| /* |
| * The copyright in this software is being made available under the 2-clauses |
| * BSD License, included below. This software may be subject to other third |
| * party and contributor rights, including patent rights, and no such rights |
| * are granted under this license. |
| * |
| * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium |
| * Copyright (c) 2002-2014, Professor Benoit Macq |
| * Copyright (c) 2001-2003, David Janssens |
| * Copyright (c) 2002-2003, Yannick Verschueren |
| * Copyright (c) 2003-2007, Francois-Olivier Devaux |
| * Copyright (c) 2003-2014, Antonin Descampe |
| * Copyright (c) 2005, Herve Drolon, FreeImage Team |
| * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net> |
| * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com> |
| * Copyright (c) 2017, IntoPIX SA <support@intopix.com> |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <assert.h> |
| |
| #define OPJ_SKIP_POISON |
| #include "opj_includes.h" |
| |
| #ifdef __SSE__ |
| #include <xmmintrin.h> |
| #endif |
| #ifdef __SSE2__ |
| #include <emmintrin.h> |
| #endif |
| #ifdef __SSSE3__ |
| #include <tmmintrin.h> |
| #endif |
| #ifdef __AVX2__ |
| #include <immintrin.h> |
| #endif |
| |
| #if defined(__GNUC__) |
| #pragma GCC poison malloc calloc realloc free |
| #endif |
| |
| /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ |
| /*@{*/ |
| |
| #ifdef __AVX2__ |
| /** Number of int32 values in a AVX2 register */ |
| #define VREG_INT_COUNT 8 |
| #else |
| /** Number of int32 values in a SSE2 register */ |
| #define VREG_INT_COUNT 4 |
| #endif |
| |
| /** Number of columns that we can process in parallel in the vertical pass */ |
| #define PARALLEL_COLS_53 (2*VREG_INT_COUNT) |
| |
| /** @name Local data structures */ |
| /*@{*/ |
| |
| typedef struct dwt_local { |
| OPJ_INT32* mem; |
| OPJ_SIZE_T mem_count; |
| OPJ_INT32 dn; /* number of elements in high pass band */ |
| OPJ_INT32 sn; /* number of elements in low pass band */ |
| OPJ_INT32 cas; /* 0 = start on even coord, 1 = start on odd coord */ |
| } opj_dwt_t; |
| |
| #define NB_ELTS_V8 8 |
| |
| typedef union { |
| OPJ_FLOAT32 f[NB_ELTS_V8]; |
| } opj_v8_t; |
| |
| typedef struct v8dwt_local { |
| opj_v8_t* wavelet ; |
| OPJ_INT32 dn ; /* number of elements in high pass band */ |
| OPJ_INT32 sn ; /* number of elements in low pass band */ |
| OPJ_INT32 cas ; /* 0 = start on even coord, 1 = start on odd coord */ |
| OPJ_UINT32 win_l_x0; /* start coord in low pass band */ |
| OPJ_UINT32 win_l_x1; /* end coord in low pass band */ |
| OPJ_UINT32 win_h_x0; /* start coord in high pass band */ |
| OPJ_UINT32 win_h_x1; /* end coord in high pass band */ |
| } opj_v8dwt_t ; |
| |
| /* From table F.4 from the standard */ |
| static const OPJ_FLOAT32 opj_dwt_alpha = -1.586134342f; |
| static const OPJ_FLOAT32 opj_dwt_beta = -0.052980118f; |
| static const OPJ_FLOAT32 opj_dwt_gamma = 0.882911075f; |
| static const OPJ_FLOAT32 opj_dwt_delta = 0.443506852f; |
| |
| static const OPJ_FLOAT32 opj_K = 1.230174105f; |
| static const OPJ_FLOAT32 opj_invK = (OPJ_FLOAT32)(1.0 / 1.230174105); |
| |
| /*@}*/ |
| |
| /** @name Local static functions */ |
| /*@{*/ |
| |
| /** |
| Forward lazy transform (horizontal) |
| */ |
| static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a, |
| OPJ_INT32 * OPJ_RESTRICT b, |
| OPJ_INT32 dn, |
| OPJ_INT32 sn, OPJ_INT32 cas); |
| |
| /** |
| Forward 9-7 wavelet transform in 1-D |
| */ |
| static void opj_dwt_encode_1_real(void *a, OPJ_INT32 dn, OPJ_INT32 sn, |
| OPJ_INT32 cas); |
| /** |
| Explicit calculation of the Quantization Stepsizes |
| */ |
| static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, |
| opj_stepsize_t *bandno_stepsize); |
| /** |
| Inverse wavelet transform in 2-D. |
| */ |
| static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, |
| const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i); |
| |
| static OPJ_BOOL opj_dwt_decode_partial_tile( |
| opj_tcd_tilecomp_t* tilec, |
| OPJ_UINT32 numres); |
| |
| /* Forward transform, for the vertical pass, processing cols columns */ |
| /* where cols <= NB_ELTS_V8 */ |
| /* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */ |
| typedef void (*opj_encode_and_deinterleave_v_fnptr_type)( |
| void *array, |
| void *tmp, |
| OPJ_UINT32 height, |
| OPJ_BOOL even, |
| OPJ_UINT32 stride_width, |
| OPJ_UINT32 cols); |
| |
| /* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */ |
| typedef void (*opj_encode_and_deinterleave_h_one_row_fnptr_type)( |
| void *row, |
| void *tmp, |
| OPJ_UINT32 width, |
| OPJ_BOOL even); |
| |
| static OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp, |
| opj_tcd_tilecomp_t * tilec, |
| opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v, |
| opj_encode_and_deinterleave_h_one_row_fnptr_type |
| p_encode_and_deinterleave_h_one_row); |
| |
| static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, |
| OPJ_UINT32 i); |
| |
| /* <summary> */ |
| /* Inverse 9-7 wavelet transform in 1-D. */ |
| /* </summary> */ |
| |
| /*@}*/ |
| |
| /*@}*/ |
| |
| #define IDX_S(i) (i)*2 |
| #define IDX_D(i) 1 + (i)* 2 |
| #define UNDERFLOW_SN(i) ((i) >= sn&&sn>0) |
| #define UNDERFLOW_DN(i) ((i) >= dn&&dn>0) |
| #define OVERFLOW_S(i) (IDX_S(i) >= a_count) |
| #define OVERFLOW_D(i) (IDX_D(i) >= a_count) |
| |
| #define OPJ_S(i) a[IDX_S(i)] |
| #define OPJ_D(i) a[IDX_D(i)] |
| #define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i))) |
| #define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i))) |
| /* new */ |
| #define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i))) |
| #define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i))) |
| |
| /* <summary> */ |
| /* This table contains the norms of the 5-3 wavelets for different bands. */ |
| /* </summary> */ |
| /* FIXME! the array should really be extended up to 33 resolution levels */ |
| /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
| static const OPJ_FLOAT64 opj_dwt_norms[4][10] = { |
| {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, |
| {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
| {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
| {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} |
| }; |
| |
| /* <summary> */ |
| /* This table contains the norms of the 9-7 wavelets for different bands. */ |
| /* </summary> */ |
| /* FIXME! the array should really be extended up to 33 resolution levels */ |
| /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
| static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = { |
| {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, |
| {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
| {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
| {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} |
| }; |
| |
| /* |
| ========================================================== |
| local functions |
| ========================================================== |
| */ |
| |
| /* <summary> */ |
| /* Forward lazy transform (horizontal). */ |
| /* </summary> */ |
| static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a, |
| OPJ_INT32 * OPJ_RESTRICT b, |
| OPJ_INT32 dn, |
| OPJ_INT32 sn, OPJ_INT32 cas) |
| { |
| OPJ_INT32 i; |
| OPJ_INT32 * OPJ_RESTRICT l_dest = b; |
| const OPJ_INT32 * OPJ_RESTRICT l_src = a + cas; |
| |
| for (i = 0; i < sn; ++i) { |
| *l_dest++ = *l_src; |
| l_src += 2; |
| } |
| |
| l_dest = b + sn; |
| l_src = a + 1 - cas; |
| |
| for (i = 0; i < dn; ++i) { |
| *l_dest++ = *l_src; |
| l_src += 2; |
| } |
| } |
| |
| #ifdef STANDARD_SLOW_VERSION |
| /* <summary> */ |
| /* Inverse lazy transform (horizontal). */ |
| /* </summary> */ |
| static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a) |
| { |
| const OPJ_INT32 *ai = a; |
| OPJ_INT32 *bi = h->mem + h->cas; |
| OPJ_INT32 i = h->sn; |
| while (i--) { |
| *bi = *(ai++); |
| bi += 2; |
| } |
| ai = a + h->sn; |
| bi = h->mem + 1 - h->cas; |
| i = h->dn ; |
| while (i--) { |
| *bi = *(ai++); |
| bi += 2; |
| } |
| } |
| |
| /* <summary> */ |
| /* Inverse lazy transform (vertical). */ |
| /* </summary> */ |
| static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) |
| { |
| const OPJ_INT32 *ai = a; |
| OPJ_INT32 *bi = v->mem + v->cas; |
| OPJ_INT32 i = v->sn; |
| while (i--) { |
| *bi = *ai; |
| bi += 2; |
| ai += x; |
| } |
| ai = a + (v->sn * (OPJ_SIZE_T)x); |
| bi = v->mem + 1 - v->cas; |
| i = v->dn ; |
| while (i--) { |
| *bi = *ai; |
| bi += 2; |
| ai += x; |
| } |
| } |
| |
| #endif /* STANDARD_SLOW_VERSION */ |
| |
| #ifdef STANDARD_SLOW_VERSION |
| /* <summary> */ |
| /* Inverse 5-3 wavelet transform in 1-D. */ |
| /* </summary> */ |
| static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, |
| OPJ_INT32 sn, OPJ_INT32 cas) |
| { |
| OPJ_INT32 i; |
| |
| if (!cas) { |
| if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| for (i = 0; i < sn; i++) { |
| OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| } |
| for (i = 0; i < dn; i++) { |
| OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| } |
| } |
| } else { |
| if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
| OPJ_S(0) /= 2; |
| } else { |
| for (i = 0; i < sn; i++) { |
| OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
| } |
| for (i = 0; i < dn; i++) { |
| OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
| } |
| } |
| } |
| } |
| |
| static void opj_dwt_decode_1(const opj_dwt_t *v) |
| { |
| opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas); |
| } |
| |
