFX_PointF(static_cast<float>(column), static_cast<float>(row))); |
| float pos_dx = pos.x - start_x; |
| float pos_dy = pos.y - start_y; |
| float b = -2 * (pos_dx * dx + pos_dy * dy + start_r * dr); |
| float c = pos_dx * pos_dx + pos_dy * pos_dy - start_r * start_r; |
| float s; |
| if (IsFloatZero(b)) { |
| s = sqrt(-c / a); |
| } else if (a_is_float_zero) { |
| s = -c / b; |
| } else { |
| float b2_4ac = (b * b) - 4 * (a * c); |
| if (b2_4ac < 0) |
| continue; |
| |
| float root = sqrt(b2_4ac); |
| float s1 = (-b - root) / (2 * a); |
| float s2 = (-b + root) / (2 * a); |
| if (a <= 0) |
| std::swap(s1, s2); |
| if (bDecreasing) |
| s = (s1 >= 0 || bStartExtend) ? s1 : s2; |
| else |
| s = (s2 <= 1.0f || bEndExtend) ? s2 : s1; |
| |
| if (start_r + s * dr < 0) |
| continue; |
| } |
| |
| int index = static_cast<int32_t>(s * (kShadingSteps - 1)); |
| if (index < 0) { |
| if (!bStartExtend) |
| continue; |
| index = 0; |
| } else if (index >= kShadingSteps) { |
| if (!bEndExtend) |
| continue; |
| index = kShadingSteps - 1; |
| } |
| dib_buf[column] = shading_steps[index]; |
| } |
| } |
| } |
| |
| void DrawFuncShading(const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Dictionary* pDict, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha) { |
| ASSERT(pBitmap->GetFormat() == FXDIB_Argb); |
| |
| const uint32_t total_results = GetValidatedOutputsCount(funcs, pCS); |
| if (total_results == 0) |
| return; |
| |
| const CPDF_Array* pDomain = pDict->GetArrayFor("Domain"); |
| float xmin = 0.0f; |
| float ymin = 0.0f; |
| float xmax = 1.0f; |
| float ymax = 1.0f; |
| if (pDomain) { |
| xmin = pDomain->GetNumberAt(0); |
| xmax = pDomain->GetNumberAt(1); |
| ymin = pDomain->GetNumberAt(2); |
| ymax = pDomain->GetNumberAt(3); |
| } |
| CFX_Matrix mtDomain2Target = pDict->GetMatrixFor("Matrix"); |
| CFX_Matrix matrix = |
| mtObject2Bitmap.GetInverse() * mtDomain2Target.GetInverse(); |
| int width = pBitmap->GetWidth(); |
| int height = pBitmap->GetHeight(); |
| int pitch = pBitmap->GetPitch(); |
| |
| ASSERT(total_results >= CountOutputsFromFunctions(funcs)); |
| ASSERT(total_results >= pCS->CountComponents()); |
| std::vector<float> result_array(total_results); |
| for (int row = 0; row < height; ++row) { |
| uint32_t* dib_buf = (uint32_t*)(pBitmap->GetBuffer() + row * pitch); |
| for (int column = 0; column < width; column++) { |
| CFX_PointF pos = matrix.Transform( |
| CFX_PointF(static_cast<float>(column), static_cast<float>(row))); |
| if (pos.x < xmin || pos.x > xmax || pos.y < ymin || pos.y > ymax) |
| continue; |
| |
| float input[] = {pos.x, pos.y}; |
| int offset = 0; |
| for (const auto& func : funcs) { |
| if (func) { |
| int nresults; |
| if (func->Call(input, 2, &result_array[offset], &nresults)) |
| offset += nresults; |
| } |
| } |
| |
| float R = 0.0f; |
| float G = 0.0f; |
