| /* | 
 |  * The copyright in this software is being made available under the 2-clauses | 
 |  * BSD License, included below. This software may be subject to other third | 
 |  * party and contributor rights, including patent rights, and no such rights | 
 |  * are granted under this license. | 
 |  * | 
 |  * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium | 
 |  * Copyright (c) 2002-2014, Professor Benoit Macq | 
 |  * Copyright (c) 2001-2003, David Janssens | 
 |  * Copyright (c) 2002-2003, Yannick Verschueren | 
 |  * Copyright (c) 2003-2007, Francois-Olivier Devaux | 
 |  * Copyright (c) 2003-2014, Antonin Descampe | 
 |  * Copyright (c) 2005, Herve Drolon, FreeImage Team | 
 |  * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net> | 
 |  * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com> | 
 |  * Copyright (c) 2017, IntoPIX SA <support@intopix.com> | 
 |  * All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' | 
 |  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 |  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 |  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 |  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 |  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 |  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 |  * POSSIBILITY OF SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #define OPJ_SKIP_POISON | 
 | #include "opj_includes.h" | 
 |  | 
 | #ifdef __SSE__ | 
 | #include <xmmintrin.h> | 
 | #endif | 
 | #ifdef __SSE2__ | 
 | #include <emmintrin.h> | 
 | #endif | 
 | #ifdef __SSSE3__ | 
 | #include <tmmintrin.h> | 
 | #endif | 
 | #ifdef __AVX2__ | 
 | #include <immintrin.h> | 
 | #endif | 
 |  | 
 | #if defined(__GNUC__) | 
 | #pragma GCC poison malloc calloc realloc free | 
 | #endif | 
 |  | 
 | /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ | 
 | /*@{*/ | 
 |  | 
 | #ifdef __AVX2__ | 
 | /** Number of int32 values in a AVX2 register */ | 
 | #define VREG_INT_COUNT       8 | 
 | #else | 
 | /** Number of int32 values in a SSE2 register */ | 
 | #define VREG_INT_COUNT       4 | 
 | #endif | 
 |  | 
 | /** Number of columns that we can process in parallel in the vertical pass */ | 
 | #define PARALLEL_COLS_53     (2*VREG_INT_COUNT) | 
 |  | 
 | /** @name Local data structures */ | 
 | /*@{*/ | 
 |  | 
 | typedef struct dwt_local { | 
 |     OPJ_INT32* mem; | 
 |     OPJ_SIZE_T mem_count; | 
 |     OPJ_INT32 dn;   /* number of elements in high pass band */ | 
 |     OPJ_INT32 sn;   /* number of elements in low pass band */ | 
 |     OPJ_INT32 cas;  /* 0 = start on even coord, 1 = start on odd coord */ | 
 | } opj_dwt_t; | 
 |  | 
 | typedef union { | 
 |     OPJ_FLOAT32 f[4]; | 
 | } opj_v4_t; | 
 |  | 
 | typedef struct v4dwt_local { | 
 |     opj_v4_t*   wavelet ; | 
 |     OPJ_INT32       dn ;  /* number of elements in high pass band */ | 
 |     OPJ_INT32       sn ;  /* number of elements in low pass band */ | 
 |     OPJ_INT32       cas ; /* 0 = start on even coord, 1 = start on odd coord */ | 
 |     OPJ_UINT32      win_l_x0; /* start coord in low pass band */ | 
 |     OPJ_UINT32      win_l_x1; /* end coord in low pass band */ | 
 |     OPJ_UINT32      win_h_x0; /* start coord in high pass band */ | 
 |     OPJ_UINT32      win_h_x1; /* end coord in high pass band */ | 
 | } opj_v4dwt_t ; | 
 |  | 
 | static const OPJ_FLOAT32 opj_dwt_alpha =  1.586134342f; /*  12994 */ | 
 | static const OPJ_FLOAT32 opj_dwt_beta  =  0.052980118f; /*    434 */ | 
 | static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /*  -7233 */ | 
 | static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /*  -3633 */ | 
 |  | 
 | static const OPJ_FLOAT32 opj_K      = 1.230174105f; /*  10078 */ | 
 | static const OPJ_FLOAT32 opj_c13318 = 1.625732422f; | 
 |  | 
 | /*@}*/ | 
 |  | 
 | /** | 
 | Virtual function type for wavelet transform in 1-D | 
 | */ | 
 | typedef void (*DWT1DFN)(const opj_dwt_t* v); | 
 |  | 
 | /** @name Local static functions */ | 
 | /*@{*/ | 
 |  | 
 | /** | 
 | Forward lazy transform (horizontal) | 
 | */ | 
 | static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, | 
 |                                    OPJ_INT32 sn, OPJ_INT32 cas); | 
 | /** | 
 | Forward lazy transform (vertical) | 
 | */ | 
 | static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, | 
 |                                    OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas); | 
 | /** | 
 | Forward 5-3 wavelet transform in 1-D | 
 | */ | 
 | static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, | 
 |     OPJ_INT32 sn, OPJ_INT32 cas); | 
 | /** | 
 | Forward 9-7 wavelet transform in 1-D | 
 | */ | 
 | static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, | 
 |     OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); | 
 | /** | 
 | Explicit calculation of the Quantization Stepsizes | 
 | */ | 
 | static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, | 
 |                                     opj_stepsize_t *bandno_stepsize); | 
 | /** | 
 | Inverse wavelet transform in 2-D. | 
 | */ | 
 | static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, | 
 |                                     const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i); | 
 |  | 
 | static OPJ_BOOL opj_dwt_decode_partial_tile( | 
 |     opj_tcd_tilecomp_t* tilec, | 
 |     OPJ_UINT32 numres); | 
 |  | 
 | static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, | 
 |         void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32)); | 
 |  | 
 | static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, | 
 |         OPJ_UINT32 i); | 
 |  | 
 | /* <summary>                             */ | 
 | /* Inverse 9-7 wavelet transform in 1-D. */ | 
 | /* </summary>                            */ | 
 | static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt); | 
 |  | 
 | static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt, | 
 |                                    OPJ_FLOAT32* OPJ_RESTRICT a, | 
 |                                    OPJ_UINT32 width, | 
 |                                    OPJ_UINT32 remaining_height); | 
 |  | 
 | static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt, | 
 |                                    OPJ_FLOAT32* OPJ_RESTRICT a, | 
 |                                    OPJ_UINT32 width, | 
 |                                    OPJ_UINT32 nb_elts_read); | 
 |  | 
 | #ifdef __SSE__ | 
 | static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, | 
 |                                        OPJ_UINT32 start, | 
 |                                        OPJ_UINT32 end, | 
 |                                        const __m128 c); | 
 |  | 
 | static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, | 
 |                                        OPJ_UINT32 start, | 
 |                                        OPJ_UINT32 end, | 
 |                                        OPJ_UINT32 m, __m128 c); | 
 |  | 
 | #else | 
 | static void opj_v4dwt_decode_step1(opj_v4_t* w, | 
 |                                    OPJ_UINT32 start, | 
 |                                    OPJ_UINT32 end, | 
 |                                    const OPJ_FLOAT32 c); | 
 |  | 
 | static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, | 
 |                                    OPJ_UINT32 start, | 
 |                                    OPJ_UINT32 end, | 
 |                                    OPJ_UINT32 m, | 
 |                                    OPJ_FLOAT32 c); | 
 |  | 
 | #endif | 
 |  | 
 | /*@}*/ | 
 |  | 
 | /*@}*/ | 
 |  | 
 | #define IDX_S(i) (i)*2 | 
 | #define IDX_D(i) 1 + (i)* 2 | 
 | #define UNDERFLOW_SN(i) ((i) >= sn&&sn>0) | 
 | #define UNDERFLOW_DN(i) ((i) >= dn&&dn>0) | 
 | #define OVERFLOW_S(i) (IDX_S(i) >= a_count) | 
 | #define OVERFLOW_D(i) (IDX_D(i) >= a_count) | 
 |  | 
 | #define OPJ_S(i) a[IDX_S(i)] | 
 | #define OPJ_D(i) a[IDX_D(i)] | 
 | #define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i))) | 
 | #define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i))) | 
 | /* new */ | 
 | #define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i))) | 
 | #define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i))) | 
 |  | 
 | /* <summary>                                                              */ | 
 | /* This table contains the norms of the 5-3 wavelets for different bands. */ | 
 | /* </summary>                                                             */ | 
 | /* FIXME! the array should really be extended up to 33 resolution levels */ | 
 | /* See https://github.com/uclouvain/openjpeg/issues/493 */ | 
 | static const OPJ_FLOAT64 opj_dwt_norms[4][10] = { | 
 |     {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, | 
 |     {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, | 
 |     {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, | 
 |     {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} | 
 | }; | 
 |  | 
 | /* <summary>                                                              */ | 
 | /* This table contains the norms of the 9-7 wavelets for different bands. */ | 
 | /* </summary>                                                             */ | 
 | /* FIXME! the array should really be extended up to 33 resolution levels */ | 
 | /* See https://github.com/uclouvain/openjpeg/issues/493 */ | 
 | static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = { | 
 |     {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, | 
 |     {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, | 
 |     {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, | 
 |     {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} | 
 | }; | 
 |  | 
 | /* | 
 | ========================================================== | 
 |    local functions | 
 | ========================================================== | 
 | */ | 
 |  | 
 | /* <summary>                             */ | 
 | /* Forward lazy transform (horizontal).  */ | 
 | /* </summary>                            */ | 
 | static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, | 
 |                                    OPJ_INT32 sn, OPJ_INT32 cas) | 
 | { | 
 |     OPJ_INT32 i; | 
 |     OPJ_INT32 * l_dest = b; | 
 |     OPJ_INT32 * l_src = a + cas; | 
 |  | 
 |     for (i = 0; i < sn; ++i) { | 
 |         *l_dest++ = *l_src; | 
 |         l_src += 2; | 
 |     } | 
 |  | 
 |     l_dest = b + sn; | 
 |     l_src = a + 1 - cas; | 
 |  | 
 |     for (i = 0; i < dn; ++i)  { | 
 |         *l_dest++ = *l_src; | 
 |         l_src += 2; | 
 |     } | 
 | } | 
 |  | 
 | /* <summary>                             */ | 
 | /* Forward lazy transform (vertical).    */ | 
 | /* </summary>                            */ | 
 | static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, | 
 |                                    OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) | 
 | { | 
 |     OPJ_INT32 i = sn; | 
 |     OPJ_INT32 * l_dest = b; | 
 |     OPJ_INT32 * l_src = a + cas; | 
 |  | 
 |     while (i--) { | 
 |         *l_dest = *l_src; | 
 |         l_dest += x; | 
 |         l_src += 2; | 
 |     } /* b[i*x]=a[2*i+cas]; */ | 
 |  | 
 |     l_dest = b + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)x; | 
 |     l_src = a + 1 - cas; | 
 |  | 
 |     i = dn; | 
 |     while (i--) { | 
 |         *l_dest = *l_src; | 
 |         l_dest += x; | 
 |         l_src += 2; | 
 |     } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/ | 
 | } | 
 |  | 
 | #ifdef STANDARD_SLOW_VERSION | 
 | /* <summary>                             */ | 
 | /* Inverse lazy transform (horizontal).  */ | 
 | /* </summary>                            */ | 
 | static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a) | 
 | { | 
 |     OPJ_INT32 *ai = a; | 
 |     OPJ_INT32 *bi = h->mem + h->cas; | 
 |     OPJ_INT32  i    = h->sn; | 
 |     while (i--) { | 
 |         *bi = *(ai++); | 
 |         bi += 2; | 
 |     } | 
 |     ai  = a + h->sn; | 
 |     bi  = h->mem + 1 - h->cas; | 
 |     i   = h->dn ; | 
 |     while (i--) { | 
 |         *bi = *(ai++); | 
 |         bi += 2; | 
 |     } | 
 | } | 
 |  | 
 | /* <summary>                             */ | 
 | /* Inverse lazy transform (vertical).    */ | 
 | /* </summary>                            */ | 
 | static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) | 
 | { | 
 |     OPJ_INT32 *ai = a; | 
 |     OPJ_INT32 *bi = v->mem + v->cas; | 
 |     OPJ_INT32  i = v->sn; | 
 |     while (i--) { | 
 |         *bi = *ai; | 
 |         bi += 2; | 
 |         ai += x; | 
 |     } | 
 |     ai = a + (v->sn * (OPJ_SIZE_T)x); | 
 |     bi = v->mem + 1 - v->cas; | 
 |     i = v->dn ; | 
 |     while (i--) { | 
 |         *bi = *ai; | 
 |         bi += 2; | 
 |         ai += x; | 
 |     } | 
 | } | 
 |  | 
 | #endif /* STANDARD_SLOW_VERSION */ | 
 |  | 
 | /* <summary>                            */ | 
 | /* Forward 5-3 wavelet transform in 1-D. */ | 
 | /* </summary>                           */ | 
 | static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, | 
 |                              OPJ_INT32 sn, OPJ_INT32 cas) | 
 | { | 
 |     OPJ_INT32 i; | 
 |  | 
 |     if (!cas) { | 
 |         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */ | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; | 
 |             } | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; | 
 |             } | 
 |         } | 
 |     } else { | 
 |         if (!sn && dn == 1) {       /* NEW :  CASE ONE ELEMENT */ | 
 |             OPJ_S(0) *= 2; | 
 |         } else { | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; | 
 |             } | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #ifdef STANDARD_SLOW_VERSION | 
 | /* <summary>                            */ | 
 | /* Inverse 5-3 wavelet transform in 1-D. */ | 
 | /* </summary>                           */ | 
 | static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, | 
 |                               OPJ_INT32 sn, OPJ_INT32 cas) | 
 | { | 
 |     OPJ_INT32 i; | 
 |  | 
 |     if (!cas) { | 
 |         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */ | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; | 
 |             } | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; | 
 |             } | 
 |         } | 
 |     } else { | 
 |         if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */ | 
 |             OPJ_S(0) /= 2; | 
 |         } else { | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; | 
 |             } | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void opj_dwt_decode_1(const opj_dwt_t *v) | 
 | { | 
 |     opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas); | 
 | } | 
 |  | 