| #endif /* STANDARD_SLOW_VERSION */ |
| |
| #if !defined(STANDARD_SLOW_VERSION) |
| static void opj_idwt53_h_cas0(OPJ_INT32* tmp, |
| const OPJ_INT32 sn, |
| const OPJ_INT32 len, |
| OPJ_INT32* tiledp) |
| { |
| OPJ_INT32 i, j; |
| const OPJ_INT32* in_even = &tiledp[0]; |
| const OPJ_INT32* in_odd = &tiledp[sn]; |
| |
| #ifdef TWO_PASS_VERSION |
| /* For documentation purpose: performs lifting in two iterations, */ |
| /* but without explicit interleaving */ |
| |
| assert(len > 1); |
| |
| /* Even */ |
| tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1); |
| for (i = 2, j = 0; i <= len - 2; i += 2, j++) { |
| tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2); |
| } |
| if (len & 1) { /* if len is odd */ |
| tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1); |
| } |
| |
| /* Odd */ |
| for (i = 1, j = 0; i < len - 1; i += 2, j++) { |
| tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1); |
| } |
| if (!(len & 1)) { /* if len is even */ |
| tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2]; |
| } |
| #else |
| OPJ_INT32 d1c, d1n, s1n, s0c, s0n; |
| |
| assert(len > 1); |
| |
| /* Improved version of the TWO_PASS_VERSION: */ |
| /* Performs lifting in one single iteration. Saves memory */ |
| /* accesses and explicit interleaving. */ |
| s1n = in_even[0]; |
| d1n = in_odd[0]; |
| s0n = s1n - ((d1n + 1) >> 1); |
| |
| for (i = 0, j = 1; i < (len - 3); i += 2, j++) { |
| d1c = d1n; |
| s0c = s0n; |
| |
| s1n = in_even[j]; |
| d1n = in_odd[j]; |
| |
| s0n = s1n - ((d1c + d1n + 2) >> 2); |
| |
| tmp[i ] = s0c; |
| tmp[i + 1] = d1c + ((s0c + s0n) >> 1); |
| } |
| |
| tmp[i] = s0n; |
| |
| if (len & 1) { |
| tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1); |
| tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); |
| } else { |
| tmp[len - 1] = d1n + s0n; |
| } |
| #endif |
| memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
| } |
| |
| static void opj_idwt53_h_cas1(OPJ_INT32* tmp, |
| const OPJ_INT32 sn, |
| const OPJ_INT32 len, |
| OPJ_INT32* tiledp) |
| { |
| OPJ_INT32 i, j; |
| const OPJ_INT32* in_even = &tiledp[sn]; |
| const OPJ_INT32* in_odd = &tiledp[0]; |
| |
| #ifdef TWO_PASS_VERSION |
| /* For documentation purpose: performs lifting in two iterations, */ |
| /* but without explicit interleaving */ |
| |
| assert(len > 2); |
| |
| /* Odd */ |
| for (i = 1, j = 0; i < len - 1; i += 2, j++) { |
| tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2); |
| } |
| if (!(len & 1)) { |
| tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1); |
| } |
| |
| /* Even */ |
| tmp[0] = in_even[0] + tmp[1]; |
| for (i = 2, j = 1; i < len - 1; i += 2, j++) { |
| tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1); |
| } |
| if (len & 1) { |
| tmp[len - 1] = in_even[len / 2] + tmp[len - 2]; |
| } |
| #else |
| OPJ_INT32 s1, s2, dc, dn; |
| |
| assert(len > 2); |
| |
| /* Improved version of the TWO_PASS_VERSION: */ |
| /* Performs lifting in one single iteration. Saves memory */ |
| /* accesses and explicit interleaving. */ |
| |
| s1 = in_even[1]; |
| dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); |
| tmp[0] = in_even[0] + dc; |
| |
| for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
| |
| s2 = in_even[j + 1]; |
| |
| dn = in_odd[j] - ((s1 + s2 + 2) >> 2); |
| tmp[i ] = dc; |
| tmp[i + 1] = s1 + ((dn + dc) >> 1); |
| |
| dc = dn; |
| s1 = s2; |
| } |
| |
| tmp[i] = dc; |
| |
| if (!(len & 1)) { |
| dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1); |
| tmp[len - 2] = s1 + ((dn + dc) >> 1); |
| tmp[len - 1] = dn; |
| } else { |
| tmp[len - 1] = s1 + dc; |
| } |
| #endif |
| memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
| } |
| |
| |
| #endif /* !defined(STANDARD_SLOW_VERSION) */ |
| |
| /* <summary> */ |
| /* Inverse 5-3 wavelet transform in 1-D for one row. */ |
| /* </summary> */ |
| /* Performs interleave, inverse wavelet transform and copy back to buffer */ |
| static void opj_idwt53_h(const opj_dwt_t *dwt, |
| OPJ_INT32* tiledp) |
| { |
| #ifdef STANDARD_SLOW_VERSION |
| /* For documentation purpose */ |
| opj_dwt_interleave_h(dwt, tiledp); |
| opj_dwt_decode_1(dwt); |
| memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32)); |
| #else |
| const OPJ_INT32 sn = dwt->sn; |
| const OPJ_INT32 len = sn + dwt->dn; |
| if (dwt->cas == 0) { /* Left-most sample is on even coordinate */ |
| if (len > 1) { |
| opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp); |
| } else { |
| /* Unmodified value */ |
| } |
| } else { /* Left-most sample is on odd coordinate */ |
| if (len == 1) { |
| tiledp[0] /= 2; |
| } else if (len == 2) { |
| OPJ_INT32* out = dwt->mem; |
| const OPJ_INT32* in_even = &tiledp[sn]; |
| const OPJ_INT32* in_odd = &tiledp[0]; |
| out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); |
| out[0] = in_even[0] + out[1]; |
| memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
| } else if (len > 2) { |
| opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp); |
| } |
| } |
| #endif |
| } |
| |
| #if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) |
| |
| /* Conveniency macros to improve the readabilty of the formulas */ |
| #if __AVX2__ |
| #define VREG __m256i |
| #define LOAD_CST(x) _mm256_set1_epi32(x) |
| #define LOAD(x) _mm256_load_si256((const VREG*)(x)) |
| #define LOADU(x) _mm256_loadu_si256((const VREG*)(x)) |
| #define STORE(x,y) _mm256_store_si256((VREG*)(x),(y)) |
| #define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y)) |
| #define ADD(x,y) _mm256_add_epi32((x),(y)) |
| #define SUB(x,y) _mm256_sub_epi32((x),(y)) |
| #define SAR(x,y) _mm256_srai_epi32((x),(y)) |
| #else |
| #define VREG __m128i |
| #define LOAD_CST(x) _mm_set1_epi32(x) |
| #define LOAD(x) _mm_load_si128((const VREG*)(x)) |
| #define LOADU(x) _mm_loadu_si128((const VREG*)(x)) |
| #define STORE(x,y) _mm_store_si128((VREG*)(x),(y)) |
| #define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y)) |
| #define ADD(x,y) _mm_add_epi32((x),(y)) |
| #define SUB(x,y) _mm_sub_epi32((x),(y)) |
| #define SAR(x,y) _mm_srai_epi32((x),(y)) |
| #endif |
| #define ADD3(x,y,z) ADD(ADD(x,y),z) |
| |
| static |
| void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col, |
| const OPJ_INT32* tmp, |
| OPJ_INT32 len, |
| OPJ_SIZE_T stride) |
| { |
| OPJ_INT32 i; |
| for (i = 0; i < len; ++i) { |
| /* A memcpy(&tiledp_col[i * stride + 0], |
| &tmp[PARALLEL_COLS_53 * i + 0], |
| PARALLEL_COLS_53 * sizeof(OPJ_INT32)) |
| would do but would be a tiny bit slower. |
| We can take here advantage of our knowledge of alignment */ |
| STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0], |
| LOAD(&tmp[PARALLEL_COLS_53 * i + 0])); |
| STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT], |
| LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT])); |
| } |
| } |
| |
| /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or |
| * 16 in AVX2, when top-most pixel is on even coordinate */ |
| static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2( |
| OPJ_INT32* tmp, |
| const OPJ_INT32 sn, |
| const OPJ_INT32 len, |
| OPJ_INT32* tiledp_col, |
| const OPJ_SIZE_T stride) |
| { |
| const OPJ_INT32* in_even = &tiledp_col[0]; |
| const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| |
| OPJ_INT32 i; |
| OPJ_SIZE_T j; |
| VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0; |
| VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1; |
| const VREG two = LOAD_CST(2); |
| |
| assert(len > 1); |
| #if __AVX2__ |
| assert(PARALLEL_COLS_53 == 16); |
| assert(VREG_INT_COUNT == 8); |
| #else |
| assert(PARALLEL_COLS_53 == 8); |
| assert(VREG_INT_COUNT == 4); |
| #endif |
| |
| /* Note: loads of input even/odd values must be done in a unaligned */ |
| /* fashion. But stores in tmp can be done with aligned store, since */ |
| /* the temporary buffer is properly aligned */ |
| assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); |
| |
| s1n_0 = LOADU(in_even + 0); |
| s1n_1 = LOADU(in_even + VREG_INT_COUNT); |
| d1n_0 = LOADU(in_odd); |
| d1n_1 = LOADU(in_odd + VREG_INT_COUNT); |
| |
| /* s0n = s1n - ((d1n + 1) >> 1); <==> */ |
| /* s0n = s1n - ((d1n + d1n + 2) >> 2); */ |
| s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); |
| s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); |
| |
| for (i = 0, j = 1; i < (len - 3); i += 2, j++) { |
| d1c_0 = d1n_0; |
| s0c_0 = s0n_0; |
| d1c_1 = d1n_1; |
| s0c_1 = s0n_1; |
| |
| s1n_0 = LOADU(in_even + j * stride); |
| s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT); |
| d1n_0 = LOADU(in_odd + j * stride); |
| d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT); |
| |
| /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/ |
| s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2)); |
| s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2)); |
| |
| STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0); |
| STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1); |
| |
| /* d1c + ((s0c + s0n) >> 1) */ |
| STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, |
| ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1))); |
| STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, |
| ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1))); |
| } |
| |
| STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0); |
| STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1); |
| |
| if (len & 1) { |
| VREG tmp_len_minus_1; |
| s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride); |
| /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ |
| tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); |
| STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1); |
| /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ |
| STORE(tmp + PARALLEL_COLS_53 * (len - 2), |
| ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1))); |
| |
| s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT); |
| /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ |
| tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); |
| STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
| tmp_len_minus_1); |
| /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ |
| STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, |
| ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1))); |
| |
| |
| } else { |
| STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, |
| ADD(d1n_0, s0n_0)); |
| STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
| ADD(d1n_1, s0n_1)); |
| } |
| |
| opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); |
| } |
| |
| |
| /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or |
| * 16 in AVX2, when top-most pixel is on odd coordinate */ |
| static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2( |
| OPJ_INT32* tmp, |
| const OPJ_INT32 sn, |
| const OPJ_INT32 len, |
| OPJ_INT32* tiledp_col, |
| const OPJ_SIZE_T stride) |
| { |
| OPJ_INT32 i; |
| OPJ_SIZE_T j; |
| |
| VREG s1_0, s2_0, dc_0, dn_0; |
| VREG s1_1, s2_1, dc_1, dn_1; |
| const VREG two = LOAD_CST(2); |
| |
| const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| const OPJ_INT32* in_odd = &tiledp_col[0]; |
| |
| assert(len > 2); |
| #if __AVX2__ |
| assert(PARALLEL_COLS_53 == 16); |
| assert(VREG_INT_COUNT == 8); |
| #else |
| assert(PARALLEL_COLS_53 == 8); |
| assert(VREG_INT_COUNT == 4); |
| #endif |
| |
| /* Note: loads of input even/odd values must be done in a unaligned */ |
| /* fashion. But stores in tmp can be done with aligned store, since */ |
| /* the temporary buffer is properly aligned */ |
| assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); |
| |
| s1_0 = LOADU(in_even + stride); |
| /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ |
| dc_0 = SUB(LOADU(in_odd + 0), |
| SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2)); |
| STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0)); |
| |
| s1_1 = LOADU(in_even + stride + VREG_INT_COUNT); |
| /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ |
| dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT), |
| SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2)); |
| STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT, |
| ADD(LOADU(in_even + VREG_INT_COUNT), dc_1)); |
| |
| for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
| |
| s2_0 = LOADU(in_even + (j + 1) * stride); |
| s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT); |
| |
| /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */ |
| dn_0 = SUB(LOADU(in_odd + j * stride), |
| SAR(ADD3(s1_0, s2_0, two), 2)); |
| dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT), |
| SAR(ADD3(s1_1, s2_1, two), 2)); |
| |
| STORE(tmp + PARALLEL_COLS_53 * i, dc_0); |
| STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); |
| |
| /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */ |
| STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, |
| ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); |
| STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, |
| ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); |
| |
| dc_0 = dn_0; |
| s1_0 = s2_0; |
| dc_1 = dn_1; |
| s1_1 = s2_1; |
| } |
| STORE(tmp + PARALLEL_COLS_53 * i, dc_0); |
| STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); |
| |
| if (!(len & 1)) { |
| /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */ |
| dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride), |
| SAR(ADD3(s1_0, s1_0, two), 2)); |
| dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT), |
| SAR(ADD3(s1_1, s1_1, two), 2)); |
| |
| /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */ |
| STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0, |
| ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); |
| STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, |
| ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); |
| |
| STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0); |
| STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1); |
| } else { |
| STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0)); |
| STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
| ADD(s1_1, dc_1)); |
| } |
| |
| opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); |
| } |
| |
| #undef VREG |
| #undef LOAD_CST |
| #undef LOADU |
| #undef LOAD |
| #undef STORE |
| #undef STOREU |
| #undef ADD |
| #undef ADD3 |
| #undef SUB |
| #undef SAR |
| |
| #endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */ |
| |
| #if !defined(STANDARD_SLOW_VERSION) |
| /** Vertical inverse 5x3 wavelet transform for one column, when top-most |
| * pixel is on even coordinate */ |
| static void opj_idwt3_v_cas0(OPJ_INT32* tmp, |
| const OPJ_INT32 sn, |
| const OPJ_INT32 len, |
| OPJ_INT32* tiledp_col, |
| const OPJ_SIZE_T stride) |
| { |
| OPJ_INT32 i, j; |
| OPJ_INT32 d1c, d1n, s1n, s0c, s0n; |
| |
| assert(len > 1); |
| |
| /* Performs lifting in one single iteration. Saves memory */ |
| /* accesses and explicit interleaving. */ |
| |
| s1n = tiledp_col[0]; |
| d1n = tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| s0n = s1n - ((d1n + 1) >> 1); |
| |
| for (i = 0, j = 0; i < (len - 3); i += 2, j++) { |
| d1c = d1n; |
| s0c = s0n; |
| |
| s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride]; |
| d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride]; |
| |
| s0n = s1n - ((d1c + d1n + 2) >> 2); |
| |
| tmp[i ] = s0c; |
| tmp[i + 1] = d1c + ((s0c + s0n) >> 1); |
| } |
| |
| tmp[i] = s0n; |
| |
| if (len & 1) { |
| tmp[len - 1] = |
| tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] - |
| ((d1n + 1) >> 1); |
| tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); |
| } else { |
| tmp[len - 1] = d1n + s0n; |
| } |
| |
| for (i = 0; i < len; ++i) { |
| tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; |
| } |
| } |
| |
| |
| /** Vertical inverse 5x3 wavelet transform for one column, when top-most |
| * pixel is on odd coordinate */ |
| static void opj_idwt3_v_cas1(OPJ_INT32* tmp, |
| const OPJ_INT32 sn, |
| const OPJ_INT32 len, |
| OPJ_INT32* tiledp_col, |
| const OPJ_SIZE_T stride) |
| { |
| OPJ_INT32 i, j; |
| OPJ_INT32 s1, s2, dc, dn; |
| const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| const OPJ_INT32* in_odd = &tiledp_col[0]; |
| |
| assert(len > 2); |
| |
| /* Performs lifting in one single iteration. Saves memory */ |
| /* accesses and explicit interleaving. */ |
| |
| s1 = in_even[stride]; |
| dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); |
| tmp[0] = in_even[0] + dc; |
| for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
| |
| s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride]; |
| |
| dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2); |
| tmp[i ] = dc; |
| tmp[i + 1] = s1 + ((dn + dc) >> 1); |
| |
| dc = dn; |
| s1 = s2; |
| } |
| tmp[i] = dc; |
| if (!(len & 1)) { |
| dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1); |
| tmp[len - 2] = s1 + ((dn + dc) >> 1); |
| tmp[len - 1] = dn; |
| } else { |
| tmp[len - 1] = s1 + dc; |
| } |
| |
| for (i = 0; i < len; ++i) { |
| tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; |
| } |
| } |
| #endif /* !defined(STANDARD_SLOW_VERSION) */ |
| |
| /* <summary> */ |
| /* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */ |
| /* </summary> */ |
| /* Performs interleave, inverse wavelet transform and copy back to buffer */ |
| static void opj_idwt53_v(const opj_dwt_t *dwt, |
| OPJ_INT32* tiledp_col, |
| OPJ_SIZE_T stride, |
| OPJ_INT32 nb_cols) |
| { |
| #ifdef STANDARD_SLOW_VERSION |
| /* For documentation purpose */ |
| OPJ_INT32 k, c; |
| for (c = 0; c < nb_cols; c ++) { |
| opj_dwt_interleave_v(dwt, tiledp_col + c, stride); |
| opj_dwt_decode_1(dwt); |
| for (k = 0; k < dwt->sn + dwt->dn; ++k) { |
| tiledp_col[c + k * stride] = dwt->mem[k]; |
| } |
| } |
| #else |
| const OPJ_INT32 sn = dwt->sn; |
| const OPJ_INT32 len = sn + dwt->dn; |
| if (dwt->cas == 0) { |
| /* If len == 1, unmodified value */ |
| |
| #if (defined(__SSE2__) || defined(__AVX2__)) |
| if (len > 1 && nb_cols == PARALLEL_COLS_53) { |
| /* Same as below general case, except that thanks to SSE2/AVX2 */ |
| /* we can efficiently process 8/16 columns in parallel */ |
| opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); |
| return; |
| } |
| #endif |
| if (len > 1) { |
| OPJ_INT32 c; |
| for (c = 0; c < nb_cols; c++, tiledp_col++) { |
| opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride); |
| } |
| return; |
| } |
| } else { |
| if (len == 1) { |
| OPJ_INT32 c; |
| for (c = 0; c < nb_cols; c++, tiledp_col++) { |
| tiledp_col[0] /= 2; |
| } |
| return; |
| } |
| |
| if (len == 2) { |
| OPJ_INT32 c; |
| OPJ_INT32* out = dwt->mem; |
| for (c = 0; c < nb_cols; c++, tiledp_col++) { |
| OPJ_INT32 i; |
| const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| const OPJ_INT32* in_odd = &tiledp_col[0]; |
| |
| out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); |
| out[0] = in_even[0] + out[1]; |
| |
| for (i = 0; i < len; ++i) { |
| tiledp_col[(OPJ_SIZE_T)i * stride] = out[i]; |