| float B = 0.0f; |
| pCS->GetRGB(result_array, &R, &G, &B); |
| dib_buf[column] = FXARGB_TODIB(ArgbEncode( |
| alpha, (int32_t)(R * 255), (int32_t)(G * 255), (int32_t)(B * 255))); |
| } |
| } |
| } |
| |
| bool GetScanlineIntersect(int y, |
| const CFX_PointF& first, |
| const CFX_PointF& second, |
| float* x) { |
| if (first.y == second.y) |
| return false; |
| |
| if (first.y < second.y) { |
| if (y < first.y || y > second.y) |
| return false; |
| } else if (y < second.y || y > first.y) { |
| return false; |
| } |
| *x = first.x + ((second.x - first.x) * (y - first.y) / (second.y - first.y)); |
| return true; |
| } |
| |
| void DrawGouraud(const RetainPtr<CFX_DIBitmap>& pBitmap, |
| int alpha, |
| CPDF_MeshVertex triangle[3]) { |
| float min_y = triangle[0].position.y; |
| float max_y = triangle[0].position.y; |
| for (int i = 1; i < 3; i++) { |
| min_y = std::min(min_y, triangle[i].position.y); |
| max_y = std::max(max_y, triangle[i].position.y); |
| } |
| if (min_y == max_y) |
| return; |
| |
| int min_yi = std::max(static_cast<int>(floorf(min_y)), 0); |
| int max_yi = static_cast<int>(ceilf(max_y)); |
| if (max_yi >= pBitmap->GetHeight()) |
| max_yi = pBitmap->GetHeight() - 1; |
| |
| for (int y = min_yi; y <= max_yi; y++) { |
| int nIntersects = 0; |
| float inter_x[3]; |
| float r[3]; |
| float g[3]; |
| float b[3]; |
| for (int i = 0; i < 3; i++) { |
| CPDF_MeshVertex& vertex1 = triangle[i]; |
| CPDF_MeshVertex& vertex2 = triangle[(i + 1) % 3]; |
| CFX_PointF& position1 = vertex1.position; |
| CFX_PointF& position2 = vertex2.position; |
| bool bIntersect = |
| GetScanlineIntersect(y, position1, position2, &inter_x[nIntersects]); |
| if (!bIntersect) |
| continue; |
| |
| float y_dist = (y - position1.y) / (position2.y - position1.y); |
| r[nIntersects] = vertex1.r + ((vertex2.r - vertex1.r) * y_dist); |
| g[nIntersects] = vertex1.g + ((vertex2.g - vertex1.g) * y_dist); |
| b[nIntersects] = vertex1.b + ((vertex2.b - vertex1.b) * y_dist); |
| nIntersects++; |
| } |
| if (nIntersects != 2) |
| continue; |
| |
| int min_x; |
| int max_x; |
| int start_index; |
| int end_index; |
| if (inter_x[0] < inter_x[1]) { |
| min_x = static_cast<int>(floorf(inter_x[0])); |
| max_x = static_cast<int>(ceilf(inter_x[1])); |
| start_index = 0; |
| end_index = 1; |
| } else { |
| min_x = static_cast<int>(floorf(inter_x[1])); |
| max_x = static_cast<int>(ceilf(inter_x[0])); |
| start_index = 1; |
| end_index = 0; |
| } |
| |
| int start_x = std::max(min_x, 0); |
| int end_x = std::min(max_x, pBitmap->GetWidth()); |
| |
| uint8_t* dib_buf = |
| pBitmap->GetBuffer() + y * pBitmap->GetPitch() + start_x * 4; |
| float r_unit = (r[end_index] - r[start_index]) / (max_x - min_x); |
| float g_unit = (g[end_index] - g[start_index]) / (max_x - min_x); |
| float b_unit = (b[end_index] - b[start_index]) / (max_x - min_x); |