 | #endif /* STANDARD_SLOW_VERSION */ | 
 |  | 
 | #if !defined(STANDARD_SLOW_VERSION) | 
 | static void  opj_idwt53_h_cas0(OPJ_INT32* tmp, | 
 |                                const OPJ_INT32 sn, | 
 |                                const OPJ_INT32 len, | 
 |                                OPJ_INT32* tiledp) | 
 | { | 
 |     OPJ_INT32 i, j; | 
 |     const OPJ_INT32* in_even = &tiledp[0]; | 
 |     const OPJ_INT32* in_odd = &tiledp[sn]; | 
 |  | 
 | #ifdef TWO_PASS_VERSION | 
 |     /* For documentation purpose: performs lifting in two iterations, */ | 
 |     /* but without explicit interleaving */ | 
 |  | 
 |     assert(len > 1); | 
 |  | 
 |     /* Even */ | 
 |     tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1); | 
 |     for (i = 2, j = 0; i <= len - 2; i += 2, j++) { | 
 |         tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2); | 
 |     } | 
 |     if (len & 1) { /* if len is odd */ | 
 |         tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1); | 
 |     } | 
 |  | 
 |     /* Odd */ | 
 |     for (i = 1, j = 0; i < len - 1; i += 2, j++) { | 
 |         tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1); | 
 |     } | 
 |     if (!(len & 1)) { /* if len is even */ | 
 |         tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2]; | 
 |     } | 
 | #else | 
 |     OPJ_INT32 d1c, d1n, s1n, s0c, s0n; | 
 |  | 
 |     assert(len > 1); | 
 |  | 
 |     /* Improved version of the TWO_PASS_VERSION: */ | 
 |     /* Performs lifting in one single iteration. Saves memory */ | 
 |     /* accesses and explicit interleaving. */ | 
 |     s1n = in_even[0]; | 
 |     d1n = in_odd[0]; | 
 |     s0n = s1n - ((d1n + 1) >> 1); | 
 |  | 
 |     for (i = 0, j = 1; i < (len - 3); i += 2, j++) { | 
 |         d1c = d1n; | 
 |         s0c = s0n; | 
 |  | 
 |         s1n = in_even[j]; | 
 |         d1n = in_odd[j]; | 
 |  | 
 |         s0n = s1n - ((d1c + d1n + 2) >> 2); | 
 |  | 
 |         tmp[i  ] = s0c; | 
 |         tmp[i + 1] = d1c + ((s0c + s0n) >> 1); | 
 |     } | 
 |  | 
 |     tmp[i] = s0n; | 
 |  | 
 |     if (len & 1) { | 
 |         tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1); | 
 |         tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); | 
 |     } else { | 
 |         tmp[len - 1] = d1n + s0n; | 
 |     } | 
 | #endif | 
 |     memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); | 
 | } | 
 |  | 
 | static void  opj_idwt53_h_cas1(OPJ_INT32* tmp, | 
 |                                const OPJ_INT32 sn, | 
 |                                const OPJ_INT32 len, | 
 |                                OPJ_INT32* tiledp) | 
 | { | 
 |     OPJ_INT32 i, j; | 
 |     const OPJ_INT32* in_even = &tiledp[sn]; | 
 |     const OPJ_INT32* in_odd = &tiledp[0]; | 
 |  | 
 | #ifdef TWO_PASS_VERSION | 
 |     /* For documentation purpose: performs lifting in two iterations, */ | 
 |     /* but without explicit interleaving */ | 
 |  | 
 |     assert(len > 2); | 
 |  | 
 |     /* Odd */ | 
 |     for (i = 1, j = 0; i < len - 1; i += 2, j++) { | 
 |         tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2); | 
 |     } | 
 |     if (!(len & 1)) { | 
 |         tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1); | 
 |     } | 
 |  | 
 |     /* Even */ | 
 |     tmp[0] = in_even[0] + tmp[1]; | 
 |     for (i = 2, j = 1; i < len - 1; i += 2, j++) { | 
 |         tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1); | 
 |     } | 
 |     if (len & 1) { | 
 |         tmp[len - 1] = in_even[len / 2] + tmp[len - 2]; | 
 |     } | 
 | #else | 
 |     OPJ_INT32 s1, s2, dc, dn; | 
 |  | 
 |     assert(len > 2); | 
 |  | 
 |     /* Improved version of the TWO_PASS_VERSION: */ | 
 |     /* Performs lifting in one single iteration. Saves memory */ | 
 |     /* accesses and explicit interleaving. */ | 
 |  | 
 |     s1 = in_even[1]; | 
 |     dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); | 
 |     tmp[0] = in_even[0] + dc; | 
 |  | 
 |     for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { | 
 |  | 
 |         s2 = in_even[j + 1]; | 
 |  | 
 |         dn = in_odd[j] - ((s1 + s2 + 2) >> 2); | 
 |         tmp[i  ] = dc; | 
 |         tmp[i + 1] = s1 + ((dn + dc) >> 1); | 
 |  | 
 |         dc = dn; | 
 |         s1 = s2; | 
 |     } | 
 |  | 
 |     tmp[i] = dc; | 
 |  | 
 |     if (!(len & 1)) { | 
 |         dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1); | 
 |         tmp[len - 2] = s1 + ((dn + dc) >> 1); | 
 |         tmp[len - 1] = dn; | 
 |     } else { | 
 |         tmp[len - 1] = s1 + dc; | 
 |     } | 
 | #endif | 
 |     memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); | 
 | } | 
 |  | 
 |  | 
 | #endif /* !defined(STANDARD_SLOW_VERSION) */ | 
 |  | 
 | /* <summary>                            */ | 
 | /* Inverse 5-3 wavelet transform in 1-D for one row. */ | 
 | /* </summary>                           */ | 
 | /* Performs interleave, inverse wavelet transform and copy back to buffer */ | 
 | static void opj_idwt53_h(const opj_dwt_t *dwt, | 
 |                          OPJ_INT32* tiledp) | 
 | { | 
 | #ifdef STANDARD_SLOW_VERSION | 
 |     /* For documentation purpose */ | 
 |     opj_dwt_interleave_h(dwt, tiledp); | 
 |     opj_dwt_decode_1(dwt); | 
 |     memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32)); | 
 | #else | 
 |     const OPJ_INT32 sn = dwt->sn; | 
 |     const OPJ_INT32 len = sn + dwt->dn; | 
 |     if (dwt->cas == 0) { /* Left-most sample is on even coordinate */ | 
 |         if (len > 1) { | 
 |             opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp); | 
 |         } else { | 
 |             /* Unmodified value */ | 
 |         } | 
 |     } else { /* Left-most sample is on odd coordinate */ | 
 |         if (len == 1) { | 
 |             tiledp[0] /= 2; | 
 |         } else if (len == 2) { | 
 |             OPJ_INT32* out = dwt->mem; | 
 |             const OPJ_INT32* in_even = &tiledp[sn]; | 
 |             const OPJ_INT32* in_odd = &tiledp[0]; | 
 |             out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); | 
 |             out[0] = in_even[0] + out[1]; | 
 |             memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32)); | 
 |         } else if (len > 2) { | 
 |             opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp); | 
 |         } | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | #if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) | 
 |  | 
 | /* Conveniency macros to improve the readabilty of the formulas */ | 
 | #if __AVX2__ | 
 | #define VREG        __m256i | 
 | #define LOAD_CST(x) _mm256_set1_epi32(x) | 
 | #define LOAD(x)     _mm256_load_si256((const VREG*)(x)) | 
 | #define LOADU(x)    _mm256_loadu_si256((const VREG*)(x)) | 
 | #define STORE(x,y)  _mm256_store_si256((VREG*)(x),(y)) | 
 | #define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y)) | 
 | #define ADD(x,y)    _mm256_add_epi32((x),(y)) | 
 | #define SUB(x,y)    _mm256_sub_epi32((x),(y)) | 
 | #define SAR(x,y)    _mm256_srai_epi32((x),(y)) | 
 | #else | 
 | #define VREG        __m128i | 
 | #define LOAD_CST(x) _mm_set1_epi32(x) | 
 | #define LOAD(x)     _mm_load_si128((const VREG*)(x)) | 
 | #define LOADU(x)    _mm_loadu_si128((const VREG*)(x)) | 
 | #define STORE(x,y)  _mm_store_si128((VREG*)(x),(y)) | 
 | #define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y)) | 
 | #define ADD(x,y)    _mm_add_epi32((x),(y)) | 
 | #define SUB(x,y)    _mm_sub_epi32((x),(y)) | 
 | #define SAR(x,y)    _mm_srai_epi32((x),(y)) | 
 | #endif | 
 | #define ADD3(x,y,z) ADD(ADD(x,y),z) | 
 |  | 
 | static | 
 | void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col, | 
 |                                const OPJ_INT32* tmp, | 
 |                                OPJ_INT32 len, | 
 |                                OPJ_SIZE_T stride) | 
 | { | 
 |     OPJ_INT32 i; | 
 |     for (i = 0; i < len; ++i) { | 
 |         /* A memcpy(&tiledp_col[i * stride + 0], | 
 |                     &tmp[PARALLEL_COLS_53 * i + 0], | 
 |                     PARALLEL_COLS_53 * sizeof(OPJ_INT32)) | 
 |            would do but would be a tiny bit slower. | 
 |            We can take here advantage of our knowledge of alignment */ | 
 |         STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0], | 
 |                LOAD(&tmp[PARALLEL_COLS_53 * i + 0])); | 
 |         STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT], | 
 |                LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT])); | 
 |     } | 
 | } | 
 |  | 
 | /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or | 
 |  * 16 in AVX2, when top-most pixel is on even coordinate */ | 
 | static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2( | 
 |     OPJ_INT32* tmp, | 
 |     const OPJ_INT32 sn, | 
 |     const OPJ_INT32 len, | 
 |     OPJ_INT32* tiledp_col, | 
 |     const OPJ_SIZE_T stride) | 
 | { | 
 |     const OPJ_INT32* in_even = &tiledp_col[0]; | 
 |     const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride]; | 
 |  | 
 |     OPJ_INT32 i; | 
 |     OPJ_SIZE_T j; | 
 |     VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0; | 
 |     VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1; | 
 |     const VREG two = LOAD_CST(2); | 
 |  | 
 |     assert(len > 1); | 
 | #if __AVX2__ | 
 |     assert(PARALLEL_COLS_53 == 16); | 
 |     assert(VREG_INT_COUNT == 8); | 
 | #else | 
 |     assert(PARALLEL_COLS_53 == 8); | 
 |     assert(VREG_INT_COUNT == 4); | 
 | #endif | 
 |  | 
 |     /* Note: loads of input even/odd values must be done in a unaligned */ | 
 |     /* fashion. But stores in tmp can be done with aligned store, since */ | 
 |     /* the temporary buffer is properly aligned */ | 
 |     assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); | 
 |  | 
 |     s1n_0 = LOADU(in_even + 0); | 
 |     s1n_1 = LOADU(in_even + VREG_INT_COUNT); | 
 |     d1n_0 = LOADU(in_odd); | 
 |     d1n_1 = LOADU(in_odd + VREG_INT_COUNT); | 
 |  | 
 |     /* s0n = s1n - ((d1n + 1) >> 1); <==> */ | 
 |     /* s0n = s1n - ((d1n + d1n + 2) >> 2); */ | 
 |     s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); | 
 |     s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); | 
 |  | 
 |     for (i = 0, j = 1; i < (len - 3); i += 2, j++) { | 
 |         d1c_0 = d1n_0; | 
 |         s0c_0 = s0n_0; | 
 |         d1c_1 = d1n_1; | 
 |         s0c_1 = s0n_1; | 
 |  | 
 |         s1n_0 = LOADU(in_even + j * stride); | 
 |         s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT); | 
 |         d1n_0 = LOADU(in_odd + j * stride); | 
 |         d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT); | 
 |  | 
 |         /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/ | 
 |         s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2)); | 
 |         s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2)); | 
 |  | 
 |         STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1); | 
 |  | 
 |         /* d1c + ((s0c + s0n) >> 1) */ | 
 |         STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, | 
 |               ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1))); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, | 
 |               ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1))); | 
 |     } | 
 |  | 
 |     STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0); | 
 |     STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1); | 
 |  | 
 |     if (len & 1) { | 
 |         VREG tmp_len_minus_1; | 
 |         s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride); | 
 |         /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ | 
 |         tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1); | 
 |         /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 2), | 
 |               ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1))); | 
 |  | 
 |         s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT); | 
 |         /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ | 
 |         tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, | 
 |               tmp_len_minus_1); | 
 |         /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, | 
 |               ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1))); | 
 |  | 
 |  | 
 |     } else { | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, | 
 |               ADD(d1n_0, s0n_0)); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, | 
 |               ADD(d1n_1, s0n_1)); | 
 |     } | 
 |  | 
 |     opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); | 
 | } | 
 |  | 
 |  | 
 | /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or | 
 |  * 16 in AVX2, when top-most pixel is on odd coordinate */ | 
 | static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2( | 
 |     OPJ_INT32* tmp, | 
 |     const OPJ_INT32 sn, | 
 |     const OPJ_INT32 len, | 
 |     OPJ_INT32* tiledp_col, | 
 |     const OPJ_SIZE_T stride) | 
 | { | 
 |     OPJ_INT32 i; | 
 |     OPJ_SIZE_T j; | 
 |  | 
 |     VREG s1_0, s2_0, dc_0, dn_0; | 
 |     VREG s1_1, s2_1, dc_1, dn_1; | 
 |     const VREG two = LOAD_CST(2); | 
 |  | 
 |     const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; | 
 |     const OPJ_INT32* in_odd = &tiledp_col[0]; | 
 |  | 
 |     assert(len > 2); | 
 | #if __AVX2__ | 
 |     assert(PARALLEL_COLS_53 == 16); | 
 |     assert(VREG_INT_COUNT == 8); | 
 | #else | 
 |     assert(PARALLEL_COLS_53 == 8); | 
 |     assert(VREG_INT_COUNT == 4); | 
 | #endif | 
 |  | 
 |     /* Note: loads of input even/odd values must be done in a unaligned */ | 
 |     /* fashion. But stores in tmp can be done with aligned store, since */ | 
 |     /* the temporary buffer is properly aligned */ | 
 |     assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); | 
 |  | 
 |     s1_0 = LOADU(in_even + stride); | 
 |     /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ | 
 |     dc_0 = SUB(LOADU(in_odd + 0), | 
 |                SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2)); | 
 |     STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0)); | 
 |  | 
 |     s1_1 = LOADU(in_even + stride + VREG_INT_COUNT); | 
 |     /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ | 
 |     dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT), | 
 |                SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2)); | 
 |     STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT, | 
 |           ADD(LOADU(in_even + VREG_INT_COUNT), dc_1)); | 
 |  | 
 |     for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { | 
 |  | 
 |         s2_0 = LOADU(in_even + (j + 1) * stride); | 
 |         s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT); | 