| } |
| } |
| |
| return; |
| } |
| |
| #if (defined(__SSE2__) || defined(__AVX2__)) |
| if (len > 2 && nb_cols == PARALLEL_COLS_53) { |
| /* Same as below general case, except that thanks to SSE2/AVX2 */ |
| /* we can efficiently process 8/16 columns in parallel */ |
| opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); |
| return; |
| } |
| #endif |
| if (len > 2) { |
| OPJ_INT32 c; |
| for (c = 0; c < nb_cols; c++, tiledp_col++) { |
| opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride); |
| } |
| return; |
| } |
| } |
| #endif |
| } |
| |
| #if 0 |
| static void opj_dwt_encode_step1(OPJ_FLOAT32* fw, |
| OPJ_UINT32 end, |
| const OPJ_FLOAT32 c) |
| { |
| OPJ_UINT32 i = 0; |
| for (; i < end; ++i) { |
| fw[0] *= c; |
| fw += 2; |
| } |
| } |
| #else |
| static void opj_dwt_encode_step1_combined(OPJ_FLOAT32* fw, |
| OPJ_UINT32 iters_c1, |
| OPJ_UINT32 iters_c2, |
| const OPJ_FLOAT32 c1, |
| const OPJ_FLOAT32 c2) |
| { |
| OPJ_UINT32 i = 0; |
| const OPJ_UINT32 iters_common = opj_uint_min(iters_c1, iters_c2); |
| assert((((OPJ_SIZE_T)fw) & 0xf) == 0); |
| assert(opj_int_abs((OPJ_INT32)iters_c1 - (OPJ_INT32)iters_c2) <= 1); |
| for (; i + 3 < iters_common; i += 4) { |
| #ifdef __SSE__ |
| const __m128 vcst = _mm_set_ps(c2, c1, c2, c1); |
| *(__m128*)fw = _mm_mul_ps(*(__m128*)fw, vcst); |
| *(__m128*)(fw + 4) = _mm_mul_ps(*(__m128*)(fw + 4), vcst); |
| #else |
| fw[0] *= c1; |
| fw[1] *= c2; |
| fw[2] *= c1; |
| fw[3] *= c2; |
| fw[4] *= c1; |
| fw[5] *= c2; |
| fw[6] *= c1; |
| fw[7] *= c2; |
| #endif |
| fw += 8; |
| } |
| for (; i < iters_common; i++) { |
| fw[0] *= c1; |
| fw[1] *= c2; |
| fw += 2; |
| } |
| if (i < iters_c1) { |
| fw[0] *= c1; |
| } else if (i < iters_c2) { |
| fw[1] *= c2; |
| } |
| } |
| |
| #endif |
| |
| static void opj_dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw, |
| OPJ_UINT32 end, |
| OPJ_UINT32 m, |
| OPJ_FLOAT32 c) |
| { |
| OPJ_UINT32 i; |
| OPJ_UINT32 imax = opj_uint_min(end, m); |
| if (imax > 0) { |
| fw[-1] += (fl[0] + fw[0]) * c; |
| fw += 2; |
| i = 1; |
| for (; i + 3 < imax; i += 4) { |
| fw[-1] += (fw[-2] + fw[0]) * c; |
| fw[1] += (fw[0] + fw[2]) * c; |
| fw[3] += (fw[2] + fw[4]) * c; |
| fw[5] += (fw[4] + fw[6]) * c; |
| fw += 8; |
| } |
| for (; i < imax; ++i) { |
| fw[-1] += (fw[-2] + fw[0]) * c; |
| fw += 2; |
| } |
| } |
| if (m < end) { |
| assert(m + 1 == end); |
| fw[-1] += (2 * fw[-2]) * c; |
| } |
| } |
| |
| static void opj_dwt_encode_1_real(void *aIn, OPJ_INT32 dn, OPJ_INT32 sn, |
| OPJ_INT32 cas) |
| { |
| OPJ_FLOAT32* w = (OPJ_FLOAT32*)aIn; |
| OPJ_INT32 a, b; |
| assert(dn + sn > 1); |
| if (cas == 0) { |
| a = 0; |
| b = 1; |
| } else { |
| a = 1; |
| b = 0; |
| } |
| opj_dwt_encode_step2(w + a, w + b + 1, |
| (OPJ_UINT32)dn, |
| (OPJ_UINT32)opj_int_min(dn, sn - b), |
| opj_dwt_alpha); |
| opj_dwt_encode_step2(w + b, w + a + 1, |
| (OPJ_UINT32)sn, |
| (OPJ_UINT32)opj_int_min(sn, dn - a), |
| opj_dwt_beta); |
| opj_dwt_encode_step2(w + a, w + b + 1, |
| (OPJ_UINT32)dn, |
| (OPJ_UINT32)opj_int_min(dn, sn - b), |
| opj_dwt_gamma); |
| opj_dwt_encode_step2(w + b, w + a + 1, |
| (OPJ_UINT32)sn, |
| (OPJ_UINT32)opj_int_min(sn, dn - a), |
| opj_dwt_delta); |
| #if 0 |
| opj_dwt_encode_step1(w + b, (OPJ_UINT32)dn, |
| opj_K); |
| opj_dwt_encode_step1(w + a, (OPJ_UINT32)sn, |
| opj_invK); |
| #else |
| if (a == 0) { |
| opj_dwt_encode_step1_combined(w, |
| (OPJ_UINT32)sn, |
| (OPJ_UINT32)dn, |
| opj_invK, |
| opj_K); |
| } else { |
| opj_dwt_encode_step1_combined(w, |
| (OPJ_UINT32)dn, |
| (OPJ_UINT32)sn, |
| opj_K, |
| opj_invK); |
| } |
| #endif |
| } |
| |
| static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, |
| opj_stepsize_t *bandno_stepsize) |
| { |
| OPJ_INT32 p, n; |
| p = opj_int_floorlog2(stepsize) - 13; |
| n = 11 - opj_int_floorlog2(stepsize); |
| bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; |
| bandno_stepsize->expn = numbps - p; |
| } |
| |
| /* |
| ========================================================== |
| DWT interface |
| ========================================================== |
| */ |
| |
| /** Process one line for the horizontal pass of the 5x3 forward transform */ |
| static |
| void opj_dwt_encode_and_deinterleave_h_one_row(void* rowIn, |
| void* tmpIn, |
| OPJ_UINT32 width, |
| OPJ_BOOL even) |
| { |
| OPJ_INT32* OPJ_RESTRICT row = (OPJ_INT32*)rowIn; |
| OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32*)tmpIn; |
| const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1); |
| const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn); |
| |
| if (even) { |
| if (width > 1) { |
| OPJ_INT32 i; |
| for (i = 0; i < sn - 1; i++) { |
| tmp[sn + i] = row[2 * i + 1] - ((row[(i) * 2] + row[(i + 1) * 2]) >> 1); |
| } |
| if ((width % 2) == 0) { |
| tmp[sn + i] = row[2 * i + 1] - row[(i) * 2]; |
| } |
| row[0] += (tmp[sn] + tmp[sn] + 2) >> 2; |
| for (i = 1; i < dn; i++) { |
| row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + i] + 2) >> 2); |
| } |
| if ((width % 2) == 1) { |
| row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + (i - 1)] + 2) >> 2); |
| } |
| memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32)); |
| } |
| } else { |
| if (width == 1) { |
| row[0] *= 2; |
| } else { |
| OPJ_INT32 i; |
| tmp[sn + 0] = row[0] - row[1]; |
| for (i = 1; i < sn; i++) { |
| tmp[sn + i] = row[2 * i] - ((row[2 * i + 1] + row[2 * (i - 1) + 1]) >> 1); |
| } |
| if ((width % 2) == 1) { |
| tmp[sn + i] = row[2 * i] - row[2 * (i - 1) + 1]; |
| } |
| |
| for (i = 0; i < dn - 1; i++) { |
| row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i + 1] + 2) >> 2); |
| } |
| if ((width % 2) == 0) { |
| row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i] + 2) >> 2); |
| } |
| memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32)); |
| } |
| } |
| } |
| |
| /** Process one line for the horizontal pass of the 9x7 forward transform */ |
| static |
| void opj_dwt_encode_and_deinterleave_h_one_row_real(void* rowIn, |
| void* tmpIn, |
| OPJ_UINT32 width, |
| OPJ_BOOL even) |
| { |
| OPJ_FLOAT32* OPJ_RESTRICT row = (OPJ_FLOAT32*)rowIn; |
| OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32*)tmpIn; |
| const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1); |
| const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn); |
| if (width == 1) { |
| return; |
| } |
| memcpy(tmp, row, width * sizeof(OPJ_FLOAT32)); |
| opj_dwt_encode_1_real(tmp, dn, sn, even ? 0 : 1); |
| opj_dwt_deinterleave_h((OPJ_INT32 * OPJ_RESTRICT)tmp, |
| (OPJ_INT32 * OPJ_RESTRICT)row, |
| dn, sn, even ? 0 : 1); |
| } |
| |
| typedef struct { |
| opj_dwt_t h; |
| OPJ_UINT32 rw; /* Width of the resolution to process */ |
| OPJ_UINT32 w; /* Width of tiledp */ |
| OPJ_INT32 * OPJ_RESTRICT tiledp; |
| OPJ_UINT32 min_j; |
| OPJ_UINT32 max_j; |
| opj_encode_and_deinterleave_h_one_row_fnptr_type p_function; |
| } opj_dwt_encode_h_job_t; |
| |
| static void opj_dwt_encode_h_func(void* user_data, opj_tls_t* tls) |
| { |
| OPJ_UINT32 j; |
| opj_dwt_encode_h_job_t* job; |
| (void)tls; |
| |
| job = (opj_dwt_encode_h_job_t*)user_data; |
| for (j = job->min_j; j < job->max_j; j++) { |
| OPJ_INT32* OPJ_RESTRICT aj = job->tiledp + j * job->w; |
| (*job->p_function)(aj, job->h.mem, job->rw, |
| job->h.cas == 0 ? OPJ_TRUE : OPJ_FALSE); |
| } |
| |
| opj_aligned_free(job->h.mem); |
| opj_free(job); |
| } |
| |
| typedef struct { |
| opj_dwt_t v; |
| OPJ_UINT32 rh; |
| OPJ_UINT32 w; |
| OPJ_INT32 * OPJ_RESTRICT tiledp; |
| OPJ_UINT32 min_j; |
| OPJ_UINT32 max_j; |
| opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v; |
| } opj_dwt_encode_v_job_t; |
| |
| static void opj_dwt_encode_v_func(void* user_data, opj_tls_t* tls) |
| { |
| OPJ_UINT32 j; |
| opj_dwt_encode_v_job_t* job; |
| (void)tls; |
| |
| job = (opj_dwt_encode_v_job_t*)user_data; |
| for (j = job->min_j; j + NB_ELTS_V8 - 1 < job->max_j; j += NB_ELTS_V8) { |
| (*job->p_encode_and_deinterleave_v)(job->tiledp + j, |
| job->v.mem, |
| job->rh, |
| job->v.cas == 0, |
| job->w, |
| NB_ELTS_V8); |
| } |
| if (j < job->max_j) { |
| (*job->p_encode_and_deinterleave_v)(job->tiledp + j, |
| job->v.mem, |
| job->rh, |
| job->v.cas == 0, |
| job->w, |
| job->max_j - j); |
| } |
| |
| opj_aligned_free(job->v.mem); |
| opj_free(job); |
| } |
| |
| /** Fetch up to cols <= NB_ELTS_V8 for each line, and put them in tmpOut */ |
| /* that has a NB_ELTS_V8 interleave factor. */ |
| static void opj_dwt_fetch_cols_vertical_pass(const void *arrayIn, |
| void *tmpOut, |
| OPJ_UINT32 height, |
| OPJ_UINT32 stride_width, |
| OPJ_UINT32 cols) |
| { |
| const OPJ_INT32* OPJ_RESTRICT array = (const OPJ_INT32 * OPJ_RESTRICT)arrayIn; |
| OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpOut; |
| if (cols == NB_ELTS_V8) { |
| OPJ_UINT32 k; |
| for (k = 0; k < height; ++k) { |
| memcpy(tmp + NB_ELTS_V8 * k, |
| array + k * stride_width, |
| NB_ELTS_V8 * sizeof(OPJ_INT32)); |
| } |
| } else { |
| OPJ_UINT32 k; |
| for (k = 0; k < height; ++k) { |
| OPJ_UINT32 c; |
| for (c = 0; c < cols; c++) { |
| tmp[NB_ELTS_V8 * k + c] = array[c + k * stride_width]; |
| } |
| for (; c < NB_ELTS_V8; c++) { |
| tmp[NB_ELTS_V8 * k + c] = 0; |
| } |
| } |
| } |
| } |
| |
| /* Deinterleave result of forward transform, where cols <= NB_ELTS_V8 */ |
| /* and src contains NB_ELTS_V8 consecutive values for up to NB_ELTS_V8 */ |
| /* columns. */ |
| static INLINE void opj_dwt_deinterleave_v_cols( |
| const OPJ_INT32 * OPJ_RESTRICT src, |
| OPJ_INT32 * OPJ_RESTRICT dst, |
| OPJ_INT32 dn, |