| float r_result = r[start_index] + (start_x - min_x) * r_unit; |
| float g_result = g[start_index] + (start_x - min_x) * g_unit; |
| float b_result = b[start_index] + (start_x - min_x) * b_unit; |
| for (int x = start_x; x < end_x; x++) { |
| r_result += r_unit; |
| g_result += g_unit; |
| b_result += b_unit; |
| FXARGB_SETDIB(dib_buf, ArgbEncode(alpha, static_cast<int>(r_result * 255), |
| static_cast<int>(g_result * 255), |
| static_cast<int>(b_result * 255))); |
| dib_buf += 4; |
| } |
| } |
| } |
| |
| void DrawFreeGouraudShading( |
| const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Stream* pShadingStream, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha) { |
| ASSERT(pBitmap->GetFormat() == FXDIB_Argb); |
| |
| CPDF_MeshStream stream(kFreeFormGouraudTriangleMeshShading, funcs, |
| pShadingStream, pCS); |
| if (!stream.Load()) |
| return; |
| |
| CPDF_MeshVertex triangle[3]; |
| while (!stream.BitStream()->IsEOF()) { |
| CPDF_MeshVertex vertex; |
| uint32_t flag; |
| if (!stream.ReadVertex(mtObject2Bitmap, &vertex, &flag)) |
| return; |
| |
| if (flag == 0) { |
| triangle[0] = vertex; |
| for (int i = 1; i < 3; ++i) { |
| uint32_t dummy_flag; |
| if (!stream.ReadVertex(mtObject2Bitmap, &triangle[i], &dummy_flag)) |
| return; |
| } |
| } else { |
| if (flag == 1) |
| triangle[0] = triangle[1]; |
| |
| triangle[1] = triangle[2]; |
| triangle[2] = vertex; |
| } |
| DrawGouraud(pBitmap, alpha, triangle); |
| } |
| } |
| |
| void DrawLatticeGouraudShading( |
| const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Stream* pShadingStream, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| int alpha) { |
| ASSERT(pBitmap->GetFormat() == FXDIB_Argb); |
| |
| int row_verts = pShadingStream->GetDict()->GetIntegerFor("VerticesPerRow"); |
| if (row_verts < 2) |
| return; |
| |
| CPDF_MeshStream stream(kLatticeFormGouraudTriangleMeshShading, funcs, |
| pShadingStream, pCS); |
| if (!stream.Load()) |
| return; |
| |
| std::vector<CPDF_MeshVertex> vertices[2]; |
| vertices[0] = stream.ReadVertexRow(mtObject2Bitmap, row_verts); |
| if (vertices[0].empty()) |
| return; |
| |
| int last_index = 0; |
| while (1) { |
| vertices[1 - last_index] = stream.ReadVertexRow(mtObject2Bitmap, row_verts); |
| if (vertices[1 - last_index].empty()) |
| return; |
| |
| CPDF_MeshVertex triangle[3]; |
| for (int i = 1; i < row_verts; ++i) { |
| triangle[0] = vertices[last_index][i]; |
| triangle[1] = vertices[1 - last_index][i - 1]; |
| triangle[2] = vertices[last_index][i - 1]; |
| DrawGouraud(pBitmap, alpha, triangle); |
| triangle[2] = vertices[1 - last_index][i]; |
| DrawGouraud(pBitmap, alpha, triangle); |
| } |
| last_index = 1 - last_index; |
| } |
| } |
| |
| struct Coon_BezierCoeff { |
| float a, b, c, d; |
| void FromPoints(float p0, float p1, float p2, float p3) { |