 |  | 
 |         /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */ | 
 |         dn_0 = SUB(LOADU(in_odd + j * stride), | 
 |                    SAR(ADD3(s1_0, s2_0, two), 2)); | 
 |         dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT), | 
 |                    SAR(ADD3(s1_1, s2_1, two), 2)); | 
 |  | 
 |         STORE(tmp + PARALLEL_COLS_53 * i, dc_0); | 
 |         STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); | 
 |  | 
 |         /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */ | 
 |         STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, | 
 |               ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, | 
 |               ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); | 
 |  | 
 |         dc_0 = dn_0; | 
 |         s1_0 = s2_0; | 
 |         dc_1 = dn_1; | 
 |         s1_1 = s2_1; | 
 |     } | 
 |     STORE(tmp + PARALLEL_COLS_53 * i, dc_0); | 
 |     STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); | 
 |  | 
 |     if (!(len & 1)) { | 
 |         /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */ | 
 |         dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride), | 
 |                    SAR(ADD3(s1_0, s1_0, two), 2)); | 
 |         dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT), | 
 |                    SAR(ADD3(s1_1, s1_1, two), 2)); | 
 |  | 
 |         /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */ | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0, | 
 |               ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, | 
 |               ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); | 
 |  | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1); | 
 |     } else { | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0)); | 
 |         STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, | 
 |               ADD(s1_1, dc_1)); | 
 |     } | 
 |  | 
 |     opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); | 
 | } | 
 |  | 
 | #undef VREG | 
 | #undef LOAD_CST | 
 | #undef LOADU | 
 | #undef LOAD | 
 | #undef STORE | 
 | #undef STOREU | 
 | #undef ADD | 
 | #undef ADD3 | 
 | #undef SUB | 
 | #undef SAR | 
 |  | 
 | #endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */ | 
 |  | 
 | #if !defined(STANDARD_SLOW_VERSION) | 
 | /** Vertical inverse 5x3 wavelet transform for one column, when top-most | 
 |  * pixel is on even coordinate */ | 
 | static void opj_idwt3_v_cas0(OPJ_INT32* tmp, | 
 |                              const OPJ_INT32 sn, | 
 |                              const OPJ_INT32 len, | 
 |                              OPJ_INT32* tiledp_col, | 
 |                              const OPJ_SIZE_T stride) | 
 | { | 
 |     OPJ_INT32 i, j; | 
 |     OPJ_INT32 d1c, d1n, s1n, s0c, s0n; | 
 |  | 
 |     assert(len > 1); | 
 |  | 
 |     /* Performs lifting in one single iteration. Saves memory */ | 
 |     /* accesses and explicit interleaving. */ | 
 |  | 
 |     s1n = tiledp_col[0]; | 
 |     d1n = tiledp_col[(OPJ_SIZE_T)sn * stride]; | 
 |     s0n = s1n - ((d1n + 1) >> 1); | 
 |  | 
 |     for (i = 0, j = 0; i < (len - 3); i += 2, j++) { | 
 |         d1c = d1n; | 
 |         s0c = s0n; | 
 |  | 
 |         s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride]; | 
 |         d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride]; | 
 |  | 
 |         s0n = s1n - ((d1c + d1n + 2) >> 2); | 
 |  | 
 |         tmp[i  ] = s0c; | 
 |         tmp[i + 1] = d1c + ((s0c + s0n) >> 1); | 
 |     } | 
 |  | 
 |     tmp[i] = s0n; | 
 |  | 
 |     if (len & 1) { | 
 |         tmp[len - 1] = | 
 |             tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] - | 
 |             ((d1n + 1) >> 1); | 
 |         tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); | 
 |     } else { | 
 |         tmp[len - 1] = d1n + s0n; | 
 |     } | 
 |  | 
 |     for (i = 0; i < len; ++i) { | 
 |         tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | /** Vertical inverse 5x3 wavelet transform for one column, when top-most | 
 |  * pixel is on odd coordinate */ | 
 | static void opj_idwt3_v_cas1(OPJ_INT32* tmp, | 
 |                              const OPJ_INT32 sn, | 
 |                              const OPJ_INT32 len, | 
 |                              OPJ_INT32* tiledp_col, | 
 |                              const OPJ_SIZE_T stride) | 
 | { | 
 |     OPJ_INT32 i, j; | 
 |     OPJ_INT32 s1, s2, dc, dn; | 
 |     const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; | 
 |     const OPJ_INT32* in_odd = &tiledp_col[0]; | 
 |  | 
 |     assert(len > 2); | 
 |  | 
 |     /* Performs lifting in one single iteration. Saves memory */ | 
 |     /* accesses and explicit interleaving. */ | 
 |  | 
 |     s1 = in_even[stride]; | 
 |     dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); | 
 |     tmp[0] = in_even[0] + dc; | 
 |     for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { | 
 |  | 
 |         s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride]; | 
 |  | 
 |         dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2); | 
 |         tmp[i  ] = dc; | 
 |         tmp[i + 1] = s1 + ((dn + dc) >> 1); | 
 |  | 
 |         dc = dn; | 
 |         s1 = s2; | 
 |     } | 
 |     tmp[i] = dc; | 
 |     if (!(len & 1)) { | 
 |         dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1); | 
 |         tmp[len - 2] = s1 + ((dn + dc) >> 1); | 
 |         tmp[len - 1] = dn; | 
 |     } else { | 
 |         tmp[len - 1] = s1 + dc; | 
 |     } | 
 |  | 
 |     for (i = 0; i < len; ++i) { | 
 |         tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; | 
 |     } | 
 | } | 
 | #endif /* !defined(STANDARD_SLOW_VERSION) */ | 
 |  | 
 | /* <summary>                            */ | 
 | /* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */ | 
 | /* </summary>                           */ | 
 | /* Performs interleave, inverse wavelet transform and copy back to buffer */ | 
 | static void opj_idwt53_v(const opj_dwt_t *dwt, | 
 |                          OPJ_INT32* tiledp_col, | 
 |                          OPJ_SIZE_T stride, | 
 |                          OPJ_INT32 nb_cols) | 
 | { | 
 | #ifdef STANDARD_SLOW_VERSION | 
 |     /* For documentation purpose */ | 
 |     OPJ_INT32 k, c; | 
 |     for (c = 0; c < nb_cols; c ++) { | 
 |         opj_dwt_interleave_v(dwt, tiledp_col + c, stride); | 
 |         opj_dwt_decode_1(dwt); | 
 |         for (k = 0; k < dwt->sn + dwt->dn; ++k) { | 
 |             tiledp_col[c + k * stride] = dwt->mem[k]; | 
 |         } | 
 |     } | 
 | #else | 
 |     const OPJ_INT32 sn = dwt->sn; | 
 |     const OPJ_INT32 len = sn + dwt->dn; | 
 |     if (dwt->cas == 0) { | 
 |         /* If len == 1, unmodified value */ | 
 |  | 
 | #if (defined(__SSE2__) || defined(__AVX2__)) | 
 |         if (len > 1 && nb_cols == PARALLEL_COLS_53) { | 
 |             /* Same as below general case, except that thanks to SSE2/AVX2 */ | 
 |             /* we can efficiently process 8/16 columns in parallel */ | 
 |             opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); | 
 |             return; | 
 |         } | 
 | #endif | 
 |         if (len > 1) { | 
 |             OPJ_INT32 c; | 
 |             for (c = 0; c < nb_cols; c++, tiledp_col++) { | 
 |                 opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride); | 
 |             } | 
 |             return; | 
 |         } | 
 |     } else { | 
 |         if (len == 1) { | 
 |             OPJ_INT32 c; | 
 |             for (c = 0; c < nb_cols; c++, tiledp_col++) { | 
 |                 tiledp_col[0] /= 2; | 
 |             } | 
 |             return; | 
 |         } | 
 |  | 
 |         if (len == 2) { | 
 |             OPJ_INT32 c; | 
 |             OPJ_INT32* out = dwt->mem; | 
 |             for (c = 0; c < nb_cols; c++, tiledp_col++) { | 
 |                 OPJ_INT32 i; | 
 |                 const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; | 
 |                 const OPJ_INT32* in_odd = &tiledp_col[0]; | 
 |  | 
 |                 out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); | 
 |                 out[0] = in_even[0] + out[1]; | 
 |  | 
 |                 for (i = 0; i < len; ++i) { | 
 |                     tiledp_col[(OPJ_SIZE_T)i * stride] = out[i]; | 
 |                 } | 
 |             } | 
 |  | 
 |             return; | 
 |         } | 
 |  | 
 | #if (defined(__SSE2__) || defined(__AVX2__)) | 
 |         if (len > 2 && nb_cols == PARALLEL_COLS_53) { | 
 |             /* Same as below general case, except that thanks to SSE2/AVX2 */ | 
 |             /* we can efficiently process 8/16 columns in parallel */ | 
 |             opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); | 
 |             return; | 
 |         } | 
 | #endif | 
 |         if (len > 2) { | 
 |             OPJ_INT32 c; | 
 |             for (c = 0; c < nb_cols; c++, tiledp_col++) { | 
 |                 opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride); | 
 |             } | 
 |             return; | 
 |         } | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | /* <summary>                             */ | 
 | /* Forward 9-7 wavelet transform in 1-D. */ | 
 | /* </summary>                            */ | 
 | static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, | 
 |                                   OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) | 
 | { | 
 |     OPJ_INT32 i; | 
 |     if (!cas) { | 
 |         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */ | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993); | 
 |             } | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434); | 
 |             } | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233); | 
 |             } | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633); | 
 |             } | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038);    /*5038 */ | 
 |             } | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659);    /*6660 */ | 
 |             } | 
 |         } | 
 |     } else { | 
 |         if ((sn > 0) || (dn > 1)) { /* NEW :  CASE ONE ELEMENT */ | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993); | 
 |             } | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434); | 
 |             } | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233); | 
 |             } | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633); | 
 |             } | 
 |             for (i = 0; i < dn; i++) { | 
 |                 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038);    /*5038 */ | 
 |             } | 
 |             for (i = 0; i < sn; i++) { | 
 |                 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659);    /*6660 */ | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, | 
 |                                     opj_stepsize_t *bandno_stepsize) | 
 | { | 
 |     OPJ_INT32 p, n; | 
 |     p = opj_int_floorlog2(stepsize) - 13; | 
 |     n = 11 - opj_int_floorlog2(stepsize); | 
 |     bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; | 
 |     bandno_stepsize->expn = numbps - p; | 
 | } | 
 |  | 
 | /* | 
 | ========================================================== | 
 |    DWT interface | 
 | ========================================================== | 
 | */ | 
 |  | 
 |  | 
 | /* <summary>                            */ | 
 | /* Forward 5-3 wavelet transform in 2-D. */ | 
 | /* </summary>                           */ | 
 | static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, | 
 |         void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32)) | 
 | { | 
 |     OPJ_INT32 i, j, k; | 
 |     OPJ_INT32 *a = 00; | 
 |     OPJ_INT32 *aj = 00; | 
 |     OPJ_INT32 *bj = 00; | 
 |     OPJ_INT32 w, l; | 
 |  | 
 |     OPJ_INT32 rw;           /* width of the resolution level computed   */ | 
 |     OPJ_INT32 rh;           /* height of the resolution level computed  */ | 
 |     OPJ_SIZE_T l_data_count; | 
 |     OPJ_SIZE_T l_data_size; | 
 |  | 
 |     opj_tcd_resolution_t * l_cur_res = 0; | 
 |     opj_tcd_resolution_t * l_last_res = 0; | 
 |  | 
 |     w = tilec->x1 - tilec->x0; | 
 |     l = (OPJ_INT32)tilec->numresolutions - 1; | 
 |     a = tilec->data; | 
 |  | 
 |     l_cur_res = tilec->resolutions + l; | 
 |     l_last_res = l_cur_res - 1; | 
 |  | 
 |     l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions); | 
 |     /* overflow check */ | 
 |     if (l_data_count > (SIZE_MAX / sizeof(OPJ_INT32))) { | 
 |         /* FIXME event manager error callback */ | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     l_data_size = l_data_count * sizeof(OPJ_INT32); | 
 |     bj = (OPJ_INT32*)opj_malloc(l_data_size); | 
 |     /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */ | 
 |     /* in that case, so do not error out */ | 
 |     if (l_data_size != 0 && ! bj) { | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     i = l; | 
 |  | 
 |     while (i--) { | 
 |         OPJ_INT32 rw1;      /* width of the resolution level once lower than computed one                                       */ | 
 |         OPJ_INT32 rh1;      /* height of the resolution level once lower than computed one                                      */ | 
 |         OPJ_INT32 cas_col;  /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ | 
 |         OPJ_INT32 cas_row;  /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */ | 
 |         OPJ_INT32 dn, sn; | 
 |  | 
 |         rw  = l_cur_res->x1 - l_cur_res->x0; | 
 |         rh  = l_cur_res->y1 - l_cur_res->y0; | 
 |         rw1 = l_last_res->x1 - l_last_res->x0; | 
 |         rh1 = l_last_res->y1 - l_last_res->y0; | 
 |  | 
 |         cas_row = l_cur_res->x0 & 1; | 
 |         cas_col = l_cur_res->y0 & 1; | 
 |  | 
 |         sn = rh1; | 
 |         dn = rh - rh1; | 
 |         for (j = 0; j < rw; ++j) { | 
 |             aj = a + j; | 
 |             for (k = 0; k < rh; ++k) { | 
 |                 bj[k] = aj[k * w]; | 
 |             } | 
 |  | 
 |             (*p_function) (bj, l_data_count, dn, sn, cas_col); | 
 |  | 
 |             opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); | 
 |         } | 
 |  | 
 |         sn = rw1; | 
 |         dn = rw - rw1; | 
 |  | 
 |         for (j = 0; j < rh; j++) { | 
 |             aj = a + j * w; | 
 |             for (k = 0; k < rw; k++) { | 
 |                 bj[k] = aj[k]; | 
 |             } | 
 |             (*p_function) (bj, l_data_count, dn, sn, cas_row); | 
 |             opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row); | 
 |         } | 
 |  | 
 |         l_cur_res = l_last_res; | 
 |  | 
 |         --l_last_res; | 
 |     } | 
 |  | 