| OPJ_INT32 sn, |
| OPJ_UINT32 stride_width, |
| OPJ_INT32 cas, |
| OPJ_UINT32 cols) |
| { |
| OPJ_INT32 k; |
| OPJ_INT32 i = sn; |
| OPJ_INT32 * OPJ_RESTRICT l_dest = dst; |
| const OPJ_INT32 * OPJ_RESTRICT l_src = src + cas * NB_ELTS_V8; |
| OPJ_UINT32 c; |
| |
| for (k = 0; k < 2; k++) { |
| while (i--) { |
| if (cols == NB_ELTS_V8) { |
| memcpy(l_dest, l_src, NB_ELTS_V8 * sizeof(OPJ_INT32)); |
| } else { |
| c = 0; |
| switch (cols) { |
| case 7: |
| l_dest[c] = l_src[c]; |
| c++; /* fallthru */ |
| case 6: |
| l_dest[c] = l_src[c]; |
| c++; /* fallthru */ |
| case 5: |
| l_dest[c] = l_src[c]; |
| c++; /* fallthru */ |
| case 4: |
| l_dest[c] = l_src[c]; |
| c++; /* fallthru */ |
| case 3: |
| l_dest[c] = l_src[c]; |
| c++; /* fallthru */ |
| case 2: |
| l_dest[c] = l_src[c]; |
| c++; /* fallthru */ |
| default: |
| l_dest[c] = l_src[c]; |
| break; |
| } |
| } |
| l_dest += stride_width; |
| l_src += 2 * NB_ELTS_V8; |
| } |
| |
| l_dest = dst + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)stride_width; |
| l_src = src + (1 - cas) * NB_ELTS_V8; |
| i = dn; |
| } |
| } |
| |
| |
| /* Forward 5-3 transform, for the vertical pass, processing cols columns */ |
| /* where cols <= NB_ELTS_V8 */ |
| static void opj_dwt_encode_and_deinterleave_v( |
| void *arrayIn, |
| void *tmpIn, |
| OPJ_UINT32 height, |
| OPJ_BOOL even, |
| OPJ_UINT32 stride_width, |
| OPJ_UINT32 cols) |
| { |
| OPJ_INT32* OPJ_RESTRICT array = (OPJ_INT32 * OPJ_RESTRICT)arrayIn; |
| OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpIn; |
| const OPJ_UINT32 sn = (height + (even ? 1 : 0)) >> 1; |
| const OPJ_UINT32 dn = height - sn; |
| |
| opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols); |
| |
| #define OPJ_Sc(i) tmp[(i)*2* NB_ELTS_V8 + c] |
| #define OPJ_Dc(i) tmp[((1+(i)*2))* NB_ELTS_V8 + c] |
| |
| #ifdef __SSE2__ |
| if (height == 1) { |
| if (!even) { |
| OPJ_UINT32 c; |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| tmp[c] *= 2; |
| } |
| } |
| } else if (even) { |
| OPJ_UINT32 c; |
| OPJ_UINT32 i; |
| i = 0; |
| if (i + 1 < sn) { |
| __m128i xmm_Si_0 = *(const __m128i*)(tmp + 4 * 0); |
| __m128i xmm_Si_1 = *(const __m128i*)(tmp + 4 * 1); |
| for (; i + 1 < sn; i++) { |
| __m128i xmm_Sip1_0 = *(const __m128i*)(tmp + |
| (i + 1) * 2 * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Sip1_1 = *(const __m128i*)(tmp + |
| (i + 1) * 2 * NB_ELTS_V8 + 4 * 1); |
| __m128i xmm_Di_0 = *(const __m128i*)(tmp + |
| (1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Di_1 = *(const __m128i*)(tmp + |
| (1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
| xmm_Di_0 = _mm_sub_epi32(xmm_Di_0, |
| _mm_srai_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), 1)); |
| xmm_Di_1 = _mm_sub_epi32(xmm_Di_1, |
| _mm_srai_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), 1)); |
| *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0; |
| *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1; |
| xmm_Si_0 = xmm_Sip1_0; |
| xmm_Si_1 = xmm_Sip1_1; |
| } |
| } |
| if (((height) % 2) == 0) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Dc(i) -= OPJ_Sc(i); |
| } |
| } |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2; |
| } |
| i = 1; |
| if (i < dn) { |
| __m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 + |
| (i - 1) * 2) * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 + |
| (i - 1) * 2) * NB_ELTS_V8 + 4 * 1); |
| const __m128i xmm_two = _mm_set1_epi32(2); |
| for (; i < dn; i++) { |
| __m128i xmm_Di_0 = *(const __m128i*)(tmp + |
| (1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Di_1 = *(const __m128i*)(tmp + |
| (1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
| __m128i xmm_Si_0 = *(const __m128i*)(tmp + |
| (i * 2) * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Si_1 = *(const __m128i*)(tmp + |
| (i * 2) * NB_ELTS_V8 + 4 * 1); |
| xmm_Si_0 = _mm_add_epi32(xmm_Si_0, |
| _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_0, xmm_Di_0), xmm_two), 2)); |
| xmm_Si_1 = _mm_add_epi32(xmm_Si_1, |
| _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_1, xmm_Di_1), xmm_two), 2)); |
| *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0; |
| *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1; |
| xmm_Dim1_0 = xmm_Di_0; |
| xmm_Dim1_1 = xmm_Di_1; |
| } |
| } |
| if (((height) % 2) == 1) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2; |
| } |
| } |
| } else { |
| OPJ_UINT32 c; |
| OPJ_UINT32 i; |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(0) -= OPJ_Dc(0); |
| } |
| i = 1; |
| if (i < sn) { |
| __m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 + |
| (i - 1) * 2) * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 + |
| (i - 1) * 2) * NB_ELTS_V8 + 4 * 1); |
| for (; i < sn; i++) { |
| __m128i xmm_Di_0 = *(const __m128i*)(tmp + |
| (1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Di_1 = *(const __m128i*)(tmp + |
| (1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
| __m128i xmm_Si_0 = *(const __m128i*)(tmp + |
| (i * 2) * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Si_1 = *(const __m128i*)(tmp + |
| (i * 2) * NB_ELTS_V8 + 4 * 1); |
| xmm_Si_0 = _mm_sub_epi32(xmm_Si_0, |
| _mm_srai_epi32(_mm_add_epi32(xmm_Di_0, xmm_Dim1_0), 1)); |
| xmm_Si_1 = _mm_sub_epi32(xmm_Si_1, |
| _mm_srai_epi32(_mm_add_epi32(xmm_Di_1, xmm_Dim1_1), 1)); |
| *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0; |
| *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1; |
| xmm_Dim1_0 = xmm_Di_0; |
| xmm_Dim1_1 = xmm_Di_1; |
| } |
| } |
| if (((height) % 2) == 1) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(i) -= OPJ_Dc(i - 1); |
| } |
| } |
| i = 0; |
| if (i + 1 < dn) { |
| __m128i xmm_Si_0 = *((const __m128i*)(tmp + 4 * 0)); |
| __m128i xmm_Si_1 = *((const __m128i*)(tmp + 4 * 1)); |
| const __m128i xmm_two = _mm_set1_epi32(2); |
| for (; i + 1 < dn; i++) { |
| __m128i xmm_Sip1_0 = *(const __m128i*)(tmp + |
| (i + 1) * 2 * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Sip1_1 = *(const __m128i*)(tmp + |
| (i + 1) * 2 * NB_ELTS_V8 + 4 * 1); |
| __m128i xmm_Di_0 = *(const __m128i*)(tmp + |
| (1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
| __m128i xmm_Di_1 = *(const __m128i*)(tmp + |
| (1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
| xmm_Di_0 = _mm_add_epi32(xmm_Di_0, |
| _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), xmm_two), 2)); |
| xmm_Di_1 = _mm_add_epi32(xmm_Di_1, |
| _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), xmm_two), 2)); |
| *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0; |
| *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1; |
| xmm_Si_0 = xmm_Sip1_0; |
| xmm_Si_1 = xmm_Sip1_1; |
| } |
| } |
| if (((height) % 2) == 0) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2; |
| } |
| } |
| } |
| #else |
| if (even) { |
| OPJ_UINT32 c; |
| if (height > 1) { |
| OPJ_UINT32 i; |
| for (i = 0; i + 1 < sn; i++) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Dc(i) -= (OPJ_Sc(i) + OPJ_Sc(i + 1)) >> 1; |
| } |
| } |
| if (((height) % 2) == 0) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Dc(i) -= OPJ_Sc(i); |
| } |
| } |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2; |
| } |
| for (i = 1; i < dn; i++) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i) + 2) >> 2; |
| } |
| } |
| if (((height) % 2) == 1) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2; |
| } |
| } |
| } |
| } else { |
| OPJ_UINT32 c; |
| if (height == 1) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(0) *= 2; |
| } |
| } else { |
| OPJ_UINT32 i; |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(0) -= OPJ_Dc(0); |
| } |
| for (i = 1; i < sn; i++) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(i) -= (OPJ_Dc(i) + OPJ_Dc(i - 1)) >> 1; |
| } |
| } |
| if (((height) % 2) == 1) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Sc(i) -= OPJ_Dc(i - 1); |
| } |
| } |
| for (i = 0; i + 1 < dn; i++) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i + 1) + 2) >> 2; |
| } |
| } |
| if (((height) % 2) == 0) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2; |
| } |
| } |
| } |
| } |
| #endif |
| |
| if (cols == NB_ELTS_V8) { |
| opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn, |
| stride_width, even ? 0 : 1, NB_ELTS_V8); |
| } else { |
| opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn, |
| stride_width, even ? 0 : 1, cols); |
| } |
| } |
| |
| static void opj_v8dwt_encode_step1(OPJ_FLOAT32* fw, |
| OPJ_UINT32 end, |
| const OPJ_FLOAT32 cst) |
| { |
| OPJ_UINT32 i; |
| #ifdef __SSE__ |
| __m128* vw = (__m128*) fw; |
| const __m128 vcst = _mm_set1_ps(cst); |
| for (i = 0; i < end; ++i) { |
| vw[0] = _mm_mul_ps(vw[0], vcst); |
| vw[1] = _mm_mul_ps(vw[1], vcst); |
| vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
| } |
| #else |
| OPJ_UINT32 c; |
| for (i = 0; i < end; ++i) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| fw[i * 2 * NB_ELTS_V8 + c] *= cst; |
| } |
| } |
| #endif |
| } |
| |
| static void opj_v8dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw, |
| OPJ_UINT32 end, |
| OPJ_UINT32 m, |
| OPJ_FLOAT32 cst) |
| { |
| OPJ_UINT32 i; |
| OPJ_UINT32 imax = opj_uint_min(end, m); |
| #ifdef __SSE__ |
| __m128* vw = (__m128*) fw; |
| __m128 vcst = _mm_set1_ps(cst); |
| if (imax > 0) { |
| __m128* vl = (__m128*) fl; |
| vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vl[0], vw[0]), vcst)); |
| vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vl[1], vw[1]), vcst)); |
| vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