| a = -p0 + 3 * p1 - 3 * p2 + p3; |
| b = 3 * p0 - 6 * p1 + 3 * p2; |
| c = -3 * p0 + 3 * p1; |
| d = p0; |
| } |
| Coon_BezierCoeff first_half() { |
| Coon_BezierCoeff result; |
| result.a = a / 8; |
| result.b = b / 4; |
| result.c = c / 2; |
| result.d = d; |
| return result; |
| } |
| Coon_BezierCoeff second_half() { |
| Coon_BezierCoeff result; |
| result.a = a / 8; |
| result.b = 3 * a / 8 + b / 4; |
| result.c = 3 * a / 8 + b / 2 + c / 2; |
| result.d = a / 8 + b / 4 + c / 2 + d; |
| return result; |
| } |
| void GetPoints(float p[4]) { |
| p[0] = d; |
| p[1] = c / 3 + p[0]; |
| p[2] = b / 3 - p[0] + 2 * p[1]; |
| p[3] = a + p[0] - 3 * p[1] + 3 * p[2]; |
| } |
| void BezierInterpol(Coon_BezierCoeff& C1, |
| Coon_BezierCoeff& C2, |
| Coon_BezierCoeff& D1, |
| Coon_BezierCoeff& D2) { |
| a = (D1.a + D2.a) / 2; |
| b = (D1.b + D2.b) / 2; |
| c = (D1.c + D2.c) / 2 - (C1.a / 8 + C1.b / 4 + C1.c / 2) + |
| (C2.a / 8 + C2.b / 4) + (-C1.d + D2.d) / 2 - (C2.a + C2.b) / 2; |
| d = C1.a / 8 + C1.b / 4 + C1.c / 2 + C1.d; |
| } |
| float Distance() { |
| float dis = a + b + c; |
| return dis < 0 ? -dis : dis; |
| } |
| }; |
| |
| struct Coon_Bezier { |
| Coon_BezierCoeff x, y; |
| void FromPoints(float x0, |
| float y0, |
| float x1, |
| float y1, |
| float x2, |
| float y2, |
| float x3, |
| float y3) { |
| x.FromPoints(x0, x1, x2, x3); |
| y.FromPoints(y0, y1, y2, y3); |
| } |
| |
| Coon_Bezier first_half() { |
| Coon_Bezier result; |
| result.x = x.first_half(); |
| result.y = y.first_half(); |
| return result; |
| } |
| |
| Coon_Bezier second_half() { |
| Coon_Bezier result; |
| result.x = x.second_half(); |
| result.y = y.second_half(); |
| return result; |
| } |
| |
| void BezierInterpol(Coon_Bezier& C1, |
| Coon_Bezier& C2, |
| Coon_Bezier& D1, |
| Coon_Bezier& D2) { |
| x.BezierInterpol(C1.x, C2.x, D1.x, D2.x); |
| y.BezierInterpol(C1.y, C2.y, D1.y, D2.y); |
| } |
| |
| void GetPoints(pdfium::span<FX_PATHPOINT> path_points) { |
| constexpr size_t kPointsCount = 4; |
| float points_x[kPointsCount]; |
| float points_y[kPointsCount]; |
| x.GetPoints(points_x); |
| y.GetPoints(points_y); |
| for (size_t i = 0; i < kPointsCount; ++i) |
| path_points[i].m_Point = {points_x[i], points_y[i]}; |
| } |
| |
| void GetPointsReverse(pdfium::span<FX_PATHPOINT> path_points) { |
| constexpr size_t kPointsCount = 4; |
| float points_x[kPointsCount]; |
| float points_y[kPointsCount]; |
| x.GetPoints(points_x); |
| y.GetPoints(points_y); |
| for (size_t i = 0; i < kPointsCount; ++i) { |
| size_t reverse_index = kPointsCount - i - 1; |
| path_points[i].m_Point = {points_x[reverse_index], |
| points_y[reverse_index]}; |
| } |
| } |
| |
| float Distance() { return x.Distance() + y.Distance(); } |
| }; |
| |
| int Interpolate(int p1, int p2, int delta1, int delta2, bool* overflow) { |
| FX_SAFE_INT32 p = p2; |