 |     opj_free(bj); | 
 |     return OPJ_TRUE; | 
 | } | 
 |  | 
 | /* Forward 5-3 wavelet transform in 2-D. */ | 
 | /* </summary>                           */ | 
 | OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec) | 
 | { | 
 |     return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1); | 
 | } | 
 |  | 
 | /* <summary>                            */ | 
 | /* Inverse 5-3 wavelet transform in 2-D. */ | 
 | /* </summary>                           */ | 
 | OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec, | 
 |                         OPJ_UINT32 numres) | 
 | { | 
 |     if (p_tcd->whole_tile_decoding) { | 
 |         return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres); | 
 |     } else { | 
 |         return opj_dwt_decode_partial_tile(tilec, numres); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | /* <summary>                          */ | 
 | /* Get gain of 5-3 wavelet transform. */ | 
 | /* </summary>                         */ | 
 | OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) | 
 | { | 
 |     if (orient == 0) { | 
 |         return 0; | 
 |     } | 
 |     if (orient == 1 || orient == 2) { | 
 |         return 1; | 
 |     } | 
 |     return 2; | 
 | } | 
 |  | 
 | /* <summary>                */ | 
 | /* Get norm of 5-3 wavelet. */ | 
 | /* </summary>               */ | 
 | OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) | 
 | { | 
 |     /* FIXME ! This is just a band-aid to avoid a buffer overflow */ | 
 |     /* but the array should really be extended up to 33 resolution levels */ | 
 |     /* See https://github.com/uclouvain/openjpeg/issues/493 */ | 
 |     if (orient == 0 && level >= 10) { | 
 |         level = 9; | 
 |     } else if (orient > 0 && level >= 9) { | 
 |         level = 8; | 
 |     } | 
 |     return opj_dwt_norms[orient][level]; | 
 | } | 
 |  | 
 | /* <summary>                             */ | 
 | /* Forward 9-7 wavelet transform in 2-D. */ | 
 | /* </summary>                            */ | 
 | OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec) | 
 | { | 
 |     return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1_real); | 
 | } | 
 |  | 
 | /* <summary>                          */ | 
 | /* Get gain of 9-7 wavelet transform. */ | 
 | /* </summary>                         */ | 
 | OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) | 
 | { | 
 |     (void)orient; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* <summary>                */ | 
 | /* Get norm of 9-7 wavelet. */ | 
 | /* </summary>               */ | 
 | OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) | 
 | { | 
 |     /* FIXME ! This is just a band-aid to avoid a buffer overflow */ | 
 |     /* but the array should really be extended up to 33 resolution levels */ | 
 |     /* See https://github.com/uclouvain/openjpeg/issues/493 */ | 
 |     if (orient == 0 && level >= 10) { | 
 |         level = 9; | 
 |     } else if (orient > 0 && level >= 9) { | 
 |         level = 8; | 
 |     } | 
 |     return opj_dwt_norms_real[orient][level]; | 
 | } | 
 |  | 
 | void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) | 
 | { | 
 |     OPJ_UINT32 numbands, bandno; | 
 |     numbands = 3 * tccp->numresolutions - 2; | 
 |     for (bandno = 0; bandno < numbands; bandno++) { | 
 |         OPJ_FLOAT64 stepsize; | 
 |         OPJ_UINT32 resno, level, orient, gain; | 
 |  | 
 |         resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); | 
 |         orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); | 
 |         level = tccp->numresolutions - 1 - resno; | 
 |         gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || | 
 |                                           (orient == 2)) ? 1 : 2)); | 
 |         if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { | 
 |             stepsize = 1.0; | 
 |         } else { | 
 |             OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level]; | 
 |             stepsize = (1 << (gain)) / norm; | 
 |         } | 
 |         opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), | 
 |                                 (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]); | 
 |     } | 
 | } | 
 |  | 
 | /* <summary>                             */ | 
 | /* Determine maximum computed resolution level for inverse wavelet transform */ | 
 | /* </summary>                            */ | 
 | static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, | 
 |         OPJ_UINT32 i) | 
 | { | 
 |     OPJ_UINT32 mr   = 0; | 
 |     OPJ_UINT32 w; | 
 |     while (--i) { | 
 |         ++r; | 
 |         if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) { | 
 |             mr = w ; | 
 |         } | 
 |         if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) { | 
 |             mr = w ; | 
 |         } | 
 |     } | 
 |     return mr ; | 
 | } | 
 |  | 
 | typedef struct { | 
 |     opj_dwt_t h; | 
 |     OPJ_UINT32 rw; | 
 |     OPJ_UINT32 w; | 
 |     OPJ_INT32 * OPJ_RESTRICT tiledp; | 
 |     OPJ_UINT32 min_j; | 
 |     OPJ_UINT32 max_j; | 
 | } opj_dwd_decode_h_job_t; | 
 |  | 
 | static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls) | 
 | { | 
 |     OPJ_UINT32 j; | 
 |     opj_dwd_decode_h_job_t* job; | 
 |     (void)tls; | 
 |  | 
 |     job = (opj_dwd_decode_h_job_t*)user_data; | 
 |     for (j = job->min_j; j < job->max_j; j++) { | 
 |         opj_idwt53_h(&job->h, &job->tiledp[j * job->w]); | 
 |     } | 
 |  | 
 |     opj_aligned_free(job->h.mem); | 
 |     opj_free(job); | 
 | } | 
 |  | 
 | typedef struct { | 
 |     opj_dwt_t v; | 
 |     OPJ_UINT32 rh; | 
 |     OPJ_UINT32 w; | 
 |     OPJ_INT32 * OPJ_RESTRICT tiledp; | 
 |     OPJ_UINT32 min_j; | 
 |     OPJ_UINT32 max_j; | 
 | } opj_dwd_decode_v_job_t; | 
 |  | 
 | static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls) | 
 | { | 
 |     OPJ_UINT32 j; | 
 |     opj_dwd_decode_v_job_t* job; | 
 |     (void)tls; | 
 |  | 
 |     job = (opj_dwd_decode_v_job_t*)user_data; | 
 |     for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j; | 
 |             j += PARALLEL_COLS_53) { | 
 |         opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, | 
 |                      PARALLEL_COLS_53); | 
 |     } | 
 |     if (j < job->max_j) | 
 |         opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, | 
 |                      (OPJ_INT32)(job->max_j - j)); | 
 |  | 
 |     opj_aligned_free(job->v.mem); | 
 |     opj_free(job); | 
 | } | 
 |  | 
 |  | 
 | /* <summary>                            */ | 
 | /* Inverse wavelet transform in 2-D.    */ | 
 | /* </summary>                           */ | 
 | static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, | 
 |         const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) | 
 | { | 
 |     opj_dwt_t h; | 
 |     opj_dwt_t v; | 
 |  | 
 |     opj_tcd_resolution_t* tr = tilec->resolutions; | 
 |  | 
 |     OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - | 
 |                                  tr->x0);  /* width of the resolution level computed */ | 
 |     OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - | 
 |                                  tr->y0);  /* height of the resolution level computed */ | 
 |  | 
 |     OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - | 
 |                                                                1].x1 - | 
 |                                 tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); | 
 |     OPJ_SIZE_T h_mem_size; | 
 |     int num_threads; | 
 |  | 
 |     if (numres == 1U) { | 
 |         return OPJ_TRUE; | 
 |     } | 
 |     num_threads = opj_thread_pool_get_thread_count(tp); | 
 |     h.mem_count = opj_dwt_max_resolution(tr, numres); | 
 |     /* overflow check */ | 
 |     if (h.mem_count > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) { | 
 |         /* FIXME event manager error callback */ | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     /* We need PARALLEL_COLS_53 times the height of the array, */ | 
 |     /* since for the vertical pass */ | 
 |     /* we process PARALLEL_COLS_53 columns at a time */ | 
 |     h_mem_size = h.mem_count * PARALLEL_COLS_53 * sizeof(OPJ_INT32); | 
 |     h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); | 
 |     if (! h.mem) { | 
 |         /* FIXME event manager error callback */ | 
 |         return OPJ_FALSE; | 
 |     } | 
 |  | 
 |     v.mem_count = h.mem_count; | 
 |     v.mem = h.mem; | 
 |  | 
 |     while (--numres) { | 
 |         OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; | 
 |         OPJ_UINT32 j; | 
 |  | 
 |         ++tr; | 
 |         h.sn = (OPJ_INT32)rw; | 
 |         v.sn = (OPJ_INT32)rh; | 
 |  | 
 |         rw = (OPJ_UINT32)(tr->x1 - tr->x0); | 
 |         rh = (OPJ_UINT32)(tr->y1 - tr->y0); | 
 |  | 
 |         h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); | 
 |         h.cas = tr->x0 % 2; | 
 |  | 
 |         if (num_threads <= 1 || rh <= 1) { | 
 |             for (j = 0; j < rh; ++j) { | 
 |                 opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]); | 
 |             } | 
 |         } else { | 
 |             OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; | 
 |             OPJ_UINT32 step_j; | 
 |  | 
 |             if (rh < num_jobs) { | 
 |                 num_jobs = rh; | 
 |             } | 
 |             step_j = (rh / num_jobs); | 
 |  | 
 |             for (j = 0; j < num_jobs; j++) { | 
 |                 opj_dwd_decode_h_job_t* job; | 
 |  | 
 |                 job = (opj_dwd_decode_h_job_t*) opj_malloc(sizeof(opj_dwd_decode_h_job_t)); | 
 |                 if (!job) { | 
 |                     /* It would be nice to fallback to single thread case, but */ | 
 |                     /* unfortunately some jobs may be launched and have modified */ | 
 |                     /* tiledp, so it is not practical to recover from that error */ | 
 |                     /* FIXME event manager error callback */ | 
 |                     opj_thread_pool_wait_completion(tp, 0); | 
 |                     opj_aligned_free(h.mem); | 
 |                     return OPJ_FALSE; | 
 |                 } | 
 |                 job->h = h; | 
 |                 job->rw = rw; | 
 |                 job->w = w; | 
 |                 job->tiledp = tiledp; | 
 |                 job->min_j = j * step_j; | 
 |                 job->max_j = (j + 1U) * step_j; /* this can overflow */ | 
 |                 if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */ | 
 |                     job->max_j = rh; | 
 |                 } | 
 |                 job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); | 
 |                 if (!job->h.mem) { | 
 |                     /* FIXME event manager error callback */ | 
 |                     opj_thread_pool_wait_completion(tp, 0); | 
 |                     opj_free(job); | 
 |                     opj_aligned_free(h.mem); | 
 |                     return OPJ_FALSE; | 
 |                 } | 
 |                 opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job); | 
 |             } | 
 |             opj_thread_pool_wait_completion(tp, 0); | 
 |         } | 
 |  | 
 |         v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); | 
 |         v.cas = tr->y0 % 2; | 
 |  | 
 |         if (num_threads <= 1 || rw <= 1) { | 
 |             for (j = 0; j + PARALLEL_COLS_53 <= rw; | 
 |                     j += PARALLEL_COLS_53) { | 
 |                 opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53); | 
 |             } | 
 |             if (j < rw) { | 
 |                 opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j)); | 
 |             } | 
 |         } else { | 
 |             OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; | 
 |             OPJ_UINT32 step_j; | 
 |  | 
 |             if (rw < num_jobs) { | 
 |                 num_jobs = rw; | 
 |             } | 
 |             step_j = (rw / num_jobs); | 
 |  | 
 |             for (j = 0; j < num_jobs; j++) { | 
 |                 opj_dwd_decode_v_job_t* job; | 
 |  | 
 |                 job = (opj_dwd_decode_v_job_t*) opj_malloc(sizeof(opj_dwd_decode_v_job_t)); | 
 |                 if (!job) { | 
 |                     /* It would be nice to fallback to single thread case, but */ | 
 |                     /* unfortunately some jobs may be launched and have modified */ | 
 |                     /* tiledp, so it is not practical to recover from that error */ | 
 |                     /* FIXME event manager error callback */ | 
 |                     opj_thread_pool_wait_completion(tp, 0); | 
 |                     opj_aligned_free(v.mem); | 
 |                     return OPJ_FALSE; | 
 |                 } | 
 |                 job->v = v; | 
 |                 job->rh = rh; | 
 |                 job->w = w; | 
 |                 job->tiledp = tiledp; | 
 |                 job->min_j = j * step_j; | 
 |                 job->max_j = (j + 1U) * step_j; /* this can overflow */ | 
 |                 if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */ | 
 |                     job->max_j = rw; | 
 |                 } | 
 |                 job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); | 
 |                 if (!job->v.mem) { | 
 |                     /* FIXME event manager error callback */ | 
 |                     opj_thread_pool_wait_completion(tp, 0); | 
 |                     opj_free(job); | 
 |                     opj_aligned_free(v.mem); | 
 |                     return OPJ_FALSE; | 
 |                 } | 
 |                 opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job); | 
 |             } | 
 |             opj_thread_pool_wait_completion(tp, 0); | 
 |         } | 
 |     } | 
 |     opj_aligned_free(h.mem); | 
 |     return OPJ_TRUE; | 
 | } | 
 |  | 
 | static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest, | 
 |         OPJ_INT32 cas, | 
 |         opj_sparse_array_int32_t* sa, | 
 |         OPJ_UINT32 sa_line, | 
 |         OPJ_UINT32 sn, | 
 |         OPJ_UINT32 win_l_x0, | 
 |         OPJ_UINT32 win_l_x1, | 
 |         OPJ_UINT32 win_h_x0, | 
 |         OPJ_UINT32 win_h_x1) | 
 | { | 
 |     OPJ_BOOL ret; | 
 |     ret = opj_sparse_array_int32_read(sa, | 
 |                                       win_l_x0, sa_line, | 
 |                                       win_l_x1, sa_line + 1, | 
 |                                       dest + cas + 2 * win_l_x0, | 
 |                                       2, 0, OPJ_TRUE); | 
 |     assert(ret); | 
 |     ret = opj_sparse_array_int32_read(sa, | 
 |                                       sn + win_h_x0, sa_line, | 
 |                                       sn + win_h_x1, sa_line + 1, | 