| i = 1; |
| |
| for (; i < imax; ++i) { |
| vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vw[-4], vw[0]), vcst)); |
| vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vw[-3], vw[1]), vcst)); |
| vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
| } |
| } |
| if (m < end) { |
| assert(m + 1 == end); |
| vcst = _mm_add_ps(vcst, vcst); |
| vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(vw[-4], vcst)); |
| vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(vw[-3], vcst)); |
| } |
| #else |
| OPJ_INT32 c; |
| if (imax > 0) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| fw[-1 * NB_ELTS_V8 + c] += (fl[0 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) * |
| cst; |
| } |
| fw += 2 * NB_ELTS_V8; |
| i = 1; |
| for (; i < imax; ++i) { |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| fw[-1 * NB_ELTS_V8 + c] += (fw[-2 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) * |
| cst; |
| } |
| fw += 2 * NB_ELTS_V8; |
| } |
| } |
| if (m < end) { |
| assert(m + 1 == end); |
| for (c = 0; c < NB_ELTS_V8; c++) { |
| fw[-1 * NB_ELTS_V8 + c] += (2 * fw[-2 * NB_ELTS_V8 + c]) * cst; |
| } |
| } |
| #endif |
| } |
| |
| /* Forward 9-7 transform, for the vertical pass, processing cols columns */ |
| /* where cols <= NB_ELTS_V8 */ |
| static void opj_dwt_encode_and_deinterleave_v_real( |
| void *arrayIn, |
| void *tmpIn, |
| OPJ_UINT32 height, |
| OPJ_BOOL even, |
| OPJ_UINT32 stride_width, |
| OPJ_UINT32 cols) |
| { |
| OPJ_FLOAT32* OPJ_RESTRICT array = (OPJ_FLOAT32 * OPJ_RESTRICT)arrayIn; |
| OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32 * OPJ_RESTRICT)tmpIn; |
| const OPJ_INT32 sn = (OPJ_INT32)((height + (even ? 1 : 0)) >> 1); |
| const OPJ_INT32 dn = (OPJ_INT32)(height - (OPJ_UINT32)sn); |
| OPJ_INT32 a, b; |
| |
| if (height == 1) { |
| return; |
| } |
| |
| opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols); |
| |
| if (even) { |
| a = 0; |
| b = 1; |
| } else { |
| a = 1; |
| b = 0; |
| } |
| opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8, |
| tmp + (b + 1) * NB_ELTS_V8, |
| (OPJ_UINT32)dn, |
| (OPJ_UINT32)opj_int_min(dn, sn - b), |
| opj_dwt_alpha); |
| opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8, |
| tmp + (a + 1) * NB_ELTS_V8, |
| (OPJ_UINT32)sn, |
| (OPJ_UINT32)opj_int_min(sn, dn - a), |
| opj_dwt_beta); |
| opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8, |
| tmp + (b + 1) * NB_ELTS_V8, |
| (OPJ_UINT32)dn, |
| (OPJ_UINT32)opj_int_min(dn, sn - b), |
| opj_dwt_gamma); |
| opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8, |
| tmp + (a + 1) * NB_ELTS_V8, |
| (OPJ_UINT32)sn, |
| (OPJ_UINT32)opj_int_min(sn, dn - a), |
| opj_dwt_delta); |
| opj_v8dwt_encode_step1(tmp + b * NB_ELTS_V8, (OPJ_UINT32)dn, |
| opj_K); |
| opj_v8dwt_encode_step1(tmp + a * NB_ELTS_V8, (OPJ_UINT32)sn, |
| opj_invK); |
| |
| |
| if (cols == NB_ELTS_V8) { |
| opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp, |
| (OPJ_INT32*)array, |
| (OPJ_INT32)dn, (OPJ_INT32)sn, |
| stride_width, even ? 0 : 1, NB_ELTS_V8); |
| } else { |
| opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp, |
| (OPJ_INT32*)array, |
| (OPJ_INT32)dn, (OPJ_INT32)sn, |
| stride_width, even ? 0 : 1, cols); |
| } |
| } |
| |
| |
| /* <summary> */ |
| /* Forward 5-3 wavelet transform in 2-D. */ |
| /* </summary> */ |
| static INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp, |
| opj_tcd_tilecomp_t * tilec, |
| opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v, |
| opj_encode_and_deinterleave_h_one_row_fnptr_type |
| p_encode_and_deinterleave_h_one_row) |
| { |
| OPJ_INT32 i; |
| OPJ_INT32 *bj = 00; |
| OPJ_UINT32 w; |
| OPJ_INT32 l; |
| |
| OPJ_SIZE_T l_data_size; |
| |
| opj_tcd_resolution_t * l_cur_res = 0; |
| opj_tcd_resolution_t * l_last_res = 0; |
| const int num_threads = opj_thread_pool_get_thread_count(tp); |
| OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; |
| |
| w = (OPJ_UINT32)(tilec->x1 - tilec->x0); |
| l = (OPJ_INT32)tilec->numresolutions - 1; |
| |
| l_cur_res = tilec->resolutions + l; |
| l_last_res = l_cur_res - 1; |
| |
| l_data_size = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions); |
| /* overflow check */ |
| if (l_data_size > (SIZE_MAX / (NB_ELTS_V8 * sizeof(OPJ_INT32)))) { |
| /* FIXME event manager error callback */ |
| return OPJ_FALSE; |
| } |
| l_data_size *= NB_ELTS_V8 * sizeof(OPJ_INT32); |
| bj = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
| /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */ |
| /* in that case, so do not error out */ |
| if (l_data_size != 0 && ! bj) { |
| return OPJ_FALSE; |
| } |
| i = l; |
| |
| while (i--) { |
| OPJ_UINT32 j; |
| OPJ_UINT32 rw; /* width of the resolution level computed */ |
| OPJ_UINT32 rh; /* height of the resolution level computed */ |
| OPJ_UINT32 |
| rw1; /* width of the resolution level once lower than computed one */ |
| OPJ_UINT32 |
| rh1; /* height of the resolution level once lower than computed one */ |
| OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ |
| OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ |
| OPJ_INT32 dn, sn; |
| |
| rw = (OPJ_UINT32)(l_cur_res->x1 - l_cur_res->x0); |
| rh = (OPJ_UINT32)(l_cur_res->y1 - l_cur_res->y0); |
| rw1 = (OPJ_UINT32)(l_last_res->x1 - l_last_res->x0); |
| rh1 = (OPJ_UINT32)(l_last_res->y1 - l_last_res->y0); |
| |
| cas_row = l_cur_res->x0 & 1; |
| cas_col = l_cur_res->y0 & 1; |
| |
| sn = (OPJ_INT32)rh1; |
| dn = (OPJ_INT32)(rh - rh1); |
| |
| /* Perform vertical pass */ |
| if (num_threads <= 1 || rw < 2 * NB_ELTS_V8) { |
| for (j = 0; j + NB_ELTS_V8 - 1 < rw; j += NB_ELTS_V8) { |
| p_encode_and_deinterleave_v(tiledp + j, |
| bj, |
| rh, |
| cas_col == 0, |
| w, |
| NB_ELTS_V8); |
| } |
| if (j < rw) { |
| p_encode_and_deinterleave_v(tiledp + j, |
| bj, |
| rh, |
| cas_col == 0, |
| w, |
| rw - j); |
| } |
| } else { |
| OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
| OPJ_UINT32 step_j; |
| |
| if (rw < num_jobs) { |
| num_jobs = rw; |
| } |
| step_j = ((rw / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8; |
| |
| for (j = 0; j < num_jobs; j++) { |
| opj_dwt_encode_v_job_t* job; |
| |
| job = (opj_dwt_encode_v_job_t*) opj_malloc(sizeof(opj_dwt_encode_v_job_t)); |
| if (!job) { |
| opj_thread_pool_wait_completion(tp, 0); |
| opj_aligned_free(bj); |
| return OPJ_FALSE; |
| } |
| job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
| if (!job->v.mem) { |
| opj_thread_pool_wait_completion(tp, 0); |
| opj_free(job); |
| opj_aligned_free(bj); |
| return OPJ_FALSE; |
| } |
| job->v.dn = dn; |
| job->v.sn = sn; |
| job->v.cas = cas_col; |
| job->rh = rh; |
| job->w = w; |
| job->tiledp = tiledp; |
| job->min_j = j * step_j; |
| job->max_j = (j + 1 == num_jobs) ? rw : (j + 1) * step_j; |
| job->p_encode_and_deinterleave_v = p_encode_and_deinterleave_v; |
| opj_thread_pool_submit_job(tp, opj_dwt_encode_v_func, job); |
| } |
| opj_thread_pool_wait_completion(tp, 0); |
| } |
| |
| sn = (OPJ_INT32)rw1; |
| dn = (OPJ_INT32)(rw - rw1); |
| |
| /* Perform horizontal pass */ |
| if (num_threads <= 1 || rh <= 1) { |
| for (j = 0; j < rh; j++) { |
| OPJ_INT32* OPJ_RESTRICT aj = tiledp + j * w; |
| (*p_encode_and_deinterleave_h_one_row)(aj, bj, rw, |
| cas_row == 0 ? OPJ_TRUE : OPJ_FALSE); |
| } |
| } else { |
| OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
| OPJ_UINT32 step_j; |
| |
| if (rh < num_jobs) { |
| num_jobs = rh; |
| } |
| step_j = (rh / num_jobs); |
| |
| for (j = 0; j < num_jobs; j++) { |
| opj_dwt_encode_h_job_t* job; |
| |
| job = (opj_dwt_encode_h_job_t*) opj_malloc(sizeof(opj_dwt_encode_h_job_t)); |
| if (!job) { |
| opj_thread_pool_wait_completion(tp, 0); |
| opj_aligned_free(bj); |
| return OPJ_FALSE; |
| } |
| job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
| if (!job->h.mem) { |
| opj_thread_pool_wait_completion(tp, 0); |
| opj_free(job); |
| opj_aligned_free(bj); |
| return OPJ_FALSE; |
| } |
| job->h.dn = dn; |
| job->h.sn = sn; |
| job->h.cas = cas_row; |
| job->rw = rw; |
| job->w = w; |
| job->tiledp = tiledp; |
| job->min_j = j * step_j; |
| job->max_j = (j + 1U) * step_j; /* this can overflow */ |
| if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
| job->max_j = rh; |
| } |
| job->p_function = p_encode_and_deinterleave_h_one_row; |
| opj_thread_pool_submit_job(tp, opj_dwt_encode_h_func, job); |
| } |
| opj_thread_pool_wait_completion(tp, 0); |
| } |
| |
| l_cur_res = l_last_res; |
| |
| --l_last_res; |
| } |
| |
| opj_aligned_free(bj); |
| return OPJ_TRUE; |
| } |
| |
| /* Forward 5-3 wavelet transform in 2-D. */ |
| /* </summary> */ |
| OPJ_BOOL opj_dwt_encode(opj_tcd_t *p_tcd, |
| opj_tcd_tilecomp_t * tilec) |
| { |
| return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec, |
| opj_dwt_encode_and_deinterleave_v, |
| opj_dwt_encode_and_deinterleave_h_one_row); |
| } |
| |
| /* <summary> */ |
| /* Inverse 5-3 wavelet transform in 2-D. */ |
| /* </summary> */ |
| OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec, |
| OPJ_UINT32 numres) |
| { |
| if (p_tcd->whole_tile_decoding) { |
| return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres); |
| } else { |
| return opj_dwt_decode_partial_tile(tilec, numres); |
| } |
| } |
| |
| /* <summary> */ |
| /* Get norm of 5-3 wavelet. */ |
| /* </summary> */ |
| OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) |
| { |
| /* FIXME ! This is just a band-aid to avoid a buffer overflow */ |
| /* but the array should really be extended up to 33 resolution levels */ |