| p -= p1; |
| p *= delta1; |
| p /= delta2; |
| p += p1; |
| if (!p.IsValid()) |
| *overflow = true; |
| return p.ValueOrDefault(0); |
| } |
| |
| int BiInterpolImpl(int c0, |
| int c1, |
| int c2, |
| int c3, |
| int x, |
| int y, |
| int x_scale, |
| int y_scale, |
| bool* overflow) { |
| int x1 = Interpolate(c0, c3, x, x_scale, overflow); |
| int x2 = Interpolate(c1, c2, x, x_scale, overflow); |
| return Interpolate(x1, x2, y, y_scale, overflow); |
| } |
| |
| struct Coon_Color { |
| Coon_Color() { memset(comp, 0, sizeof(int) * 3); } |
| |
| // Returns true if successful, false if overflow detected. |
| bool BiInterpol(Coon_Color colors[4], |
| int x, |
| int y, |
| int x_scale, |
| int y_scale) { |
| bool overflow = false; |
| for (int i = 0; i < 3; i++) { |
| comp[i] = BiInterpolImpl(colors[0].comp[i], colors[1].comp[i], |
| colors[2].comp[i], colors[3].comp[i], x, y, |
| x_scale, y_scale, &overflow); |
| } |
| return !overflow; |
| } |
| |
| int Distance(Coon_Color& o) { |
| return std::max({abs(comp[0] - o.comp[0]), abs(comp[1] - o.comp[1]), |
| abs(comp[2] - o.comp[2])}); |
| } |
| |
| int comp[3]; |
| }; |
| |
| #define COONCOLOR_THRESHOLD 4 |
| struct CPDF_PatchDrawer { |
| void Draw(int x_scale, |
| int y_scale, |
| int left, |
| int bottom, |
| Coon_Bezier C1, |
| Coon_Bezier C2, |
| Coon_Bezier D1, |
| Coon_Bezier D2) { |
| bool bSmall = C1.Distance() < 2 && C2.Distance() < 2 && D1.Distance() < 2 && |
| D2.Distance() < 2; |
| Coon_Color div_colors[4]; |
| int d_bottom = 0; |
| int d_left = 0; |
| int d_top = 0; |
| int d_right = 0; |
| if (!div_colors[0].BiInterpol(patch_colors, left, bottom, x_scale, |
| y_scale)) { |
| return; |
| } |
| if (!bSmall) { |
| if (!div_colors[1].BiInterpol(patch_colors, left, bottom + 1, x_scale, |
| y_scale)) { |
| return; |
| } |
| if (!div_colors[2].BiInterpol(patch_colors, left + 1, bottom + 1, x_scale, |
| y_scale)) { |
| return; |
| } |
| if (!div_colors[3].BiInterpol(patch_colors, left + 1, bottom, x_scale, |
| y_scale)) { |
| return; |
| } |
| d_bottom = div_colors[3].Distance(div_colors[0]); |
| d_left = div_colors[1].Distance(div_colors[0]); |
| d_top = div_colors[1].Distance(div_colors[2]); |
| d_right = div_colors[2].Distance(div_colors[3]); |
| } |
| |
| if (bSmall || |
| (d_bottom < COONCOLOR_THRESHOLD && d_left < COONCOLOR_THRESHOLD && |
| d_top < COONCOLOR_THRESHOLD && d_right < COONCOLOR_THRESHOLD)) { |
| pdfium::span<FX_PATHPOINT> points = path.GetPoints(); |
| C1.GetPoints(points.subspan(0, 4)); |
| D2.GetPoints(points.subspan(3, 4)); |
| C2.GetPointsReverse(points.subspan(6, 4)); |
| D1.GetPointsReverse(points.subspan(9, 4)); |
| CFX_FillRenderOptions fill_options( |
| CFX_FillRenderOptions::WindingOptions()); |
| fill_options.full_cover = true; |
| if (bNoPathSmooth) |
| fill_options.aliased_path = true; |
| pDevice->DrawPath( |