 |                                       dest + 1 - cas + 2 * win_h_x0, | 
 |                                       2, 0, OPJ_TRUE); | 
 |     assert(ret); | 
 |     OPJ_UNUSED(ret); | 
 | } | 
 |  | 
 |  | 
 | static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest, | 
 |         OPJ_INT32 cas, | 
 |         opj_sparse_array_int32_t* sa, | 
 |         OPJ_UINT32 sa_col, | 
 |         OPJ_UINT32 nb_cols, | 
 |         OPJ_UINT32 sn, | 
 |         OPJ_UINT32 win_l_y0, | 
 |         OPJ_UINT32 win_l_y1, | 
 |         OPJ_UINT32 win_h_y0, | 
 |         OPJ_UINT32 win_h_y1) | 
 | { | 
 |     OPJ_BOOL ret; | 
 |     ret  = opj_sparse_array_int32_read(sa, | 
 |                                        sa_col, win_l_y0, | 
 |                                        sa_col + nb_cols, win_l_y1, | 
 |                                        dest + cas * 4 + 2 * 4 * win_l_y0, | 
 |                                        1, 2 * 4, OPJ_TRUE); | 
 |     assert(ret); | 
 |     ret = opj_sparse_array_int32_read(sa, | 
 |                                       sa_col, sn + win_h_y0, | 
 |                                       sa_col + nb_cols, sn + win_h_y1, | 
 |                                       dest + (1 - cas) * 4 + 2 * 4 * win_h_y0, | 
 |                                       1, 2 * 4, OPJ_TRUE); | 
 |     assert(ret); | 
 |     OPJ_UNUSED(ret); | 
 | } | 
 |  | 
 | static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, | 
 |                                      OPJ_INT32 dn, OPJ_INT32 sn, | 
 |                                      OPJ_INT32 cas, | 
 |                                      OPJ_INT32 win_l_x0, | 
 |                                      OPJ_INT32 win_l_x1, | 
 |                                      OPJ_INT32 win_h_x0, | 
 |                                      OPJ_INT32 win_h_x1) | 
 | { | 
 |     OPJ_INT32 i; | 
 |  | 
 |     if (!cas) { | 
 |         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */ | 
 |  | 
 |             /* Naive version is : | 
 |             for (i = win_l_x0; i < i_max; i++) { | 
 |                 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; | 
 |             } | 
 |             for (i = win_h_x0; i < win_h_x1; i++) { | 
 |                 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; | 
 |             } | 
 |             but the compiler doesn't manage to unroll it to avoid bound | 
 |             checking in OPJ_S_ and OPJ_D_ macros | 
 |             */ | 
 |  | 
 |             i = win_l_x0; | 
 |             if (i < win_l_x1) { | 
 |                 OPJ_INT32 i_max; | 
 |  | 
 |                 /* Left-most case */ | 
 |                 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; | 
 |                 i ++; | 
 |  | 
 |                 i_max = win_l_x1; | 
 |                 if (i_max > dn) { | 
 |                     i_max = dn; | 
 |                 } | 
 |                 for (; i < i_max; i++) { | 
 |                     /* No bound checking */ | 
 |                     OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2; | 
 |                 } | 
 |                 for (; i < win_l_x1; i++) { | 
 |                     /* Right-most case */ | 
 |                     OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; | 
 |                 } | 
 |             } | 
 |  | 
 |             i = win_h_x0; | 
 |             if (i < win_h_x1) { | 
 |                 OPJ_INT32 i_max = win_h_x1; | 
 |                 if (i_max >= sn) { | 
 |                     i_max = sn - 1; | 
 |                 } | 
 |                 for (; i < i_max; i++) { | 
 |                     /* No bound checking */ | 
 |                     OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1; | 
 |                 } | 
 |                 for (; i < win_h_x1; i++) { | 
 |                     /* Right-most case */ | 
 |                     OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } else { | 
 |         if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */ | 
 |             OPJ_S(0) /= 2; | 
 |         } else { | 
 |             for (i = win_l_x0; i < win_l_x1; i++) { | 
 |                 OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; | 
 |             } | 
 |             for (i = win_h_x0; i < win_h_x1; i++) { | 
 |                 OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off] | 
 | #define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off] | 
 | #define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off))) | 
 | #define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off))) | 
 | #define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off))) | 
 | #define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off))) | 
 |  | 
 | static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a, | 
 |         OPJ_UINT32 nb_cols, | 
 |         OPJ_INT32 dn, OPJ_INT32 sn, | 
 |         OPJ_INT32 cas, | 
 |         OPJ_INT32 win_l_x0, | 
 |         OPJ_INT32 win_l_x1, | 
 |         OPJ_INT32 win_h_x0, | 
 |         OPJ_INT32 win_h_x1) | 
 | { | 
 |     OPJ_INT32 i; | 
 |     OPJ_UINT32 off; | 
 |  | 
 |     (void)nb_cols; | 
 |  | 
 |     if (!cas) { | 
 |         if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */ | 
 |  | 
 |             /* Naive version is : | 
 |             for (i = win_l_x0; i < i_max; i++) { | 
 |                 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; | 
 |             } | 
 |             for (i = win_h_x0; i < win_h_x1; i++) { | 
 |                 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; | 
 |             } | 
 |             but the compiler doesn't manage to unroll it to avoid bound | 
 |             checking in OPJ_S_ and OPJ_D_ macros | 
 |             */ | 
 |  | 
 |             i = win_l_x0; | 
 |             if (i < win_l_x1) { | 
 |                 OPJ_INT32 i_max; | 
 |  | 
 |                 /* Left-most case */ | 
 |                 for (off = 0; off < 4; off++) { | 
 |                     OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; | 
 |                 } | 
 |                 i ++; | 
 |  | 
 |                 i_max = win_l_x1; | 
 |                 if (i_max > dn) { | 
 |                     i_max = dn; | 
 |                 } | 
 |  | 
 | #ifdef __SSE2__ | 
 |                 if (i + 1 < i_max) { | 
 |                     const __m128i two = _mm_set1_epi32(2); | 
 |                     __m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8)); | 
 |                     for (; i + 1 < i_max; i += 2) { | 
 |                         /* No bound checking */ | 
 |                         __m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); | 
 |                         __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); | 
 |                         __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); | 
 |                         __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); | 
 |                         S = _mm_sub_epi32(S, | 
 |                                           _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2)); | 
 |                         S1 = _mm_sub_epi32(S1, | 
 |                                            _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2)); | 
 |                         _mm_store_si128((__m128i*)(a + i * 8), S); | 
 |                         _mm_store_si128((__m128i*)(a + (i + 1) * 8), S1); | 
 |                         Dm1 = D1; | 
 |                     } | 
 |                 } | 
 | #endif | 
 |  | 
 |                 for (; i < i_max; i++) { | 
 |                     /* No bound checking */ | 
 |                     for (off = 0; off < 4; off++) { | 
 |                         OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2; | 
 |                     } | 
 |                 } | 
 |                 for (; i < win_l_x1; i++) { | 
 |                     /* Right-most case */ | 
 |                     for (off = 0; off < 4; off++) { | 
 |                         OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; | 
 |                     } | 
 |                 } | 
 |             } | 
 |  | 
 |             i = win_h_x0; | 
 |             if (i < win_h_x1) { | 
 |                 OPJ_INT32 i_max = win_h_x1; | 
 |                 if (i_max >= sn) { | 
 |                     i_max = sn - 1; | 
 |                 } | 
 |  | 
 | #ifdef __SSE2__ | 
 |                 if (i + 1 < i_max) { | 
 |                     __m128i S =  _mm_load_si128((__m128i * const)(a + i * 8)); | 
 |                     for (; i + 1 < i_max; i += 2) { | 
 |                         /* No bound checking */ | 
 |                         __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); | 
 |                         __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); | 
 |                         __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); | 
 |                         __m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8)); | 
 |                         D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1)); | 
 |                         D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1)); | 
 |                         _mm_store_si128((__m128i*)(a + 4 + i * 8), D); | 
 |                         _mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1); | 
 |                         S = S2; | 
 |                     } | 
 |                 } | 
 | #endif | 
 |  | 
 |                 for (; i < i_max; i++) { | 
 |                     /* No bound checking */ | 
 |                     for (off = 0; off < 4; off++) { | 
 |                         OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1; | 
 |                     } | 
 |                 } | 
 |                 for (; i < win_h_x1; i++) { | 
 |                     /* Right-most case */ | 
 |                     for (off = 0; off < 4; off++) { | 
 |                         OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1; | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |     } else { | 
 |         if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */ | 
 |             for (off = 0; off < 4; off++) { | 
 |                 OPJ_S_off(0, off) /= 2; | 
 |             } | 
 |         } else { | 
 |             for (i = win_l_x0; i < win_l_x1; i++) { | 
 |                 for (off = 0; off < 4; off++) { | 
 |                     OPJ_D_off(i, off) -= (OPJ_SS__off(i, off) + OPJ_SS__off(i + 1, off) + 2) >> 2; | 
 |                 } | 
 |             } | 
 |             for (i = win_h_x0; i < win_h_x1; i++) { | 
 |                 for (off = 0; off < 4; off++) { | 
 |                     OPJ_S_off(i, off) += (OPJ_DD__off(i, off) + OPJ_DD__off(i - 1, off)) >> 1; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec, | 
 |         OPJ_UINT32 resno, | 
 |         OPJ_UINT32 bandno, | 
 |         OPJ_UINT32 tcx0, | 
 |         OPJ_UINT32 tcy0, | 
 |         OPJ_UINT32 tcx1, | 
 |         OPJ_UINT32 tcy1, | 
 |         OPJ_UINT32* tbx0, | 
 |         OPJ_UINT32* tby0, | 
 |         OPJ_UINT32* tbx1, | 
 |         OPJ_UINT32* tby1) | 
 | { | 
 |     /* Compute number of decomposition for this band. See table F-1 */ | 
 |     OPJ_UINT32 nb = (resno == 0) ? | 
 |                     tilec->numresolutions - 1 : | 
 |                     tilec->numresolutions - resno; | 
 |     /* Map above tile-based coordinates to sub-band-based coordinates per */ | 
 |     /* equation B-15 of the standard */ | 
 |     OPJ_UINT32 x0b = bandno & 1; | 
 |     OPJ_UINT32 y0b = bandno >> 1; | 
 |     if (tbx0) { | 
 |         *tbx0 = (nb == 0) ? tcx0 : | 
 |                 (tcx0 <= (1U << (nb - 1)) * x0b) ? 0 : | 
 |                 opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb); | 
 |     } | 
 |     if (tby0) { | 
 |         *tby0 = (nb == 0) ? tcy0 : | 
 |                 (tcy0 <= (1U << (nb - 1)) * y0b) ? 0 : | 
 |                 opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb); | 
 |     } | 
 |     if (tbx1) { | 
 |         *tbx1 = (nb == 0) ? tcx1 : | 
 |                 (tcx1 <= (1U << (nb - 1)) * x0b) ? 0 : | 
 |                 opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb); | 
 |     } | 
 |     if (tby1) { | 
 |         *tby1 = (nb == 0) ? tcy1 : | 
 |                 (tcy1 <= (1U << (nb - 1)) * y0b) ? 0 : | 
 |                 opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb); | 
 |     } | 
 | } | 
 |  | 
 | static void opj_dwt_segment_grow(OPJ_UINT32 filter_width, | 
 |                                  OPJ_UINT32 max_size, | 
 |                                  OPJ_UINT32* start, | 
 |                                  OPJ_UINT32* end) | 
 | { | 
 |     *start = opj_uint_subs(*start, filter_width); | 
 |     *end = opj_uint_adds(*end, filter_width); | 
 |     *end = opj_uint_min(*end, max_size); | 
 | } | 
 |  | 
 |  | 
 | static opj_sparse_array_int32_t* opj_dwt_init_sparse_array( | 
 |     opj_tcd_tilecomp_t* tilec, | 
 |     OPJ_UINT32 numres) | 
 | { | 
 |     opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); | 
 |     OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0); | 
 |     OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0); | 
 |     OPJ_UINT32 resno, bandno, precno, cblkno; | 
 |     opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create( | 
 |                                        w, h, opj_uint_min(w, 64), opj_uint_min(h, 64)); | 
 |     if (sa == NULL) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     for (resno = 0; resno < numres; ++resno) { | 
 |         opj_tcd_resolution_t* res = &tilec->resolutions[resno]; | 
 |  | 
 |         for (bandno = 0; bandno < res->numbands; ++bandno) { | 
 |             opj_tcd_band_t* band = &res->bands[bandno]; | 
 |  | 
 |             for (precno = 0; precno < res->pw * res->ph; ++precno) { | 
 |                 opj_tcd_precinct_t* precinct = &band->precincts[precno]; | 
 |                 for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) { | 
 |                     opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno]; | 
 |                     if (cblk->decoded_data != NULL) { | 
 |                         OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0); | 
 |                         OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0); | 
 |                         OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0); | 
 |                         OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0); | 
 |  | 
 |                         if (band->bandno & 1) { | 
 |                             opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1]; | 
 |                             x += (OPJ_UINT32)(pres->x1 - pres->x0); | 