| /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
| if (orient == 0 && level >= 10) { |
| level = 9; |
| } else if (orient > 0 && level >= 9) { |
| level = 8; |
| } |
| return opj_dwt_norms[orient][level]; |
| } |
| |
| /* <summary> */ |
| /* Forward 9-7 wavelet transform in 2-D. */ |
| /* </summary> */ |
| OPJ_BOOL opj_dwt_encode_real(opj_tcd_t *p_tcd, |
| opj_tcd_tilecomp_t * tilec) |
| { |
| return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec, |
| opj_dwt_encode_and_deinterleave_v_real, |
| opj_dwt_encode_and_deinterleave_h_one_row_real); |
| } |
| |
| /* <summary> */ |
| /* Get norm of 9-7 wavelet. */ |
| /* </summary> */ |
| OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) |
| { |
| /* FIXME ! This is just a band-aid to avoid a buffer overflow */ |
| /* but the array should really be extended up to 33 resolution levels */ |
| /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
| if (orient == 0 && level >= 10) { |
| level = 9; |
| } else if (orient > 0 && level >= 9) { |
| level = 8; |
| } |
| return opj_dwt_norms_real[orient][level]; |
| } |
| |
| void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) |
| { |
| OPJ_UINT32 numbands, bandno; |
| numbands = 3 * tccp->numresolutions - 2; |
| for (bandno = 0; bandno < numbands; bandno++) { |
| OPJ_FLOAT64 stepsize; |
| OPJ_UINT32 resno, level, orient, gain; |
| |
| resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); |
| orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); |
| level = tccp->numresolutions - 1 - resno; |
| gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || |
| (orient == 2)) ? 1 : 2)); |
| if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { |
| stepsize = 1.0; |
| } else { |
| OPJ_FLOAT64 norm = opj_dwt_getnorm_real(level, orient); |
| stepsize = (1 << (gain)) / norm; |
| } |
| opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), |
| (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]); |
| } |
| } |
| |
| /* <summary> */ |
| /* Determine maximum computed resolution level for inverse wavelet transform */ |
| /* </summary> */ |
| static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, |
| OPJ_UINT32 i) |
| { |
| OPJ_UINT32 mr = 0; |
| OPJ_UINT32 w; |
| while (--i) { |
| ++r; |
| if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) { |
| mr = w ; |
| } |
| if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) { |
| mr = w ; |
| } |
| } |
| return mr ; |
| } |
| |
| typedef struct { |
| opj_dwt_t h; |
| OPJ_UINT32 rw; |
| OPJ_UINT32 w; |
| OPJ_INT32 * OPJ_RESTRICT tiledp; |
| OPJ_UINT32 min_j; |
| OPJ_UINT32 max_j; |
| } opj_dwt_decode_h_job_t; |
| |
| static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls) |
| { |
| OPJ_UINT32 j; |
| opj_dwt_decode_h_job_t* job; |
| (void)tls; |
| |
| job = (opj_dwt_decode_h_job_t*)user_data; |
| for (j = job->min_j; j < job->max_j; j++) { |
| opj_idwt53_h(&job->h, &job->tiledp[j * job->w]); |
| } |
| |
| opj_aligned_free(job->h.mem); |
| opj_free(job); |
| } |
| |
| typedef struct { |
| opj_dwt_t v; |
| OPJ_UINT32 rh; |
| OPJ_UINT32 w; |
| OPJ_INT32 * OPJ_RESTRICT tiledp; |
| OPJ_UINT32 min_j; |
| OPJ_UINT32 max_j; |
| } opj_dwt_decode_v_job_t; |
| |
| static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls) |
| { |
| OPJ_UINT32 j; |
| opj_dwt_decode_v_job_t* job; |
| (void)tls; |
| |
| job = (opj_dwt_decode_v_job_t*)user_data; |
| for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j; |
| j += PARALLEL_COLS_53) { |
| opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, |
| PARALLEL_COLS_53); |
| } |
| if (j < job->max_j) |
| opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, |
| (OPJ_INT32)(job->max_j - j)); |
| |
| opj_aligned_free(job->v.mem); |
| opj_free(job); |
| } |
| |
| |
| /* <summary> */ |
| /* Inverse wavelet transform in 2-D. */ |
| /* </summary> */ |
| static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, |
| const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) |
| { |
| opj_dwt_t h; |
| opj_dwt_t v; |
| |
| opj_tcd_resolution_t* tr = tilec->resolutions; |
| |
| OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
| tr->x0); /* width of the resolution level computed */ |
| OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
| tr->y0); /* height of the resolution level computed */ |
| |
| OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - |
| 1].x1 - |
| tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); |
| OPJ_SIZE_T h_mem_size; |
| int num_threads; |
| |
| if (numres == 1U) { |
| return OPJ_TRUE; |
| } |
| num_threads = opj_thread_pool_get_thread_count(tp); |
| h.mem_count = opj_dwt_max_resolution(tr, numres); |
| /* overflow check */ |
| if (h.mem_count > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) { |
| /* FIXME event manager error callback */ |
| return OPJ_FALSE; |
| } |
| /* We need PARALLEL_COLS_53 times the height of the array, */ |
| /* since for the vertical pass */ |
| /* we process PARALLEL_COLS_53 columns at a time */ |
| h_mem_size = h.mem_count * PARALLEL_COLS_53 * sizeof(OPJ_INT32); |
| h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
| if (! h.mem) { |
| /* FIXME event manager error callback */ |
| return OPJ_FALSE; |
| } |
| |
| v.mem_count = h.mem_count; |
| v.mem = h.mem; |
| |
| while (--numres) { |
| OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; |
| OPJ_UINT32 j; |
| |
| ++tr; |
| h.sn = (OPJ_INT32)rw; |
| v.sn = (OPJ_INT32)rh; |
| |
| rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
| rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
| |
| h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
| h.cas = tr->x0 % 2; |
| |
| if (num_threads <= 1 || rh <= 1) { |
| for (j = 0; j < rh; ++j) { |
| opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]); |
| } |
| } else { |
| OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
| OPJ_UINT32 step_j; |
| |
| if (rh < num_jobs) { |
| num_jobs = rh; |
| } |
| step_j = (rh / num_jobs); |
| |
| for (j = 0; j < num_jobs; j++) { |
| opj_dwt_decode_h_job_t* job; |
| |
| job = (opj_dwt_decode_h_job_t*) opj_malloc(sizeof(opj_dwt_decode_h_job_t)); |
| if (!job) { |
| /* It would be nice to fallback to single thread case, but */ |
| /* unfortunately some jobs may be launched and have modified */ |
| /* tiledp, so it is not practical to recover from that error */ |
| /* FIXME event manager error callback */ |
| opj_thread_pool_wait_completion(tp, 0); |
| opj_aligned_free(h.mem); |
| return OPJ_FALSE; |
| } |
| job->h = h; |
| job->rw = rw; |
| job->w = w; |
| job->tiledp = tiledp; |
| job->min_j = j * step_j; |
| job->max_j = (j + 1U) * step_j; /* this can overflow */ |
| if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
| job->max_j = rh; |
| } |
| job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
| if (!job->h.mem) { |
| /* FIXME event manager error callback */ |
| opj_thread_pool_wait_completion(tp, 0); |
| opj_free(job); |
| opj_aligned_free(h.mem); |
| return OPJ_FALSE; |
| } |
| opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job); |
| } |
| opj_thread_pool_wait_completion(tp, 0); |
| } |
| |
| v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
| v.cas = tr->y0 % 2; |
| |
| if (num_threads <= 1 || rw <= 1) { |
| for (j = 0; j + PARALLEL_COLS_53 <= rw; |
| j += PARALLEL_COLS_53) { |
| opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53); |
| } |
| if (j < rw) { |
| opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j)); |
| } |
| } else { |
| OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
| OPJ_UINT32 step_j; |
| |
| if (rw < num_jobs) { |
| num_jobs = rw; |
| } |
| step_j = (rw / num_jobs); |
| |
| for (j = 0; j < num_jobs; j++) { |
| opj_dwt_decode_v_job_t* job; |
| |
| job = (opj_dwt_decode_v_job_t*) opj_malloc(sizeof(opj_dwt_decode_v_job_t)); |
| if (!job) { |
| /* It would be nice to fallback to single thread case, but */ |
| /* unfortunately some jobs may be launched and have modified */ |
| /* tiledp, so it is not practical to recover from that error */ |
| /* FIXME event manager error callback */ |
| opj_thread_pool_wait_completion(tp, 0); |
| opj_aligned_free(v.mem); |
| return OPJ_FALSE; |
| } |
| job->v = v; |
| job->rh = rh; |
| job->w = w; |
| job->tiledp = tiledp; |
| job->min_j = j * step_j; |
| job->max_j = (j + 1U) * step_j; /* this can overflow */ |
| if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
| job->max_j = rw; |
| } |
| job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
| if (!job->v.mem) { |
| /* FIXME event manager error callback */ |
| opj_thread_pool_wait_completion(tp, 0); |
| opj_free(job); |
| opj_aligned_free(v.mem); |
| return OPJ_FALSE; |
| } |
| opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job); |
| } |
| opj_thread_pool_wait_completion(tp, 0); |
| } |
| } |
| opj_aligned_free(h.mem); |
| return OPJ_TRUE; |
| } |
| |
| static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest, |
| OPJ_INT32 cas, |
| opj_sparse_array_int32_t* sa, |
| OPJ_UINT32 sa_line, |
| OPJ_UINT32 sn, |
| OPJ_UINT32 win_l_x0, |
| OPJ_UINT32 win_l_x1, |
| OPJ_UINT32 win_h_x0, |
| OPJ_UINT32 win_h_x1) |
| { |
| OPJ_BOOL ret; |
| ret = opj_sparse_array_int32_read(sa, |
| win_l_x0, sa_line, |
| win_l_x1, sa_line + 1, |
| dest + cas + 2 * win_l_x0, |
| 2, 0, OPJ_TRUE); |
| assert(ret); |
| ret = opj_sparse_array_int32_read(sa, |
| sn + win_h_x0, sa_line, |
| sn + win_h_x1, sa_line + 1, |
| dest + 1 - cas + 2 * win_h_x0, |
| 2, 0, OPJ_TRUE); |