| &path, nullptr, nullptr, |
| ArgbEncode(alpha, div_colors[0].comp[0], div_colors[0].comp[1], |
| div_colors[0].comp[2]), |
| 0, fill_options); |
| } else { |
| if (d_bottom < COONCOLOR_THRESHOLD && d_top < COONCOLOR_THRESHOLD) { |
| Coon_Bezier m1; |
| m1.BezierInterpol(D1, D2, C1, C2); |
| y_scale *= 2; |
| bottom *= 2; |
| Draw(x_scale, y_scale, left, bottom, C1, m1, D1.first_half(), |
| D2.first_half()); |
| Draw(x_scale, y_scale, left, bottom + 1, m1, C2, D1.second_half(), |
| D2.second_half()); |
| } else if (d_left < COONCOLOR_THRESHOLD && |
| d_right < COONCOLOR_THRESHOLD) { |
| Coon_Bezier m2; |
| m2.BezierInterpol(C1, C2, D1, D2); |
| x_scale *= 2; |
| left *= 2; |
| Draw(x_scale, y_scale, left, bottom, C1.first_half(), C2.first_half(), |
| D1, m2); |
| Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(), |
| C2.second_half(), m2, D2); |
| } else { |
| Coon_Bezier m1, m2; |
| m1.BezierInterpol(D1, D2, C1, C2); |
| m2.BezierInterpol(C1, C2, D1, D2); |
| Coon_Bezier m1f = m1.first_half(); |
| Coon_Bezier m1s = m1.second_half(); |
| Coon_Bezier m2f = m2.first_half(); |
| Coon_Bezier m2s = m2.second_half(); |
| x_scale *= 2; |
| y_scale *= 2; |
| left *= 2; |
| bottom *= 2; |
| Draw(x_scale, y_scale, left, bottom, C1.first_half(), m1f, |
| D1.first_half(), m2f); |
| Draw(x_scale, y_scale, left, bottom + 1, m1f, C2.first_half(), |
| D1.second_half(), m2s); |
| Draw(x_scale, y_scale, left + 1, bottom, C1.second_half(), m1s, m2f, |
| D2.first_half()); |
| Draw(x_scale, y_scale, left + 1, bottom + 1, m1s, C2.second_half(), m2s, |
| D2.second_half()); |
| } |
| } |
| } |
| |
| int max_delta; |
| CFX_PathData path; |
| CFX_RenderDevice* pDevice; |
| int bNoPathSmooth; |
| int alpha; |
| Coon_Color patch_colors[4]; |
| }; |
| |
| void DrawCoonPatchMeshes( |
| ShadingType type, |
| const RetainPtr<CFX_DIBitmap>& pBitmap, |
| const CFX_Matrix& mtObject2Bitmap, |
| const CPDF_Stream* pShadingStream, |
| const std::vector<std::unique_ptr<CPDF_Function>>& funcs, |
| const RetainPtr<CPDF_ColorSpace>& pCS, |
| bool bNoPathSmooth, |
| int alpha) { |
| ASSERT(pBitmap->GetFormat() == FXDIB_Argb); |
| ASSERT(type == kCoonsPatchMeshShading || |
| type == kTensorProductPatchMeshShading); |
| |
| CFX_DefaultRenderDevice device; |
| device.Attach(pBitmap, false, nullptr, false); |
| CPDF_MeshStream stream(type, funcs, pShadingStream, pCS); |
| if (!stream.Load()) |
| return; |
| |
| CPDF_PatchDrawer patch; |
| patch.alpha = alpha; |
| patch.pDevice = &device; |
| patch.bNoPathSmooth = bNoPathSmooth; |
| |
| for (int i = 0; i < 13; i++) { |
| patch.path.AppendPoint(CFX_PointF(), |
| i == 0 ? FXPT_TYPE::MoveTo : FXPT_TYPE::BezierTo); |
| } |
| |
| CFX_PointF coords[16]; |
| int point_count = type == kTensorProductPatchMeshShading ? 16 : 12; |
| while (!stream.BitStream()->IsEOF()) { |