 |                         } | 
 |                         if (band->bandno & 2) { | 
 |                             opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1]; | 
 |                             y += (OPJ_UINT32)(pres->y1 - pres->y0); | 
 |                         } | 
 |  | 
 |                         if (!opj_sparse_array_int32_write(sa, x, y, | 
 |                                                           x + cblk_w, y + cblk_h, | 
 |                                                           cblk->decoded_data, | 
 |                                                           1, cblk_w, OPJ_TRUE)) { | 
 |                             opj_sparse_array_int32_free(sa); | 
 |                             return NULL; | 
 |                         } | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return sa; | 
 | } | 
 |  | 
 |  | 
 | static OPJ_BOOL opj_dwt_decode_partial_tile( | 
 |     opj_tcd_tilecomp_t* tilec, | 
 |     OPJ_UINT32 numres) | 
 | { | 
 |     opj_sparse_array_int32_t* sa; | 
 |     opj_dwt_t h; | 
 |     opj_dwt_t v; | 
 |     OPJ_UINT32 resno; | 
 |     /* This value matches the maximum left/right extension given in tables */ | 
 |     /* F.2 and F.3 of the standard. */ | 
 |     const OPJ_UINT32 filter_width = 2U; | 
 |  | 
 |     opj_tcd_resolution_t* tr = tilec->resolutions; | 
 |     opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); | 
 |  | 
 |     OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - | 
 |                                  tr->x0);  /* width of the resolution level computed */ | 
 |     OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - | 
 |                                  tr->y0);  /* height of the resolution level computed */ | 
 |  | 
 |     OPJ_SIZE_T h_mem_size; | 
 |  | 
 |     /* Compute the intersection of the area of interest, expressed in tile coordinates */ | 
 |     /* with the tile coordinates */ | 
 |     OPJ_UINT32 win_tcx0 = tilec->win_x0; | 
 |     OPJ_UINT32 win_tcy0 = tilec->win_y0; | 
 |     OPJ_UINT32 win_tcx1 = tilec->win_x1; | 
 |     OPJ_UINT32 win_tcy1 = tilec->win_y1; | 
 |  | 
 |     if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) { | 
 |         return OPJ_TRUE; | 
 |     } | 
 |  | 
 |     sa = opj_dwt_init_sparse_array(tilec, numres); | 
 |     if (sa == NULL) { | 
 |         return OPJ_FALSE; | 
 |     } | 
 |  | 
 |     if (numres == 1U) { | 
 |         OPJ_BOOL ret = opj_sparse_array_int32_read(sa, | 
 |                        tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, | 
 |                        tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, | 
 |                        tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, | 
 |                        tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, | 
 |                        tilec->data_win, | 
 |                        1, tr_max->win_x1 - tr_max->win_x0, | 
 |                        OPJ_TRUE); | 
 |         assert(ret); | 
 |         OPJ_UNUSED(ret); | 
 |         opj_sparse_array_int32_free(sa); | 
 |         return OPJ_TRUE; | 
 |     } | 
 |     h.mem_count = opj_dwt_max_resolution(tr, numres); | 
 |     /* overflow check */ | 
 |     /* in vertical pass, we process 4 columns at a time */ | 
 |     if (h.mem_count > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) { | 
 |         /* FIXME event manager error callback */ | 
 |         opj_sparse_array_int32_free(sa); | 
 |         return OPJ_FALSE; | 
 |     } | 
 |  | 
 |     h_mem_size = h.mem_count * 4 * sizeof(OPJ_INT32); | 
 |     h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); | 
 |     if (! h.mem) { | 
 |         /* FIXME event manager error callback */ | 
 |         opj_sparse_array_int32_free(sa); | 
 |         return OPJ_FALSE; | 
 |     } | 
 |  | 
 |     v.mem_count = h.mem_count; | 
 |     v.mem = h.mem; | 
 |  | 
 |     for (resno = 1; resno < numres; resno ++) { | 
 |         OPJ_UINT32 i, j; | 
 |         /* Window of interest subband-based coordinates */ | 
 |         OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1; | 
 |         OPJ_UINT32 win_hl_x0, win_hl_x1; | 
 |         OPJ_UINT32 win_lh_y0, win_lh_y1; | 
 |         /* Window of interest tile-resolution-based coordinates */ | 
 |         OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1; | 
 |         /* Tile-resolution subband-based coordinates */ | 
 |         OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0; | 
 |  | 
 |         ++tr; | 
 |  | 
 |         h.sn = (OPJ_INT32)rw; | 
 |         v.sn = (OPJ_INT32)rh; | 
 |  | 
 |         rw = (OPJ_UINT32)(tr->x1 - tr->x0); | 
 |         rh = (OPJ_UINT32)(tr->y1 - tr->y0); | 
 |  | 
 |         h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); | 
 |         h.cas = tr->x0 % 2; | 
 |  | 
 |         v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); | 
 |         v.cas = tr->y0 % 2; | 
 |  | 
 |         /* Get the subband coordinates for the window of interest */ | 
 |         /* LL band */ | 
 |         opj_dwt_get_band_coordinates(tilec, resno, 0, | 
 |                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1, | 
 |                                      &win_ll_x0, &win_ll_y0, | 
 |                                      &win_ll_x1, &win_ll_y1); | 
 |  | 
 |         /* HL band */ | 
 |         opj_dwt_get_band_coordinates(tilec, resno, 1, | 
 |                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1, | 
 |                                      &win_hl_x0, NULL, &win_hl_x1, NULL); | 
 |  | 
 |         /* LH band */ | 
 |         opj_dwt_get_band_coordinates(tilec, resno, 2, | 
 |                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1, | 
 |                                      NULL, &win_lh_y0, NULL, &win_lh_y1); | 
 |  | 
 |         /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */ | 
 |         tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0; | 
 |         tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0; | 
 |         tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0; | 
 |         tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0; | 
 |  | 
 |         /* Subtract the origin of the bands for this tile, to the subwindow */ | 
 |         /* of interest band coordinates, so as to get them relative to the */ | 
 |         /* tile */ | 
 |         win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0); | 
 |         win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0); | 
 |         win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0); | 
 |         win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0); | 
 |         win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0); | 
 |         win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0); | 
 |         win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0); | 
 |         win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0); | 
 |  | 
 |         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1); | 
 |         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1); | 
 |  | 
 |         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1); | 
 |         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1); | 
 |  | 
 |         /* Compute the tile-resolution-based coordinates for the window of interest */ | 
 |         if (h.cas == 0) { | 
 |             win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1); | 
 |             win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw); | 
 |         } else { | 
 |             win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1); | 
 |             win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw); | 
 |         } | 
 |  | 
 |         if (v.cas == 0) { | 
 |             win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1); | 
 |             win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh); | 
 |         } else { | 
 |             win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1); | 
 |             win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh); | 
 |         } | 
 |  | 
 |         for (j = 0; j < rh; ++j) { | 
 |             if ((j >= win_ll_y0 && j < win_ll_y1) || | 
 |                     (j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) { | 
 |  | 
 |                 /* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */ | 
 |                 /* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */ | 
 |                 /* on opj_decompress -i  ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */ | 
 |                 /* This is less extreme than memsetting the whole buffer to 0 */ | 
 |                 /* although we could potentially do better with better handling of edge conditions */ | 
 |                 if (win_tr_x1 >= 1 && win_tr_x1 < rw) { | 
 |                     h.mem[win_tr_x1 - 1] = 0; | 
 |                 } | 
 |                 if (win_tr_x1 < rw) { | 
 |                     h.mem[win_tr_x1] = 0; | 
 |                 } | 
 |  | 
 |                 opj_dwt_interleave_partial_h(h.mem, | 
 |                                              h.cas, | 
 |                                              sa, | 
 |                                              j, | 
 |                                              (OPJ_UINT32)h.sn, | 
 |                                              win_ll_x0, | 
 |                                              win_ll_x1, | 
 |                                              win_hl_x0, | 
 |                                              win_hl_x1); | 
 |                 opj_dwt_decode_partial_1(h.mem, h.mem_count, h.dn, h.sn, h.cas, | 
 |                                          (OPJ_INT32)win_ll_x0, | 
 |                                          (OPJ_INT32)win_ll_x1, | 
 |                                          (OPJ_INT32)win_hl_x0, | 
 |                                          (OPJ_INT32)win_hl_x1); | 
 |                 if (!opj_sparse_array_int32_write(sa, | 
 |                                                   win_tr_x0, j, | 
 |                                                   win_tr_x1, j + 1, | 
 |                                                   h.mem + win_tr_x0, | 
 |                                                   1, 0, OPJ_TRUE)) { | 
 |                     /* FIXME event manager error callback */ | 
 |                     opj_sparse_array_int32_free(sa); | 
 |                     opj_aligned_free(h.mem); | 
 |                     return OPJ_FALSE; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         for (i = win_tr_x0; i < win_tr_x1;) { | 
 |             OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i); | 
 |             opj_dwt_interleave_partial_v(v.mem, | 
 |                                          v.cas, | 
 |                                          sa, | 
 |                                          i, | 
 |                                          nb_cols, | 
 |                                          (OPJ_UINT32)v.sn, | 
 |                                          win_ll_y0, | 
 |                                          win_ll_y1, | 
 |                                          win_lh_y0, | 
 |                                          win_lh_y1); | 
 |             opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas, | 
 |                                               (OPJ_INT32)win_ll_y0, | 
 |                                               (OPJ_INT32)win_ll_y1, | 
 |                                               (OPJ_INT32)win_lh_y0, | 
 |                                               (OPJ_INT32)win_lh_y1); | 
 |             if (!opj_sparse_array_int32_write(sa, | 
 |                                               i, win_tr_y0, | 
 |                                               i + nb_cols, win_tr_y1, | 
 |                                               v.mem + 4 * win_tr_y0, | 
 |                                               1, 4, OPJ_TRUE)) { | 
 |                 /* FIXME event manager error callback */ | 
 |                 opj_sparse_array_int32_free(sa); | 
 |                 opj_aligned_free(h.mem); | 
 |                 return OPJ_FALSE; | 
 |             } | 
 |  | 
 |             i += nb_cols; | 
 |         } | 
 |     } | 
 |     opj_aligned_free(h.mem); | 
 |  | 
 |     { | 
 |         OPJ_BOOL ret = opj_sparse_array_int32_read(sa, | 
 |                        tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, | 
 |                        tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, | 
 |                        tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, | 
 |                        tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, | 
 |                        tilec->data_win, | 
 |                        1, tr_max->win_x1 - tr_max->win_x0, | 
 |                        OPJ_TRUE); | 
 |         assert(ret); | 
 |         OPJ_UNUSED(ret); | 
 |     } | 
 |     opj_sparse_array_int32_free(sa); | 
 |     return OPJ_TRUE; | 
 | } | 
 |  | 
 | static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt, | 
 |                                    OPJ_FLOAT32* OPJ_RESTRICT a, | 
 |                                    OPJ_UINT32 width, | 
 |                                    OPJ_UINT32 remaining_height) | 
 | { | 
 |     OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas); | 
 |     OPJ_UINT32 i, k; | 
 |     OPJ_UINT32 x0 = dwt->win_l_x0; | 
 |     OPJ_UINT32 x1 = dwt->win_l_x1; | 
 |  | 
 |     for (k = 0; k < 2; ++k) { | 
 |         if (remaining_height >= 4 && ((OPJ_SIZE_T) a & 0x0f) == 0 && | 
 |                 ((OPJ_SIZE_T) bi & 0x0f) == 0 && (width & 0x0f) == 0) { | 
 |             /* Fast code path */ | 
 |             for (i = x0; i < x1; ++i) { | 
 |                 OPJ_UINT32 j = i; | 
 |                 bi[i * 8    ] = a[j]; | 
 |                 j += width; | 
 |                 bi[i * 8 + 1] = a[j]; | 
 |                 j += width; | 
 |                 bi[i * 8 + 2] = a[j]; | 
 |                 j += width; | 
 |                 bi[i * 8 + 3] = a[j]; | 
 |             } | 
 |         } else { | 
 |             /* Slow code path */ | 
 |             for (i = x0; i < x1; ++i) { | 
 |                 OPJ_UINT32 j = i; | 
 |                 bi[i * 8    ] = a[j]; | 
 |                 j += width; | 
 |                 if (remaining_height == 1) { | 
 |                     continue; | 
 |                 } | 
 |                 bi[i * 8 + 1] = a[j]; | 
 |                 j += width; | 
 |                 if (remaining_height == 2) { | 
 |                     continue; | 
 |                 } | 
 |                 bi[i * 8 + 2] = a[j]; | 
 |                 j += width; | 