| assert(ret); |
| OPJ_UNUSED(ret); |
| } |
| |
| |
| static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest, |
| OPJ_INT32 cas, |
| opj_sparse_array_int32_t* sa, |
| OPJ_UINT32 sa_col, |
| OPJ_UINT32 nb_cols, |
| OPJ_UINT32 sn, |
| OPJ_UINT32 win_l_y0, |
| OPJ_UINT32 win_l_y1, |
| OPJ_UINT32 win_h_y0, |
| OPJ_UINT32 win_h_y1) |
| { |
| OPJ_BOOL ret; |
| ret = opj_sparse_array_int32_read(sa, |
| sa_col, win_l_y0, |
| sa_col + nb_cols, win_l_y1, |
| dest + cas * 4 + 2 * 4 * win_l_y0, |
| 1, 2 * 4, OPJ_TRUE); |
| assert(ret); |
| ret = opj_sparse_array_int32_read(sa, |
| sa_col, sn + win_h_y0, |
| sa_col + nb_cols, sn + win_h_y1, |
| dest + (1 - cas) * 4 + 2 * 4 * win_h_y0, |
| 1, 2 * 4, OPJ_TRUE); |
| assert(ret); |
| OPJ_UNUSED(ret); |
| } |
| |
| static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, |
| OPJ_INT32 dn, OPJ_INT32 sn, |
| OPJ_INT32 cas, |
| OPJ_INT32 win_l_x0, |
| OPJ_INT32 win_l_x1, |
| OPJ_INT32 win_h_x0, |
| OPJ_INT32 win_h_x1) |
| { |
| OPJ_INT32 i; |
| |
| if (!cas) { |
| if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| |
| /* Naive version is : |
| for (i = win_l_x0; i < i_max; i++) { |
| OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| } |
| for (i = win_h_x0; i < win_h_x1; i++) { |
| OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| } |
| but the compiler doesn't manage to unroll it to avoid bound |
| checking in OPJ_S_ and OPJ_D_ macros |
| */ |
| |
| i = win_l_x0; |
| if (i < win_l_x1) { |
| OPJ_INT32 i_max; |
| |
| /* Left-most case */ |
| OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| i ++; |
| |
| i_max = win_l_x1; |
| if (i_max > dn) { |
| i_max = dn; |
| } |
| for (; i < i_max; i++) { |
| /* No bound checking */ |
| OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2; |
| } |
| for (; i < win_l_x1; i++) { |
| /* Right-most case */ |
| OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| } |
| } |
| |
| i = win_h_x0; |
| if (i < win_h_x1) { |
| OPJ_INT32 i_max = win_h_x1; |
| if (i_max >= sn) { |
| i_max = sn - 1; |
| } |
| for (; i < i_max; i++) { |
| /* No bound checking */ |
| OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1; |
| } |
| for (; i < win_h_x1; i++) { |
| /* Right-most case */ |
| OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| } |
| } |
| } |
| } else { |
| if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
| OPJ_S(0) /= 2; |
| } else { |
| for (i = win_l_x0; i < win_l_x1; i++) { |
| OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
| } |
| for (i = win_h_x0; i < win_h_x1; i++) { |
| OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
| } |
| } |
| } |
| } |
| |
| #define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off] |
| #define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off] |
| #define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off))) |
| #define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off))) |
| #define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off))) |
| #define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off))) |
| |
| static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a, |
| OPJ_UINT32 nb_cols, |
| OPJ_INT32 dn, OPJ_INT32 sn, |
| OPJ_INT32 cas, |
| OPJ_INT32 win_l_x0, |
| OPJ_INT32 win_l_x1, |
| OPJ_INT32 win_h_x0, |
| OPJ_INT32 win_h_x1) |
| { |
| OPJ_INT32 i; |
| OPJ_UINT32 off; |
| |
| (void)nb_cols; |
| |
| if (!cas) { |
| if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| |
| /* Naive version is : |
| for (i = win_l_x0; i < i_max; i++) { |
| OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| } |
| for (i = win_h_x0; i < win_h_x1; i++) { |
| OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| } |
| but the compiler doesn't manage to unroll it to avoid bound |
| checking in OPJ_S_ and OPJ_D_ macros |
| */ |
| |
| i = win_l_x0; |
| if (i < win_l_x1) { |
| OPJ_INT32 i_max; |
| |
| /* Left-most case */ |
| for (off = 0; off < 4; off++) { |
| OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; |
| } |
| i ++; |
| |
| i_max = win_l_x1; |
| if (i_max > dn) { |
| i_max = dn; |
| } |
| |
| #ifdef __SSE2__ |
| if (i + 1 < i_max) { |
| const __m128i two = _mm_set1_epi32(2); |
| __m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8)); |
| for (; i + 1 < i_max; i += 2) { |
| /* No bound checking */ |
| __m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); |
| __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); |
| __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); |
| __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); |
| S = _mm_sub_epi32(S, |
| _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2)); |
| S1 = _mm_sub_epi32(S1, |
| _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2)); |
| _mm_store_si128((__m128i*)(a + i * 8), S); |
| _mm_store_si128((__m128i*)(a + (i + 1) * 8), S1); |
| Dm1 = D1; |
| } |
| } |
| #endif |
| |
| for (; i < i_max; i++) { |
| /* No bound checking */ |
| for (off = 0; off < 4; off++) { |
| OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2; |
| } |
| } |
| for (; i < win_l_x1; i++) { |
| /* Right-most case */ |
| for (off = 0; off < 4; off++) { |
| OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; |
| } |
| } |
| } |
| |
| i = win_h_x0; |
| if (i < win_h_x1) { |
| OPJ_INT32 i_max = win_h_x1; |
| if (i_max >= sn) { |
| i_max = sn - 1; |
| } |
| |
| #ifdef __SSE2__ |
| if (i + 1 < i_max) { |
| __m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); |
| for (; i + 1 < i_max; i += 2) { |
| /* No bound checking */ |
| __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); |
| __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); |
| __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); |
| __m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8)); |
| D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1)); |
| D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1)); |
| _mm_store_si128((__m128i*)(a + 4 + i * 8), D); |
| _mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1); |
| S = S2; |
| } |
| } |
| #endif |
| |
| for (; i < i_max; i++) { |
| /* No bound checking */ |
| for (off = 0; off < 4; off++) { |
| OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1; |
| } |
| } |
| for (; i < win_h_x1; i++) { |
| /* Right-most case */ |
| for (off = 0; off < 4; off++) { |
| OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1; |
| } |
| } |
| } |
| } |
| } else { |
| if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
| for (off = 0; off < 4; off++) { |
| OPJ_S_off(0, off) /= 2; |
| } |
| } else { |
| for (i = win_l_x0; i < win_l_x1; i++) { |
| for (off = 0; off < 4; off++) { |
| OPJ_D_off(i, off) -= (OPJ_SS__off(i, off) + OPJ_SS__off(i + 1, off) + 2) >> 2; |
| } |
| } |
| for (i = win_h_x0; i < win_h_x1; i++) { |
| for (off = 0; off < 4; off++) { |
| OPJ_S_off(i, off) += (OPJ_DD__off(i, off) + OPJ_DD__off(i - 1, off)) >> 1; |
| } |
| } |
| } |
| } |
| } |
| |
| static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec, |
| OPJ_UINT32 resno, |
| OPJ_UINT32 bandno, |
| OPJ_UINT32 tcx0, |
| OPJ_UINT32 tcy0, |
| OPJ_UINT32 tcx1, |
| OPJ_UINT32 tcy1, |
| OPJ_UINT32* tbx0, |
| OPJ_UINT32* tby0, |
| OPJ_UINT32* tbx1, |
| OPJ_UINT32* tby1) |
| { |
| /* Compute number of decomposition for this band. See table F-1 */ |
| OPJ_UINT32 nb = (resno == 0) ? |
| tilec->numresolutions - 1 : |
| tilec->numresolutions - resno; |
| /* Map above tile-based coordinates to sub-band-based coordinates per */ |
| /* equation B-15 of the standard */ |
| OPJ_UINT32 x0b = bandno & 1; |
| OPJ_UINT32 y0b = bandno >> 1; |
| if (tbx0) { |
| *tbx0 = (nb == 0) ? tcx0 : |
| (tcx0 <= (1U << (nb - 1)) * x0b) ? 0 : |
| opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb); |
| } |
| if (tby0) { |
| *tby0 = (nb == 0) ? tcy0 : |
| (tcy0 <= (1U << (nb - 1)) * y0b) ? 0 : |
| opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb); |
| } |
| if (tbx1) { |
| *tbx1 = (nb == 0) ? tcx1 : |
| (tcx1 <= (1U << (nb - 1)) * x0b) ? 0 : |
| opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb); |
| } |
| if (tby1) { |
| *tby1 = (nb == 0) ? tcy1 : |
| (tcy1 <= (1U << (nb - 1)) * y0b) ? 0 : |
| opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb); |
| } |
| } |
| |
| static void opj_dwt_segment_grow(OPJ_UINT32 filter_width, |
| OPJ_UINT32 max_size, |
| OPJ_UINT32* start, |
| OPJ_UINT32* end) |
| { |
| *start = opj_uint_subs(*start, filter_width); |
| *end = opj_uint_adds(*end, filter_width); |
| *end = opj_uint_min(*end, max_size); |
| } |
| |
| |
| static opj_sparse_array_int32_t* opj_dwt_init_sparse_array( |
| opj_tcd_tilecomp_t* tilec, |
| OPJ_UINT32 numres) |
| { |
| opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
| OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0); |
| OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0); |
| OPJ_UINT32 resno, bandno, precno, cblkno; |
| opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create( |
| w, h, opj_uint_min(w, 64), opj_uint_min(h, 64)); |
| if (sa == NULL) { |
| return NULL; |
| } |
| |
| for (resno = 0; resno < numres; ++resno) { |
| opj_tcd_resolution_t* res = &tilec->resolutions[resno]; |
| |
| for (bandno = 0; bandno < res->numbands; ++bandno) { |
| opj_tcd_band_t* band = &res->bands[bandno]; |
| |
| for (precno = 0; precno < res->pw * res->ph; ++precno) { |
| opj_tcd_precinct_t* precinct = &band->precincts[precno]; |
| for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) { |
| opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno]; |
| if |