| if (!stream.CanReadFlag()) |
| break; |
| uint32_t flag = stream.ReadFlag(); |
| int iStartPoint = 0, iStartColor = 0, i = 0; |
| if (flag) { |
| iStartPoint = 4; |
| iStartColor = 2; |
| CFX_PointF tempCoords[4]; |
| for (i = 0; i < 4; i++) { |
| tempCoords[i] = coords[(flag * 3 + i) % 12]; |
| } |
| memcpy(coords, tempCoords, sizeof(tempCoords)); |
| Coon_Color tempColors[2]; |
| tempColors[0] = patch.patch_colors[flag]; |
| tempColors[1] = patch.patch_colors[(flag + 1) % 4]; |
| memcpy(patch.patch_colors, tempColors, sizeof(Coon_Color) * 2); |
| } |
| for (i = iStartPoint; i < point_count; i++) { |
| if (!stream.CanReadCoords()) |
| break; |
| coords[i] = mtObject2Bitmap.Transform(stream.ReadCoords()); |
| } |
| |
| for (i = iStartColor; i < 4; i++) { |
| if (!stream.CanReadColor()) |
| break; |
| |
| float r; |
| float g; |
| float b; |
| std::tie(r, g, b) = stream.ReadColor(); |
| |
| patch.patch_colors[i].comp[0] = (int32_t)(r * 255); |
| patch.patch_colors[i].comp[1] = (int32_t)(g * 255); |
| patch.patch_colors[i].comp[2] = (int32_t)(b * 255); |
| } |
| CFX_FloatRect bbox = CFX_FloatRect::GetBBox(coords, point_count); |
| if (bbox.right <= 0 || bbox.left >= (float)pBitmap->GetWidth() || |
| bbox.top <= 0 || bbox.bottom >= (float)pBitmap->GetHeight()) { |
| continue; |
| } |
| Coon_Bezier C1, C2, D1, D2; |
| C1.FromPoints(coords[0].x, coords[0].y, coords[11].x, coords[11].y, |
| coords[10].x, coords[10].y, coords[9].x, coords[9].y); |
| C2.FromPoints(coords[3].x, coords[3].y, coords[4].x, coords[4].y, |
| coords[5].x, coords[5].y, coords[6].x, coords[6].y); |
| D1.FromPoints(coords[0].x, coords[0].y, coords[1].x, coords[1].y, |
| coords[2].x, coords[2].y, coords[3].x, coords[3].y); |
| D2.FromPoints(coords[9].x, coords[9].y, coords[8].x, coords[8].y, |
| coords[7].x, coords[7].y, coords[6].x, coords[6].y); |
| patch.Draw(1, 1, 0, 0, C1, C2, D1, D2); |
| } |
| } |
| |
| } // namespace |
| |
| // static |
| void CPDF_RenderShading::Draw(CFX_RenderDevice* pDevice, |
| CPDF_RenderContext* pContext, |
| const CPDF_PageObject* pCurObj, |
| const CPDF_ShadingPattern* pPattern, |
| const CFX_Matrix& mtMatrix, |
| const FX_RECT& clip_rect, |
| int alpha, |
| const CPDF_RenderOptions& options) { |
| const auto& funcs = pPattern->GetFuncs(); |
| const CPDF_Dictionary* pDict = pPattern->GetShadingObject()->GetDict(); |
| RetainPtr<CPDF_ColorSpace> pColorSpace = pPattern->GetCS(); |
| if (!pColorSpace) |
| return; |
| |
| FX_ARGB background = 0; |
| if (!pPattern->IsShadingObject() && pDict->KeyExist("Background")) { |
| const CPDF_Array* pBackColor = pDict->GetArrayFor("Background"); |
| if (pBackColor && pBackColor->size() >= pColorSpace->CountComponents()) { |
| std::vector<float> comps = |
| ReadArrayElementsToVector(pBackColor, pColorSpace->CountComponents()); |
| |
| float R = 0.0f; |
| float G = 0.0f; |