 |                 if (remaining_height == 3) { | 
 |                     continue; | 
 |                 } | 
 |                 bi[i * 8 + 3] = a[j]; /* This one*/ | 
 |             } | 
 |         } | 
 |  | 
 |         bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas); | 
 |         a += dwt->sn; | 
 |         x0 = dwt->win_h_x0; | 
 |         x1 = dwt->win_h_x1; | 
 |     } | 
 | } | 
 |  | 
 | static void opj_v4dwt_interleave_partial_h(opj_v4dwt_t* dwt, | 
 |         opj_sparse_array_int32_t* sa, | 
 |         OPJ_UINT32 sa_line, | 
 |         OPJ_UINT32 remaining_height) | 
 | { | 
 |     OPJ_UINT32 i; | 
 |     for (i = 0; i < remaining_height; i++) { | 
 |         OPJ_BOOL ret; | 
 |         ret = opj_sparse_array_int32_read(sa, | 
 |                                           dwt->win_l_x0, sa_line + i, | 
 |                                           dwt->win_l_x1, sa_line + i + 1, | 
 |                                           /* Nasty cast from float* to int32* */ | 
 |                                           (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i, | 
 |                                           8, 0, OPJ_TRUE); | 
 |         assert(ret); | 
 |         ret = opj_sparse_array_int32_read(sa, | 
 |                                           (OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i, | 
 |                                           (OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1, | 
 |                                           /* Nasty cast from float* to int32* */ | 
 |                                           (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i, | 
 |                                           8, 0, OPJ_TRUE); | 
 |         assert(ret); | 
 |         OPJ_UNUSED(ret); | 
 |     } | 
 | } | 
 |  | 
 | static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt, | 
 |                                    OPJ_FLOAT32* OPJ_RESTRICT a, | 
 |                                    OPJ_UINT32 width, | 
 |                                    OPJ_UINT32 nb_elts_read) | 
 | { | 
 |     opj_v4_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas; | 
 |     OPJ_UINT32 i; | 
 |  | 
 |     for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) { | 
 |         memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width], | 
 |                (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32)); | 
 |     } | 
 |  | 
 |     a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width; | 
 |     bi = dwt->wavelet + 1 - dwt->cas; | 
 |  | 
 |     for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) { | 
 |         memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width], | 
 |                (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32)); | 
 |     } | 
 | } | 
 |  | 
 | static void opj_v4dwt_interleave_partial_v(opj_v4dwt_t* OPJ_RESTRICT dwt, | 
 |         opj_sparse_array_int32_t* sa, | 
 |         OPJ_UINT32 sa_col, | 
 |         OPJ_UINT32 nb_elts_read) | 
 | { | 
 |     OPJ_BOOL ret; | 
 |     ret = opj_sparse_array_int32_read(sa, | 
 |                                       sa_col, dwt->win_l_x0, | 
 |                                       sa_col + nb_elts_read, dwt->win_l_x1, | 
 |                                       (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0), | 
 |                                       1, 8, OPJ_TRUE); | 
 |     assert(ret); | 
 |     ret = opj_sparse_array_int32_read(sa, | 
 |                                       sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0, | 
 |                                       sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1, | 
 |                                       (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0), | 
 |                                       1, 8, OPJ_TRUE); | 
 |     assert(ret); | 
 |     OPJ_UNUSED(ret); | 
 | } | 
 |  | 
 | #ifdef __SSE__ | 
 |  | 
 | static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, | 
 |                                        OPJ_UINT32 start, | 
 |                                        OPJ_UINT32 end, | 
 |                                        const __m128 c) | 
 | { | 
 |     __m128* OPJ_RESTRICT vw = (__m128*) w; | 
 |     OPJ_UINT32 i; | 
 |     /* 4x unrolled loop */ | 
 |     vw += 2 * start; | 
 |     for (i = start; i + 3 < end; i += 4, vw += 8) { | 
 |         __m128 xmm0 = _mm_mul_ps(vw[0], c); | 
 |         __m128 xmm2 = _mm_mul_ps(vw[2], c); | 
 |         __m128 xmm4 = _mm_mul_ps(vw[4], c); | 
 |         __m128 xmm6 = _mm_mul_ps(vw[6], c); | 
 |         vw[0] = xmm0; | 
 |         vw[2] = xmm2; | 
 |         vw[4] = xmm4; | 
 |         vw[6] = xmm6; | 
 |     } | 
 |     for (; i < end; ++i, vw += 2) { | 
 |         vw[0] = _mm_mul_ps(vw[0], c); | 
 |     } | 
 | } | 
 |  | 
 | static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, | 
 |                                        OPJ_UINT32 start, | 
 |                                        OPJ_UINT32 end, | 
 |                                        OPJ_UINT32 m, | 
 |                                        __m128 c) | 
 | { | 
 |     __m128* OPJ_RESTRICT vl = (__m128*) l; | 
 |     __m128* OPJ_RESTRICT vw = (__m128*) w; | 
 |     OPJ_UINT32 i; | 
 |     OPJ_UINT32 imax = opj_uint_min(end, m); | 
 |     __m128 tmp1, tmp2, tmp3; | 
 |     if (start == 0) { | 
 |         tmp1 = vl[0]; | 
 |     } else { | 
 |         vw += start * 2; | 
 |         tmp1 = vw[-3]; | 
 |     } | 
 |  | 
 |     i = start; | 
 |  | 
 |     /* 4x loop unrolling */ | 
 |     for (; i + 3 < imax; i += 4) { | 
 |         __m128 tmp4, tmp5, tmp6, tmp7, tmp8, tmp9; | 
 |         tmp2 = vw[-1]; | 
 |         tmp3 = vw[ 0]; | 
 |         tmp4 = vw[ 1]; | 
 |         tmp5 = vw[ 2]; | 
 |         tmp6 = vw[ 3]; | 
 |         tmp7 = vw[ 4]; | 
 |         tmp8 = vw[ 5]; | 
 |         tmp9 = vw[ 6]; | 
 |         vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); | 
 |         vw[ 1] = _mm_add_ps(tmp4, _mm_mul_ps(_mm_add_ps(tmp3, tmp5), c)); | 
 |         vw[ 3] = _mm_add_ps(tmp6, _mm_mul_ps(_mm_add_ps(tmp5, tmp7), c)); | 
 |         vw[ 5] = _mm_add_ps(tmp8, _mm_mul_ps(_mm_add_ps(tmp7, tmp9), c)); | 
 |         tmp1 = tmp9; | 
 |         vw += 8; | 
 |     } | 
 |  | 
 |     for (; i < imax; ++i) { | 
 |         tmp2 = vw[-1]; | 
 |         tmp3 = vw[ 0]; | 
 |         vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); | 
 |         tmp1 = tmp3; | 
 |         vw += 2; | 
 |     } | 
 |     if (m < end) { | 
 |         assert(m + 1 == end); | 
 |         c = _mm_add_ps(c, c); | 
 |         c = _mm_mul_ps(c, vw[-2]); | 
 |         vw[-1] = _mm_add_ps(vw[-1], c); | 
 |     } | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void opj_v4dwt_decode_step1(opj_v4_t* w, | 
 |                                    OPJ_UINT32 start, | 
 |                                    OPJ_UINT32 end, | 
 |                                    const OPJ_FLOAT32 c) | 
 | { | 
 |     OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w; | 
 |     OPJ_UINT32 i; | 
 |     for (i = start; i < end; ++i) { | 
 |         OPJ_FLOAT32 tmp1 = fw[i * 8    ]; | 
 |         OPJ_FLOAT32 tmp2 = fw[i * 8 + 1]; | 
 |         OPJ_FLOAT32 tmp3 = fw[i * 8 + 2]; | 
 |         OPJ_FLOAT32 tmp4 = fw[i * 8 + 3]; | 
 |         fw[i * 8    ] = tmp1 * c; | 
 |         fw[i * 8 + 1] = tmp2 * c; | 
 |         fw[i * 8 + 2] = tmp3 * c; | 
 |         fw[i * 8 + 3] = tmp4 * c; | 
 |     } | 
 | } | 
 |  | 
 | static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, | 
 |                                    OPJ_UINT32 start, | 
 |                                    OPJ_UINT32 end, | 
 |                                    OPJ_UINT32 m, | 
 |                                    OPJ_FLOAT32 c) | 
 | { | 
 |     OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l; | 
 |     OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w; | 
 |     OPJ_UINT32 i; | 
 |     OPJ_UINT32 imax = opj_uint_min(end, m); | 
 |     if (start > 0) { | 
 |         fw += 8 * start; | 
 |         fl = fw - 8; | 
 |     } | 
 |     for (i = start; i < imax; ++i) { | 
 |         OPJ_FLOAT32 tmp1_1 = fl[0]; | 
 |         OPJ_FLOAT32 tmp1_2 = fl[1]; | 
 |         OPJ_FLOAT32 tmp1_3 = fl[2]; | 
 |         OPJ_FLOAT32 tmp1_4 = fl[3]; | 
 |         OPJ_FLOAT32 tmp2_1 = fw[-4]; | 
 |         OPJ_FLOAT32 tmp2_2 = fw[-3]; | 
 |         OPJ_FLOAT32 tmp2_3 = fw[-2]; | 
 |         OPJ_FLOAT32 tmp2_4 = fw[-1]; | 
 |         OPJ_FLOAT32 tmp3_1 = fw[0]; | 
 |         OPJ_FLOAT32 tmp3_2 = fw[1]; | 
 |         OPJ_FLOAT32 tmp3_3 = fw[2]; | 
 |         OPJ_FLOAT32 tmp3_4 = fw[3]; | 
 |         fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c); | 
 |         fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c); | 
 |         fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c); | 
 |         fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c); | 
 |         fl = fw; | 
 |         fw += 8; | 
 |     } | 
 |     if (m < end) { | 
 |         assert(m + 1 == end); | 
 |         c += c; | 
 |         fw[-4] = fw[-4] + fl[0] * c; | 
 |         fw[-3] = fw[-3] + fl[1] * c; | 
 |         fw[-2] = fw[-2] + fl[2] * c; | 
 |         fw[-1] = fw[-1] + fl[3] * c; | 
 |     } | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* <summary>                             */ | 
 | /* Inverse 9-7 wavelet transform in 1-D. */ | 
 | /* </summary>                            */ | 
 | static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt) | 
 | { | 
 |     OPJ_INT32 a, b; | 
 |     if (dwt->cas == 0) { | 
 |         if (!((dwt->dn > 0) || (dwt->sn > 1))) { | 
 |             return; | 
 |         } | 
 |         a = 0; | 
 |         b = 1; | 
 |     } else { | 
 |         if (!((dwt->sn > 0) || (dwt->dn > 1))) { | 
 |             return; | 
 |         } | 
 |         a = 1; | 
 |         b = 0; | 
 |     } | 
 | #ifdef __SSE__ | 
 |     opj_v4dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1, | 
 |                                _mm_set1_ps(opj_K)); | 
 |     opj_v4dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1, | 
 |                                _mm_set1_ps(opj_c13318)); | 
 |     opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, | 
 |                                dwt->win_l_x0, dwt->win_l_x1, | 
 |                                (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), | 
 |                                _mm_set1_ps(opj_dwt_delta)); | 
 |     opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, | 
 |                                dwt->win_h_x0, dwt->win_h_x1, | 
 |                                (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), | 
 |                                _mm_set1_ps(opj_dwt_gamma)); | 
 |     opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, | 
 |                                dwt->win_l_x0, dwt->win_l_x1, | 
 |                                (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), | 
 |                                _mm_set1_ps(opj_dwt_beta)); | 
 |     opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, | 
 |                                dwt->win_h_x0, dwt->win_h_x1, | 
 |                                (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), | 
 |                                _mm_set1_ps(opj_dwt_alpha)); | 
 | #else | 
 |     opj_v4dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1, | 
 |                            opj_K); | 
 |     opj_v4dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1, | 
 |                            opj_c13318); | 
 |     opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, | 
 |                            dwt->win_l_x0, dwt->win_l_x1, | 
 |                            (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), | 
 |                            opj_dwt_delta); | 
 |     opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, | 
 |                            dwt->win_h_x0, dwt->win_h_x1, | 
 |                            (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), | 
 |                            opj_dwt_gamma); | 
 |     opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, | 
 |                            dwt->win_l_x0, dwt->win_l_x1, | 
 |                            (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), | 
 |                            opj_dwt_beta); | 
 |     opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, | 
 |                            dwt->win_h_x0, dwt->win_h_x1, | 
 |                            (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), | 
 |                            opj_dwt_alpha); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | /* <summary>                             */ | 
 | /* Inverse 9-7 wavelet transform in 2-D. */ | 
 | /* </summary>                            */ | 
 | static | 
 | OPJ_BOOL opj_dwt_decode_tile_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, | 
 |                                 OPJ_UINT32 numres) | 
 | { | 
 |     opj_v4dwt_t h; | 
 |     opj_v4dwt_t v; | 
 |  | 
 |     opj_tcd_resolution_t* res = tilec->resolutions; | 
 |  | 
 |     OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - | 
 |                                  res->x0);    /* width of the resolution level computed */ | 
 |     OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - | 
 |                                  res->y0);    /* height of the resolution level computed */ | 
 |  | 
 |     OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - | 
 |                                                                1].x1 - | 
 |                                 tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); | 
 |  | 
 |     OPJ_SIZE_T l_data_size; | 
 |  | 
 |     l_data_size = opj_dwt_max_resolution(res, numres); | 
 |     /* overflow check */ | 
 |     if (l_data_size > (SIZE_MAX - 5U)) { | 
 |         /* FIXME event manager error callback */ | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     l_data_size += 5U; | 
 |     /* overflow check */ | 
 |     if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) { | 
 |         /* FIXME event manager error callback */ | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t)); | 
 |     if (!h.wavelet) { | 
 |         /* FIXME event manager error callback */ | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     v.wavelet = h.wavelet; | 
 |  | 
 |     while (--numres) { | 
 |         OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data; | 
 |         OPJ_UINT32 j; | 
 |  | 
 |         h.sn = (OPJ_INT32)rw; | 
 |         v.sn = (OPJ_INT32)rh; | 
 |  | 
 |         ++res; | 
 |  | 
 |         rw = (OPJ_UINT32)(res->x1 - | 
 |                           res->x0);   /* width of the resolution level computed */ | 
 |         rh = (OPJ_UINT32)(res->y1 - | 
 |                           res->y0);   /* height of the resolution level computed */ | 
 |  | 
 |         h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); | 
 |         h.cas = res->x0 % 2; | 
 |  | 
 |         h.win_l_x0 = 0; | 
 |         h.win_l_x1 = (OPJ_UINT32)h.sn; | 
 |         h.win_h_x0 = 0; | 
 |         h.win_h_x1 = (OPJ_UINT32)h.dn; | 
 |         for (j = 0; j + 3 < rh; j += 4) { | 
 |             OPJ_UINT32 k; | 
 |             opj_v4dwt_interleave_h(&h, aj, w, rh - j); | 
 |             opj_v4dwt_decode(&h); | 
 |  | 
 |             for (k = 0; k < rw; k++) { | 
 |                 aj[k      ] = h.wavelet[k].f[0]; | 
 |                 aj[k + (OPJ_SIZE_T)w  ] = h.wavelet[k].f[1]; | 
 |                 aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2]; | 
 |                 aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3]; | 
 |             } | 
 |  | 
 |             aj += w * 4; | 
 |         } | 
 |  | 
 |         if (j < rh) { | 
 |             OPJ_UINT32 k; | 
 |             opj_v4dwt_interleave_h(&h, aj, w, rh - j); | 
 |             opj_v4dwt_decode(&h); | 
 |             for (k = 0; k < rw; k++) { | 
 |                 switch (rh - j) { | 
 |                 case 3: | 
 |                     aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2]; | 
 |                 /* FALLTHRU */ | 
 |                 case 2: | 
 |                     aj[k + (OPJ_SIZE_T)w  ] = h.wavelet[k].f[1]; | 
 |                 /* FALLTHRU */ | 
 |                 case 1: | 
 |                     aj[k] = h.wavelet[k].f[0]; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); | 
 |         v.cas = res->y0 % 2; | 
 |         v.win_l_x0 = 0; | 
 |         v.win_l_x1 = (OPJ_UINT32)v.sn; | 
 |         v.win_h_x0 = 0; | 
 |         v.win_h_x1 = (OPJ_UINT32)v.dn; | 
 |  | 
 |         aj = (OPJ_FLOAT32*) tilec->data; | 
 |         for (j = rw; j > 3; j -= 4) { | 
 |             OPJ_UINT32 k; | 
 |  | 
 |             opj_v4dwt_interleave_v(&v, aj, w, 4); | 
 |             opj_v4dwt_decode(&v); | 
 |  | 
 |             for (k = 0; k < rh; ++k) { | 
 |                 memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32)); | 
 |             } | 
 |             aj += 4; | 
 |         } | 
 |  | 
 |         if (rw & 0x03) { | 
 |             OPJ_UINT32 k; | 
 |  | 
 |             j = rw & 0x03; | 
 |  | 
 |             opj_v4dwt_interleave_v(&v, aj, w, j); | 
 |             opj_v4dwt_decode(&v); | 
 |  | 
 |             for (k = 0; k < rh; ++k) { | 
 |                 memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], | 
 |                        (OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32)); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     opj_aligned_free(h.wavelet); | 
 |     return OPJ_TRUE; | 
 | } | 
 |  | 
 | static | 
 | OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, | 
 |                                    OPJ_UINT32 numres) | 
 | { | 
 |     opj_sparse_array_int32_t* sa; | 
 |     opj_v4dwt_t h; | 
 |     opj_v4dwt_t v; | 
 |     OPJ_UINT32 resno; | 
 |     /* This value matches the maximum left/right extension given in tables */ | 
 |     /* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */ | 
 |     /* we currently use 3. */ | 
 |     const OPJ_UINT32 filter_width = 4U; | 
 |  | 
 |     opj_tcd_resolution_t* tr = tilec->resolutions; | 
 |     opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); | 
 |  | 
 |     OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - | 
 |                                  tr->x0);    /* width of the resolution level computed */ | 
 |     OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - | 
 |                                  tr->y0);    /* height of the resolution level computed */ | 
 |  | 
 |     OPJ_SIZE_T l_data_size; | 
 |  | 
 |     /* Compute the intersection of the area of interest, expressed in tile coordinates */ | 
 |     /* with the tile coordinates */ | 
 |     OPJ_UINT32 win_tcx0 = tilec->win_x0; | 
 |     OPJ_UINT32 win_tcy0 = tilec->win_y0; | 
 |     OPJ_UINT32 win_tcx1 = tilec->win_x1; | 
 |     OPJ_UINT32 win_tcy1 = tilec->win_y1; | 
 |  | 
 |     if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) { | 
 |         return OPJ_TRUE; | 
 |     } | 
 |  | 
 |     sa = opj_dwt_init_sparse_array(tilec, numres); | 
 |     if (sa == NULL) { | 
 |         return OPJ_FALSE; | 
 |     } | 
 |  | 
 |     if (numres == 1U) { | 
 |         OPJ_BOOL ret = opj_sparse_array_int32_read(sa, | 
 |                        tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, | 
 |                        tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, | 
 |                        tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, | 
 |                        tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, | 
 |                        tilec->data_win, | 
 |                        1, tr_max->win_x1 - tr_max->win_x0, | 
 |                        OPJ_TRUE); | 
 |         assert(ret); | 
 |         OPJ_UNUSED(ret); | 
 |         opj_sparse_array_int32_free(sa); | 
 |         return OPJ_TRUE; | 
 |     } | 
 |  | 
 |     l_data_size = opj_dwt_max_resolution(tr, numres); | 
 |     /* overflow check */ | 
 |     if (l_data_size > (SIZE_MAX - 5U)) { | 
 |         /* FIXME event manager error callback */ | 
 |         opj_sparse_array_int32_free(sa); | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     l_data_size += 5U; | 
 |     /* overflow check */ | 
 |     if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) { | 
 |         /* FIXME event manager error callback */ | 
 |         opj_sparse_array_int32_free(sa); | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t)); | 
 |     if (!h.wavelet) { | 
 |         /* FIXME event manager error callback */ | 
 |         opj_sparse_array_int32_free(sa); | 
 |         return OPJ_FALSE; | 
 |     } | 
 |     v.wavelet = h.wavelet; | 
 |  | 
 |     for (resno = 1; resno < numres; resno ++) { | 
 |         OPJ_UINT32 j; | 
 |         /* Window of interest subband-based coordinates */ | 
 |         OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1; | 
 |         OPJ_UINT32 win_hl_x0, win_hl_x1; | 
 |         OPJ_UINT32 win_lh_y0, win_lh_y1; | 
 |         /* Window of interest tile-resolution-based coordinates */ | 
 |         OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1; | 
 |         /* Tile-resolution subband-based coordinates */ | 
 |         OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0; | 
 |  | 
 |         ++tr; | 
 |  | 
 |         h.sn = (OPJ_INT32)rw; | 
 |         v.sn = (OPJ_INT32)rh; | 
 |  | 
 |         rw = (OPJ_UINT32)(tr->x1 - tr->x0); | 
 |         rh = (OPJ_UINT32)(tr->y1 - tr->y0); | 
 |  | 
 |         h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); | 
 |         h.cas = tr->x0 % 2; | 
 |  | 
 |         v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); | 
 |         v.cas = tr->y0 % 2; | 
 |  | 
 |         /* Get the subband coordinates for the window of interest */ | 
 |         /* LL band */ | 
 |         opj_dwt_get_band_coordinates(tilec, resno, 0, | 
 |                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1, | 
 |                                      &win_ll_x0, &win_ll_y0, | 
 |                                      &win_ll_x1, &win_ll_y1); | 
 |  | 
 |         /* HL band */ | 
 |         opj_dwt_get_band_coordinates(tilec, resno, 1, | 
 |                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1, | 
 |                                      &win_hl_x0, NULL, &win_hl_x1, NULL); | 
 |  | 
 |         /* LH band */ | 
 |         opj_dwt_get_band_coordinates(tilec, resno, 2, | 
 |                                      win_tcx0, win_tcy0, win_tcx1, win_tcy1, | 
 |                                      NULL, &win_lh_y0, NULL, &win_lh_y1); | 
 |  | 
 |         /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */ | 
 |         tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0; | 
 |         tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0; | 
 |         tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0; | 
 |         tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0; | 
 |  | 
 |         /* Subtract the origin of the bands for this tile, to the subwindow */ | 
 |         /* of interest band coordinates, so as to get them relative to the */ | 
 |         /* tile */ | 
 |         win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0); | 
 |         win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0); | 
 |         win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0); | 
 |         win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0); | 
 |         win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0); | 
 |         win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0); | 
 |         win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0); | 
 |         win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0); | 
 |  | 
 |         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1); | 
 |         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1); | 
 |  | 
 |         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1); | 
 |         opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1); | 
 |  | 
 |         /* Compute the tile-resolution-based coordinates for the window of interest */ | 
 |         if (h.cas == 0) { | 
 |             win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1); | 
 |             win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw); | 
 |         } else { | 
 |             win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1); | 
 |             win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw); | 
 |         } | 
 |  | 
 |         if (v.cas == 0) { | 
 |             win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1); | 
 |             win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh); | 
 |         } else { | 
 |             win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1); | 
 |             win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh); | 
 |         } | 
 |  | 
 |         h.win_l_x0 = win_ll_x0; | 
 |         h.win_l_x1 = win_ll_x1; | 
 |         h.win_h_x0 = win_hl_x0; | 
 |         h.win_h_x1 = win_hl_x1; | 
 |         for (j = 0; j + 3 < rh; j += 4) { | 
 |             if ((j + 3 >= win_ll_y0 && j < win_ll_y1) || | 
 |                     (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn && | 
 |                      j < win_lh_y1 + (OPJ_UINT32)v.sn)) { | 
 |                 opj_v4dwt_interleave_partial_h(&h, sa, j, opj_uint_min(4U, rh - j)); | 
 |                 opj_v4dwt_decode(&h); | 
 |                 if (!opj_sparse_array_int32_write(sa, | 
 |                                                   win_tr_x0, j, | 
 |                                                   win_tr_x1, j + 4, | 
 |                                                   (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0], | 
 |                                                   4, 1, OPJ_TRUE)) { | 
 |                     /* FIXME event manager error callback */ | 
 |                     opj_sparse_array_int32_free(sa); | 
 |                     opj_aligned_free(h.wavelet); | 
 |                     return OPJ_FALSE; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         if (j < rh && | 
 |                 ((j + 3 >= win_ll_y0 && j < win_ll_y1) || | 
 |                  (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn && | 
 |                   j < win_lh_y1 + (OPJ_UINT32)v.sn))) { | 
 |             opj_v4dwt_interleave_partial_h(&h, sa, j, rh - j); | 
 |             opj_v4dwt_decode(&h); | 
 |             if (!opj_sparse_array_int32_write(sa, | 
 |                                               win_tr_x0, j, | 
 |                                               win_tr_x1, rh, | 
 |                                               (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0], | 
 |                                               4, 1, OPJ_TRUE)) { | 
 |                 /* FIXME event manager error callback */ | 
 |                 opj_sparse_array_int32_free(sa); | 
 |                 opj_aligned_free(h.wavelet); | 
 |                 return OPJ_FALSE; | 
 |             } | 
 |         } | 
 |  | 
 |         v.win_l_x0 = win_ll_y0; | 
 |         v.win_l_x1 = win_ll_y1; | 
 |         v.win_h_x0 = win_lh_y0; | 
 |         v.win_h_x1 = win_lh_y1; | 
 |         for (j = win_tr_x0; j < win_tr_x1; j += 4) { | 
 |             OPJ_UINT32 nb_elts = opj_uint_min(4U, win_tr_x1 - j); | 
 |  | 
 |             opj_v4dwt_interleave_partial_v(&v, sa, j, nb_elts); | 
 |             opj_v4dwt_decode(&v); | 
 |  | 
 |             if (!opj_sparse_array_int32_write(sa, | 
 |                                               j, win_tr_y0, | 
 |                                               j + nb_elts, win_tr_y1, | 
 |                                               (OPJ_INT32*)&h.wavelet[win_tr_y0].f[0], | 
 |                                               1, 4, OPJ_TRUE)) { | 
 |                 /* FIXME event manager error callback */ | 
 |                 opj_sparse_array_int32_free(sa); | 
 |                 opj_aligned_free(h.wavelet); | 
 |                 return OPJ_FALSE; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     { | 
 |         OPJ_BOOL ret = opj_sparse_array_int32_read(sa, | 
 |                        tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, | 
 |                        tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, | 
 |                        tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, | 
 |                        tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, | 
 |                        tilec->data_win, | 
 |                        1, tr_max->win_x1 - tr_max->win_x0, | 
 |                        OPJ_TRUE); | 
 |         assert(ret); | 
 |         OPJ_UNUSED(ret); | 
 |     } | 
 |     opj_sparse_array_int32_free(sa); | 
 |  | 
 |     opj_aligned_free(h.wavelet); | 
 |     return OPJ_TRUE; | 
 | } | 
 |  | 
 |  | 
 | OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd, | 
 |                              opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, | 
 |                              OPJ_UINT32 numres) | 
 | { | 
 |     if (p_tcd->whole_tile_decoding) { | 
 |         return opj_dwt_decode_tile_97(tilec, numres); | 
 |     } else { | 
 |         return opj_dwt_decode_partial_97(tilec, numres); | 
 |     } | 
 | } |