| float B = 0.0f; |
| pColorSpace->GetRGB(comps, &R, &G, &B); |
| background = ArgbEncode(255, (int32_t)(R * 255), (int32_t)(G * 255), |
| (int32_t)(B * 255)); |
| } |
| } |
| FX_RECT clip_rect_bbox = clip_rect; |
| if (pDict->KeyExist("BBox")) { |
| clip_rect_bbox.Intersect( |
| mtMatrix.TransformRect(pDict->GetRectFor("BBox")).GetOuterRect()); |
| } |
| bool bAlphaMode = options.ColorModeIs(CPDF_RenderOptions::kAlpha); |
| if (pDevice->GetDeviceCaps(FXDC_RENDER_CAPS) & FXRC_SHADING && |
| pDevice->GetDeviceDriver()->DrawShading( |
| pPattern, &mtMatrix, clip_rect_bbox, alpha, bAlphaMode)) { |
| return; |
| } |
| CPDF_DeviceBuffer buffer(pContext, pDevice, clip_rect_bbox, pCurObj, 150); |
| if (!buffer.Initialize()) |
| return; |
| |
| CFX_Matrix FinalMatrix = mtMatrix * buffer.GetMatrix(); |
| RetainPtr<CFX_DIBitmap> pBitmap = buffer.GetBitmap(); |
| if (!pBitmap->GetBuffer()) |
| return; |
| |
| pBitmap->Clear(background); |
| switch (pPattern->GetShadingType()) { |
| case kInvalidShading: |
| case kMaxShading: |
| return; |
| case kFunctionBasedShading: |
| DrawFuncShading(pBitmap, FinalMatrix, pDict, funcs, pColorSpace, alpha); |
| break; |
| case kAxialShading: |
| DrawAxialShading(pBitmap, FinalMatrix, pDict, funcs, pColorSpace, alpha); |
| break; |
| case kRadialShading: |
| DrawRadialShading(pBitmap, FinalMatrix, pDict, funcs, pColorSpace, alpha); |
| break; |
| case kFreeFormGouraudTriangleMeshShading: { |
| // The shading object can be a stream or a dictionary. We do not handle |
| // the case of dictionary at the moment. |
| const CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject()); |
| if (pStream) { |
| DrawFreeGouraudShading(pBitmap, FinalMatrix, pStream, funcs, |
| pColorSpace, alpha); |
| } |
| break; |
| } |
| case kLatticeFormGouraudTriangleMeshShading: { |
| // The shading object can be a stream or a dictionary. We do not handle |
| // the case of dictionary at the moment. |
| const CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject()); |
| if (pStream) { |
| DrawLatticeGouraudShading(pBitmap, FinalMatrix, pStream, funcs, |
| pColorSpace, alpha); |
| } |
| break; |
| } |
| case kCoonsPatchMeshShading: |
| case kTensorProductPatchMeshShading: { |
| // The shading object can be a stream or a dictionary. We do not handle |
| // the case of dictionary at the moment. |
| const CPDF_Stream* pStream = ToStream(pPattern->GetShadingObject()); |
| if (pStream) { |
| DrawCoonPatchMeshes(pPattern->GetShadingType(), pBitmap, FinalMatrix, |
| pStream, funcs, pColorSpace, |
| options.GetOptions().bNoPathSmooth, alpha); |
| } |
| break; |
| } |
| } |
| if (bAlphaMode) |
| pBitmap->LoadChannelFromAlpha(FXDIB_Red, pBitmap); |
| |
| if (options.ColorModeIs(CPDF_RenderOptions::kGray)) |
| pBitmap->ConvertColorScale(0, 0xffffff); |
| buffer.OutputToDevice(); |
| } |